UW Probability Seminar


Time: Monday, January 9, 2017 at 2:30 pm.

Location: THO 119

Speaker: Nina Holden (Massachusetts Institute of Technology)

Title: HOW ROUND ARE THE COMPLEMENTARY COMPONENTS OF PLANAR BROWNIAN MOTION?

Abstract: Consider a Brownian motion W in the complex plane started from 0 and run for time 1. Let A(1), A(2),... denote the bounded connected components of C-W([0,1]). Let R(i) (resp.\ r(i)) denote the out-radius (resp.\ in-radius) of A(i) for i \in N. Our main result is that E[\sum_i R(i)^2|\log R(i)|^\theta ]<\infty for any \theta<1. We also prove that \sum_i r(i)^2|\log r(i)|=\infty almost surely. These results have the interpretation that most of the components A(i) have a rather regular or round shape. Based on joint work with Serban Nacu, Yuval Peres, and Thomas S. Salisbury.


Archive of previous talks


The University of Washington is committed to providing access, equal opportunity and reasonable accommodation in its services, programs, activities, education and employment for individuals with disabilities. To request disability accommodation contact the Disability Services Office at least ten days in advance at: 206-543-6450 (voice), 206-543-6452 (TTY), 206-685-7264 (FAX), or dso@u.washington.edu


Mathematics Department University of Washington