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Abstract

We give a new proof for the interior regularity of strictly convex solutions of the
Monge-Ampère equation. Our approach uses a doubling inequality for the Hessian
in terms of the extrinsic distance function on the maximal Lagrangian submanifold
determined by the potential equation.

1 Introduction

In this note, we present a new proof of interior regularity for strictly convex viscosity solutions
of the Monge-Ampère equation in general dimension:

F (D2u) = detD2u = 1. (1.1)

Theorem 1.1. Let u be a strictly convex viscosity solution of (1.1) on a domain Ω ⊂ Rn

for n ≥ 2. Then u is smooth inside Ω.

In [P64] and [P78], Pogorelov showed the Hessian estimate using the strictly convex
solution as a cut-off function in a Bernstein-Pogorelov maximum principle argument; con-
sequently interior regularity for strictly convex solutions of (1.1) was derived. Recall that
the generalized solution in the integral sense there is equivalent to the generalized solution
in the viscosity sense for the Monge-Ampère equation. The singular solutions of Pogorelov
illustrate that a condition, such as strict convexity, is necessary for regularity in three and
higher dimensions. Earlier on, Alexandrov obtained strict convexity for the two dimensional
Monge-Ampère equation in [A].

Without the strict convexity condition in two dimensions, the interior Hessian estimate
was achieved by Heinz [H] using isothermal coordinates. More recently, new pointwise proofs
of the two dimensional estimate were found by Chen-Han-Ou [CHO] and Guan-Qiu [GQ]
using different test functions in the maximum principle argument. Other two dimensional
proofs follow from various works on the sigma-2 equation in higher dimensions and special
Lagrangian equation in the Euclidean setting over the past 16 years. Note that Liu’s partial
Legendre proof [L] uses the strict convexity in [A].

An integral proof of Hessian estimates for strictly convex solutions to (1.1) was recently
found in [Y] using the maximal surface interpretation of the equation for potential u. The
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Lagrangian or “gradient” graph in pseudo-Euclidean space (x,Du(x)) ⊂ (Rn × Rn, 2dxdy)
is volume maximizing. By establishing a monotonicity formula in terms of the extrinsic
distance x ·Du(x) to the origin (0, 0), integral arguments along the lines of Trudinger’s proof
of the gradient estimate for the minimal surface equation yield the Hessian estimate.

Our argument uses the extrinsic distance in a “doubling” way. It is natural to attempt
Pogorelov’s proof using the extrinsic distance x · Du as a cut-off function, instead of the
strictly convex potential u. That argument degenerates near x = 0, but we can establish
an a priori doubling inequality, Proposition 2.2, which controls the Hessian on outer balls
by its values on small inner balls, measured in the extrinsic distance. Alexandrov-Savin
partial regularity is stable under smooth approximation, so by placing the inner ball inside
the smooth set, the doubling inequality propagates the regularity to the outer ball. This
argument is in a similar spirit to the recent work on the sigma-2 equation in four dimensions
[SY], but requires the extrinsic distance rather than the Euclidean one, since otherwise
Pogorelov’s singular solutions would satisfy the doubling property.

Now with two applications of the extrinsic distance done to the Monge-Ampère equation,
it is natural to ask if the strict convexity condition can be replaced by an alternative involving
only suitably defined extrinsic quantities.

2 Extrinsic properties

2.1 Doubling inequality under extrinsic distance

Taking the gradient of the both sides of the Monge-Ampère equation

ln detD2u = 0, (2.1)

we have
n∑

i,j=1

gij∂ij (x,Du (x)) = 0, (2.2)

where (gij) is the inverse of the induced metric g = (gij) = D2u on the graph (x,Du (x)) ⊂
(Rn × Rn, 2dxdy) (for simplicity of notation, we drop the 2 in g = 2D2u). Because of
(2.1) and (2.2), the Laplace-Beltrami operator of the metric g also takes the non-divergence

form 4g =
n∑

i,j=1

gij∂ij. The inner product with respect to the metric g is 〈∇gv,∇gw〉 =

〈∇gv,∇gw〉g =
n∑

i,j=1

gijviwj, in particular |∇gv|2 = 〈∇gv,∇gv〉.

The following strong subharmonicity of Hessian D2u was found in [Y].

Proposition 2.1 (Jacobi inequality). Suppose u is a smooth solution to detD2u = 1. Then

4g ln det
[
I +D2u (x)

]
≥ 1

2n

∣∣5g ln det
[
I +D2u (x)

]∣∣2 (2.3)

or equivalently for a (x) = {det [I +D2u (x)]}
1
2n

4g a ≥ 2
|5ga|2

a
. (2.4)
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Using the Jacobi inequality (2.4), we derive an a priori doubling estimate for the Hessian
in terms of the extrinsic balls of smooth strongly convex function u,

Du
r (p) = {x ∈ Ω : (x− p) · (Du(x)−Du(p)) < r2}.

Denote the extrinsic distance of the position vector (x,Du) to the origin by

z = x · ux = (x1, · · · , xn) ·Du.

Then

|∇gz|2 =
n∑

i,j=1

gij∂iz∂jz =
n∑

i,j=1

gij

(
ui +

n∑
k=1

xkuki

)(
uj +

n∑
l=1

xlulj

)

=
n∑

i,j=1

[
gijuiuj +

n∑
k,l=1

gij(xkuki)(xlulj) +
n∑
k=1

2gij(xkuki)uj

]

≥ 4
n∑

i,j,k=1

gij(xkuki)uj = 4z, (2.5)

4gz = x · 4gux + ux · 4gx+ 2 〈∇gx,∇gux〉 = 2
n∑

i,j,k=1

gij∂ixk∂juk

= 2
n∑

i,j=1

gijuij = 2n, (2.6)

where in (2.5), we used Cauchy-Schwartz, and we used (2.2) for 4gz. Given the “covariance”

of z = ρuρ
ρ=|x|
= x · ux (x) = x̄ · vx̄ (x̄) for v (x̄) = u (Ax̄) under linear change of variables

x = Ax̄, (2.5) and (2.6) can also be derived by diagonalizing g = D2u, as in [Y, p.2]. It is
clear that (2.5) and (2.6) work for other centers as well, z = 〈x− p,Du(x)−Du(p)〉.

Proposition 2.2 (Doubling inequality). If u is a smooth solution of (1.1) on domain Ω ⊂ Rn

with Du
r4

(p) ⊂⊂ Ω and a = det(I +D2u)1/2n, then for r1 < r2 < r3 < r4,

sup
Du

r2
(p)

a(x) ≤ C(n, r1, r2, r3) sup
Du

r1
(p)

a(x). (2.7)

Proof. We form the following Korevaar type test function on Du
r3

(p):

w(x) = η(x)a(x), η(x) =

[
exp

(
r2

3 − z(x)

h

)
− 1

]
+

,

where h = h(n, ri) will be fixed below, and z(x) = 〈x − p, ·Du(x) −Du(p)〉. Let x = x∗ be
the maximum point of w. By Dw(x∗) = 0,

Dη = −η
a
Da. (2.8)
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By D2w(x∗) ≤ 0, (2.8), and Jacobi inequality (2.4), we obtain

0 ≥ ∆gw = a∆gη + 2〈∇gη,∇ga〉+ η∆ga

= a∆gη + η

(
∆ga− 2

|∇ga|2

a

)
≥ a∆gη

= a
η + 1

h2

(
−h∆gz + |∇gz|2

)
.

(2.9)

Combining this with (2.5) and (2.6), we obtain at x = x∗,

z(x∗) ≤ nh/2 = r2
1

if h = 2r2
1/n. The doubling estimate (2.7) follows:

sup
Du

r2
(p)

a(x) ≤ sup
Du

r1
(p)

e(r23−z(x))/h − 1

e(r23−r22)/h − 1
sup
Du

r1
(p)

a(x) ≤ er
2
3/h − 1

e(r23−r22)/h − 1
sup
Du

r1
(p)

a(x).

2.2 Extrinsic ball topology

We recall that a convex function u lies above its tangent planes, while a strictly convex
function only intersects a tangent plane at a single point, and a strongly convex function has
strictly positive Hessian. Its subdifferential ∂u(p) at a point p is the collection of slopes of
such tangent planes at p. The subdifferentials ∂u(x) are each closed and are locally bounded
in x as subsets of Rn. They increase: 〈x − p, y − q〉 ≥ 0 if y ∈ ∂u(x), q ∈ ∂u(p). They also
vary continuously with x and u: [R, Theorem 24.5] implies if uk → u uniformly on B2(0)
and xk → x ∈ B1(0), then for any ε > 0, there exists k0 such that

∂uk(xk) ⊂ ∂u(x) + εB1(0), k ≥ k0. (2.10)

Given p ∈ B1(0) and convex function v(x) on B2(0), we define the outer sections by

Svr (p) :=
{
x ∈ B1(0) : v(x) < v(p) + sup

y∈∂v(p)

[(x− p) · y] + r2
}
, (2.11)

and the extrinsic balls of a smooth such v by

Dv
r (p) := {x ∈ B1(0) : (x− p) · (Dv(x)−Dv(p)) < r2}. (2.12)

Euclidean balls “bound” the extrinsic balls from below: if x, p ∈ B1(0), then

Br2/M(p) ⊂ Dv
r (p), M = 1 + 2‖Dv‖L∞(B2(0)). (2.13)

Conversely, the sections “bound” the extrinsic balls from above:

Dv
r (p) ⊂ Svr (p). (2.14)
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Indeed, by convexity,

v(p) ≥ v(x) + (p− x) ·Dv(x), x, p ∈ B1(0),

so if the nonnegative (x− p) · (Dv(x)−Dv(p)) < r2, then

v(x) ≤ v(p) + (x− p) ·Dv(p) + (x− p)(Dv(x)−Dv(p))

< v(p) + (x− p) ·Dv(p) + r2.

Remark 2.1. The containment (2.14) is still valid for general strictly convex functions,
using a subgradient version of the definition (2.12) of extrinsic balls.

The section Sur (p) shrinks to center p uniformly in terms of the center, as the height r2

goes to 0, provided u is strictly convex.

Lemma 2.1. Given u strictly convex on B2(0),

lim
r→0

sup
|p|<1

diamSur (p) = 0. (2.15)

Proof. If not, then there exist rk → 0 and pk, xk ∈ B1(0) with xk ∈ Surk(pk) and |xk−pk| ≥ ε

for some fixed ε > 0. We assume xk, pk → x, p ∈ B1(0). By xk ∈ Surk(pk), we have

u(x) < u(p) + (x− p) · yk + o(1)k, (2.16)

where yk ∈ ∂u(pk) is the maximizer in (2.11). By (2.10), we can find a subsequence where
yk → y ∈ ∂u(p), so (2.16) combined with strict convexity and |x− p| ≥ ε gives

u(x) ≤ u(p) + (x− p) · y < u(x).

This contradiction completes the proof.

The section upper “bound” (2.14) is preserved under limits.

Lemma 2.2. Let u be a strictly convex function on B2(0) with convex uk → u uniformly on
B2(0). Then, for any 0 < δ < 1 and p ∈ B1(0), there exists k0 large enough such that for all
0 < r < 1 and k ≥ k0, we have Sukr (p) ⊂ Sur+δ(p).

Proof. If not, then there exists δ > 0, rk → r ∈ [0, 1], and xk ∈ B1(0) with xk → x ∈ B1(0),
xk ∈ Sukrk (p), but xk /∈ Surk+δ(p). The last condition implies

u(x) ≥ u(p) + sup
y∈∂u(p)

[(x− p) · y] + (r + δ)2 + o(1)k,

while xk ∈ Sukrk (p) implies

u(x) < u(p) + (x− p) · yk + r2 + o(1)k

for some yk ∈ ∂uk(p). By (2.10), we can find a subsequence such that yk → y ∈ ∂u(p), so

u(x) ≤ u(p) + (x− p) · y + r2 ≤ u(x) + r2 − (r + δ)2.

This contradiction completes the proof.

As a consequence of Lemmas 2.1 and 2.2, we see that Duk
r (p) ⊂ Su2r(p) ⊂⊂ B1(0) if r is

small enough depending on u, and k is sufficiently large depending on u, r, and p. In this
case, open set Duk

r (p) has smooth boundary for smooth strictly convex uk and is star shaped
with center x = p.
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3 Proof of Theorem 1.1

Step 1: Approximation. Given viscosity solution u(x) on B3(0), we show that u is smooth
in a neighborhood of any given point in B3(0), say near x = 0. By solving the Dirichlet
problem, we find smooth solutions uk → u uniformly on B2(0) with Duk bounded on B2(0)
uniformly in k. In (2.13), we enlarge the constant M :

M := 1 + 2 sup
k
‖Duk‖L∞(B2(0)). (3.1)

Step 2: Partial regularity. By combining Alexandrov’s theorem (convex functions a.e. twice
differentiable) with Savin’s small perturbation theorem [S, Theorem 1.3], the singular set
sing(u) is closed and measure zero. By Savin’s small perturbation theorem again, uk → u
in C2,α

loc inside the open set sing(u)c := B2(0) \ sing(u), so the Hessians of uk are uniform in
fixed compact subsets of sing(u)c.

Step 3: Uniform radius of the doubling balls. We first find r2 to control x = 0 by x = p. We
first use (2.15) to find 0 < ρ < 1 small enough such that Su4ρ(p) ⊂⊂ B1(0) for all |p| < 1/2.
Next we observe that 0 ∈ Br2/M(p(r, e)) for p(r, e) = (r2/2M)e and any e ∈ Sn−1. Since
sing(u) is measure zero, we can fix 0 < r ≤ ρ and e ∈ Sn−1 such that p = p(r, e) ∈ sing(u)c.
This ensures 0 ∈ Br2/M(p) ⊂ Duk

r (p), by (2.13). We set r2 = r, r3 = 2r, and r4 = 3r. For
the inner radius, since p ∈ sing(u)c, we use (2.15) to find r1 < r2 small enough such that
Su2r1(p) ⊂⊂ sing(u)c.

Step 4: Doubling inequality. Now with p and r fixed, for k large enough, Lemma 2.2 and
(2.14) show Duk

r4
(p) ⊂ Suk3r (p) ⊂ Su4r(p) ⊂⊂ B1(0), the equation domain Ω. We apply

Proposition 2.2 to obtain

max
D

uk
r2

(p)
|D2uk| ≤ C(r, r1, n, max

D
uk
r1

(p)
|D2uk|).

For large enough k, we have Duk
r1

(p) ⊂ Sukr1 (p) ⊂ Su2r1(p) ⊂⊂ sing(u)c. By Alexandrov-Savin
locally uniform convergence in C2,α of uk to u in sing(u)c, we conclude a uniform Hessian
bound in a fixed neighborhood of x = 0, if k is large enough:

max
Br2/M (p)

|D2uk| ≤ max
D

uk
r2

(p)
|D2uk| ≤ C(r, n, max

Su
2r1

(p)
|D2u|).

By Calabi [Cal] or Evans-Krylov, a subsequence uk converges in C2,α
loc (Br2/M(p)). We conclude

u is smooth inside Br2/M(p), hence smooth near x = 0. This completes the proof of interior
regularity.
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