
Invariant Theory of Artin-Schelter
Regular Algebras:

The Shephard-Todd-Chevalley
Theorem

Ellen Kirkman

University of Washington: May 26, 2012



Collaborators

• Jacque Alev

• Kenneth Chan

• James Kuzmanovich

• Chelsea Walton

• James Zhang



Goal and Rationale:

Extend “Classical Invariant Theory” to an appropriate
noncommutative context.

“Classical Invariant Theory”: Group G acts on k[x1, · · · , xn].
f is invariant under G if g · f = f for all g in G .

Invariant theory important in the theory of commutative rings.

Productive context for using homological techniques.

Further the study of Artin-Schelter Regular Algebras A and
other non-commutative algebras.

Extend from group G action to Hopf algebra H action.



Linear Group Actions on k[x1, · · · , xn]

Let G be a finite group of n × n matrices acting on
k[x1, · · · , xn]

g =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann



g · xj =
n∑

i=1

aijxi

Extend to an automorphism of k[x1, · · · , xn].



Invariants under Sn
Permutations of x1, · · · , xn.

(Painter: Christian Albrecht Jensen) (Wikepedia)



The subring of invariants
under Sn is a polynomial ring

k[x1, · · · , xn]Sn = k[σ1, · · · , σn]

where σk are the n elementary symmetric functions for
k = 1, . . . , n:

σk =
∑

i1<i2<···<ik

xi1xi2 · · · xik = OSn(x1x2 · · · xk)

or the n power functions:

Pk =
∑

xki = OSn(xk1 ).

Question: When is k[x1, · · · , xn]G a polynomial ring?



Shephard-Todd-Chevalley Theorem

Let k be a field of characteristic zero.

Theorem (1954). The ring of invariants k[x1, · · · , xn]G under
a finite group G is a polynomial ring if and only if G is
generated by reflections.

A linear map g on V is called a reflection of V if all but one of
the eigenvalues of g are 1, i.e. dim V g = dim V − 1.

Example: Transposition permutation matrices are reflections,
and Sn is generated by reflections.



Noncommutative Generalizations?

Replace k[x1, · · · , xn] by a “polynomial-like” noncommutative
algebra A.

Let A be Artin-Schelter regular algebra. A commutative
Artin-Schelter regular ring is a commutative polynomial ring.

Consider groups G of graded automorphisms acting on A.
Note that not all linear maps act on A.

More generally, consider finite dimensional semi-simple Hopf
algebras H acting on A.



Artin-Schelter Gorenstein/Regular

Noetherian connected graded algebra A is Artin-Schelter
Gorenstein if:

• A has graded injective dimension d <∞ on the left and
on the right,

• ExtiA(k ,A) = ExtiAop(k ,A) = 0 for all i 6= d , and

• ExtdA(k ,A) ∼= ExtdAop(k ,A) ∼= k(`) for some `.

If in addition,

• A has finite (graded) global dimension, and

• A has finite Gelfand-Kirillov dimension,

then A is called Artin-Schelter regular of dimension d .

An Artin-Schelter regular graded domain A is called a quantum
polynomial ring of dimension n if HA(t) = (1− t)−n.



Linear automorphisms of Cq[x , y ]

If q 6= ±1 there are only diagonal automorphisms:

g =

[
a 0
0 b

]
.

When q = ±1 there also are automorphisms of the form:

g =

[
0 a
b 0

]
:

yx = qxy

g(yx) = g(qxy)

axby = qbyax

abxy = q2abxy

q2 = 1.



Noncommutative
Shephard-Todd-Chevalley Theorem

1. AG is a polynomial ring  ??? AG ∼= A??

Example (a): Let

g =

(
εn 0
0 1

)
act on A = C−1[x , y ]. Then AG = C〈xn, y〉.

When n odd, AG ∼= A. When n even AG ∼= C[x , y ].

Replace “AG is a polynomial ring” with “AG is AS-regular”.

When A commutative AG ∼= A equivalent to AG AS-regular.



Noncommutative
Shephard-Todd-Chevalley Theorem

1. AG is a polynomial ring  AG is AS-regular.

2. Definition of “reflection”:

All but one eigenvalue of g is 1  ???



Examples G =< g > on A = C−1[x , y ] (yx = −xy):

Example (b): g =

[
0 1
1 0

]
. AS2 is generated by

P1 = x + y and P2 = x3 + y3

(x2 + y2 = (x + y)2 and g · xy = yx = −xy so no generators
in degree 2); alternatively, generators are

σ1 = x + y and σ2 = x2y + xy2.

The generators are NOT algebraically independent. AS2 is
AS-regular (but it is a hyperplane in an AS-regular algebra).
The transposition (1, 2) is NOT a “reflection”.



Examples G =< g > on A = C−1[x , y ]
(yx = −xy):

Example (c): g =

[
0 −1
1 0

]
.

Now σ1 = x2 + y2 and σ2 = xy are invariant and

Ag ∼= C[σ1, σ2] is AS-regular.

g is a “mystic reflection”.



2. Definition of “reflection”:

All but one eigenvalue of g is 1  

The trace function of g acting on A of dimension n has a pole
of order n − 1 at t = 1, where

TrA(g , t) =
∞∑
k=0

trace(g |Ak)tk =
1

(t − 1)n−1q(t)
for q(1) 6= 0.



Examples G =< g > on A = C−1[x , y ] (yx = −xy):

(a) g =

[
εn 0
0 1

]
,Tr(g , t) =

1

(1− t)(1− εnt)
, Ag AS-regular.

(b) g =

[
0 1
1 0

]
,Tr(g , t) =

1

1 + t2
, Ag not AS-regular.

(c) g =

[
0 −1
1 0

]
,Tr(g , t) =

1

(1− t)(1 + t)
, Ag AS-regular.

For A = Cqij [x1, · · · , xn] the groups generated by “reflections”
are exactly the groups whose fixed rings are AS-regular rings.



Noncommutative Shephard-Todd-Chevalley Theorem

If G is a finite group of graded automorphisms of an AS-regular
algebra A of dimension n then AG is AS-regular if and only if G
is generated by elements whose trace function

TrA(g , t) =
∞∑
k=0

trace(g |Ak)tk =
1

(t − 1)n−1q(t)
,

i.e. has a pole of order n − 1 at t=1.

Proven for cases:
1. G abelian and A a “quantum polynomial algebra”.
2. A = Cqij [x1 · · · , xn], skew polynomial ring.
3. A is an AS-regular graded Clifford algebra.



Molien’s Theorem:
Using trace functions

Jørgensen-Zhang: HAG (t) =
1

|G |
∑
g∈G

TrA(g , t)

.

Example (c) A = C−1[x , y ] and g =

[
0 −1
1 0

]
σ1 = x2 + y2, σ2 = xy and Ag ∼= C[σ1, σ2].

HAG (t) =
1

4(1− t)2
+

2

4(1− t2)
+

1

4(1 + t)2
=

1

(1− t2)2
.



Bounds on Degrees of Generators:
Commutative Polynomial Algebras

Noether’s Bound (1916):
For k of characteristic zero, generators of k[x1, · · · , xn]G can
be chosen of degree ≤ |G |.

Göbel’s Bound (1995):
For subgroups G of permutations in Sn, generators of

k[x1, · · · , xn]G can be chosen of degree ≤ max{n,
(
n

2

)
}.



Invariants of A = C−1[x1, . . . , xn]
under the full Symmetric Group Sn

Example (b): g =

[
0 1
1 0

]
acts on A.

Both bounds fail for AS2 , which required generators

of degree 3 > |S2| = 2 = max{2,
(

2

2

)
}: Generating sets

P1 = x + y = OS2(x) and P2 = x3 + y3 = OS2(x3)

or

σ1 = x + y = OS2(x) and σ2 = x2y + xy2 = OS2(x2y).



Invariants of A = C−1[x1, . . . , xn]
under the full Symmetric Group Sn

Invariants are generated by sums over Sn-orbits
OSn(X I ) = the sum of the Sn-orbit of a monomial X I .
OSn(X I ) can be represented by X I , where I is a partition:

X (i1,··· ,in) where i1 ≥ i2 ≥ . . . ≥ in

OSn(X I ) = 0 if and only if I is a partition with
repeated odd parts (e.g. OSn(x51x

3
2x

3
3 ) = 0 it corresponds to

the partition 5 + 3 + 3).



ASn is generated by the n odd power sums

Pk =
∑

x2k−1i

or the n invariants

σk = OSn(x21 . . . x
2
k−1xk)

for k = 1, . . . , n.

Bound on degrees of generators of ASn is 2n − 1.



Invariants under the Alternating Group An:
Commutative Case

C[x1, . . . , xn]An is generated by the symmetric polynomials
(or power functions) and

D =
∏
i<j

(xi − xj),

which has degree

(
n

2

)
. The Göbel bound is sharp.



Invariants of A = C−1[x1, . . . , xn] under the
Alternating Group:

AAn is generated by OAn(x1x2 · · · xn−1),

and the n-1 polynomials σ1, . . . , σn−1

(or the power functions P1, . . . ,Pn−1),

An upper bound on the degrees of generators of AAn is 2n − 3.



Questions

For A an Artin-Schelter regular algebra, find an upper bound
on the degrees of generators of AG .

Find an analogue of Göbel bound
(for A = C−1[x1, · · · , xn] we proved n2, but probably not
sharp).

Find an analogue of Noether bound
(consider cyclic groups?).



What are the “reflection groups”?

Shephard-Todd classified the reflection groups (finite
groups G where C[x1, · · · , xn]G is a polynomial ring)
– 3 infinite families and 34 exceptional groups.

If A is a quantum polynomial ring, a “reflection” of A must be
a classical reflection, or a mystic reflection τi ,j ,λ where

τs,t,λ(xi ) =


xi i 6= s, t

λxt i = s

−λ−1xs i = t.

Question: Do other AS-regular algebras have other kinds of
“reflections”?



The Groups M(n, α, β)

Let A = C−1[x1, · · · , xn], α, β ∈ N with α|β and 2|β.
Let θs,λ be the classical reflection

θs,λ(xi ) =

{
xi i 6= s

λxs i = s.

M(n, α, β) is the subgroup of graded automorphisms of A
generated by

{θi ,λ|λα = 1} ∪ {τi ,j ,λ|λβ = 1}.

Then M(n, α, β) is a “reflection group”.



Rotation group of cube is generated by

g1 :=

 0 −1 0
1 0 0
0 0 1

 and g2 :=

 1 0 0
0 0 −1
0 1 0


that act on A = C−1[x , y , z ] as the mystic reflections
g1 = τ1,2,1 and g2 = τ2,3,1, respectively, and generate
G = M(3, 1, 2).



The mystic reflection groups M(2, 1, 2`), for `� 0, are not
isomorphic to classical reflection groups as abstract groups.
They are the “dicyclic groups” of order 4` generated by(

λ 0
0 λ−1

)
and

(
0 1
−1 0

)
for λ a primitive 2`th root of unity.



Let A = Cqij [x1, · · · , xn] and G be a finite subgroup of graded
automorphisms of A.

If G is generated by “reflections” of A, then G as an abstract
group is isomorphic to a direct product of classical reflection
groups and groups of the form M(n, α, β).



Invariants under
Hopf Algebra Actions

Let (H,∆, ε,S) be a Hopf algebra and A be a Hopf-module
algebra so

h · (ab) =
∑

(h1 · a)(h2 · b) and h · 1A = ε(h)1A

for all h ∈ H, and all a, b ∈ A.
The invariants of H on A are

AH := {a ∈ A | h · a = ε(h)a for all h ∈ H}.

When H = k[G ] and ∆(g) = g ⊗ g then g · (ab) = g(a)g(b).



Kac/Masuoka’s 8-dimensional
semisimple Hopf algebra

H8 is generated by x , y , z with the following relations:

x2 = y2 = 1, xy = yx , zx = yz ,

zy = xz , z2 =
1

2
(1 + x + y − xy).

∆(x) = x ⊗ x , ∆(y) = y ⊗ y ,

∆(z) =
1

2
(1⊗ 1 + 1⊗ x + y ⊗ 1− y ⊗ x)(z ⊗ z),

ε(x) = ε(y) = ε(z) = 1, S(x) = x−1, S(y) = y−1, S(z) = z .



Hopf Action of H8 on
A = C−1[u, v ]

x 7→
(

0 1
1 0

)
, y 7→

(
0 −1
−1 0

)
, z 7→

(
1 0
0 −1

)
A = C−1[u, v ] is a left H8-module algebra.

Let a = u3v − uv3 and b = u2 + v2, then AH8 = C[a, b],
so H8 is a “reflection quantum group”.



Hopf Action of H8 on A = Ci [u, v ]
(vu = iuv)

x 7→
(
−1 0
0 1

)
, y 7→

(
1 0
0 −1

)
, z 7→

(
0 1
1 0

)
.

A = Ci [u, v ] is an H8-module algebra

z · (uv) = −vu, z · (vu) = uv ,

z · (u2) = v2, z · (v2) = u2.

AH8 = C[u2v2, u2 + v2], so H8 is a “reflection quantum group”.

Furthermore AH8 6= AG for any finite group G .



Molien’s Theorem

When H is a finite dimensional semisimple Hopf algebra acting
on A.

Then HAH (t) = Tr(
∫
, t), where

∫
has ε(

∫
) = 1.

E.g. for H8∫
=

1 + x + y + xy + z + xz + yz + xyz

8
.



Questions

When is k[x1, · · · , xn]H a polynomial ring?
Must H be a group algebra or the dual of a group algebra?

If H is a semisimple Hopf algebra and A = C[u, v ] then if A is
an inner faithful H-module algebra then H is a group algebra
(Chan-Walton-Zhang).

If A is Artin-Schelter regular, when is AH regular?

What happpens when G (or H) is infinite?

What happens when H is not semisimple?



H not semisimple

Consider the Sweedler algebra H(−1) generated by g and x

g2 = 1, x2 = 0, xg = −gx

∆(g) = g ⊗ g ∆(x) = g ⊗ x + x ⊗ 1,

ε(g) = 1, ε(x) = 0 S(g) = g , S(x) = −gx .

Then H(−1) acts on k[u, v ] as

x 7→
(

0 1
0 0

)
, g 7→

(
1 0
0 −1

)
k[u, v ]H(−1) = k[u, v2].


