UW Probability Seminar


Joint Probability and Rainwater seminar

Time: Tuesday, April 22, 2014, 1:30-3:30 pm.

Location: SMI 307

Speaker: Jason Miller (MIT)

Title: Random Surfaces and Quantum Loewner Evolution

Abstract: What is the canonical way to choose a random, discrete, two-dimensional manifold which is homeomorphic to the sphere? One procedure for doing so is to choose uniformly among the set of surfaces which can be generated by gluing together $n$ Euclidean squares along their boundary segments. This is an example of what is called a random planar map and is a model of what is known as pure discrete quantum gravity. The asymptotic behavior of these discrete, random surfaces has been the focus of a large body of literature in both probability and combinatorics. This has culminated with the recent works of Le Gall and Miermont which prove that the $n \to \infty$ distributional limit of these surfaces exists with respect to the Gromov-Hausdorff metric after appropriate rescaling. The limiting random metric space is called the Brownian map.

Another canonical way to choose a random, two-dimensional manifold is what is known as Liouville quantum gravity (LQG). This is a theory of continuum quantum gravity introduced by Polyakov to model the time-space trajectory of a string. Its metric when parameterized by isothermal coordinates is formally described by $e^{\gamma h} (dx^2 + dy^2)$ where $h$ is an instance of the continuum Gaussian free field, the standard Gaussian with respect to the Dirichlet inner product. Although $h$ is not a function, Duplantier and Sheffield succeeded in constructing LQG rigorously as a random area measure. LQG for $\gamma=\sqrt{8/3}$ is conjecturally equivalent to the Brownian map and to the limits of other discrete theories of quantum gravity for other values of $\gamma$.

In this talk, I will describe a new family of growth processes called quantum Loewner evolution (QLE) which we propose using to endow LQG with a distance function which is isometric to the Brownian map. I will also explain how QLE is related to DLA, the dielectric breakdown model, and SLE.

Based on joint works with Scott Sheffield


Archive of previous talks


The University of Washington is committed to providing access, equal opportunity and reasonable accommodation in its services, programs, activities, education and employment for individuals with disabilities. To request disability accommodation contact the Disability Services Office at least ten days in advance at: 206-543-6450 (voice), 206-543-6452 (TTY), 206-685-7264 (FAX), or dso@u.washington.edu


Mathematics Department University of Washington