Invariant Theory of Artin-Schelter Regular Algebras: Gorenstein Invariant Subrings

Ellen Kirkman

University of Washington: May 27, 2012

AS-regular algebra A with m generators.
G finite group of $m \times m$ matrices (or H a finite dimensional Hopf algebra) acting on it.

When is $A^{G}\left(A^{H}\right)$ AS-regular?
Conjecture (proof in some cases): A^{G} AS-regular if and only if G is generated by elements with

$$
\operatorname{Tr}_{A}(g, t)=\frac{1}{(1-t)^{n-1} q(t)}
$$

and $\mathrm{n}=\mathrm{GK} \operatorname{dim}(A)$.
A^{H} can be AS-regular.

A may not have any such group or Hopf actions (e.g the (non-PI) 3 dim Sklyanin algebra, Jordan plane and down-up algebras have no "reflections" so A^{G} is not regular, and hence $A^{G} \not \approx A$.)

More is known about when $A^{G}\left(A^{H}\right)$ is AS-Gorenstein.

Watanabe's Theorem

Watanabe's Theorem. (1974) If G is a finite subgroup of $\mathrm{SL}(V)$ acting naturally on the commutative polynomial algebra $k[V]$, then the fixed subring $k[V]^{G}$ is Gorenstein.

Example: Let $g=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ act on $k[x, y]$

$$
k[x, y]^{g}=k\left\langle x^{2}, x y, y^{2}\right\rangle \cong \frac{k[a, c][b]}{\left\langle b^{2}-a c\right\rangle}
$$

$$
H_{A g}(t)=\frac{1+t^{2}}{\left(1-t^{2}\right)^{2}}
$$

The Homological Determinant

A AS-regular and G a finite group acting linearly on A.
If A is AS-regular of dimension n, then when the trace is written as a Laurent series in t^{-1}

$$
\operatorname{Tr}_{A}(g, t)=(-1)^{n}(\text { hdet } g)^{-1} t^{-\ell}+\text { higher terms }
$$

hdet is a homomorphism from G into \mathbb{C}.

Noncommutative Watanabe's Theorem

Jørgensen-Zhang's Theorem (2000). If G is a finite subgroup of $\mathrm{GL}(V)$ acting linearly on an Artin-Schelter regular algebra A, if the homological determinant of each g in G is 1 , then the fixed subring A^{G} is AS-Gorenstein.

Example. Let $g=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ act on $\mathbb{C}_{-1}[x, y]$.
Then

$$
\operatorname{Tr}_{A}(g, t)=\frac{1}{1+t^{2}}=\frac{1}{t^{2}}+\text { higher degree terms }
$$

so $\operatorname{hdet}(g)=1$. Then $\mathbb{C}_{-1}[x, y]^{g}$ is AS-Gorenstein, $\mathbb{C}_{-1}[x, y]^{g}$ is generated by $\sigma_{1}=x+y$ and $\sigma_{2}=x^{3}+y^{3}$.

Noncommutative
 Stanley's Theorem

Jørgensen-Zhang's Theorem (2000). Let A be AS-regular, and G be a finite group of graded automorphisms of A. Then A^{G} is AS-Gorenstein if and only its Hilbert series satisfies the functional equation

$$
H_{A^{G}}\left(t^{-1}\right)= \pm t^{m} H_{A^{G}}(t) \text { for some integer } m \text {. }
$$

Example. Let $g=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ act on $\mathbb{C}_{-1}[x, y]$. Then
$H_{A g}(t)=\frac{1-t+t^{2}}{(1-t)^{2}\left(1+t^{2}\right)}$ and $H_{A g}\left(t^{-1}\right)=t^{2} H_{A g}(t)$.

Invariants of $A=\mathbb{C}_{-1}\left[x_{1} \ldots, x_{n}\right]$ under Permutations

If g is a 2 -cycle and $A=\mathbb{C}_{-1}\left[x_{1} \ldots, x_{n}\right]$ then

$$
\begin{aligned}
& \operatorname{Tr}_{A}(g)=\frac{1}{\left(1+t^{2}\right)(1-t)^{n-2}} \\
& =(-1)^{n} \frac{1}{t^{n}}+\text { higher terms }
\end{aligned}
$$

so hdet $g=1$, and for ALL groups G of $n \times n$ permutation matrices, A^{G} is AS-Gorenstein. Not true for commutative polynomial ring - e.g.

$$
\left.\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right]^{\langle(1,2,3,4)\rangle}
$$

is not Gorenstein, while

$$
\mathbb{C}_{-1}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]{ }^{\langle(1,2,3,4)\rangle}
$$

is AS-Gorenstein.

Example: Down-Up Algebra

Let A be AS-regular algebra generated by x, y with

$$
x^{2} y=y x^{2} \text { and } y^{2} x=x y^{2}
$$

$$
\mathrm{GL}(2, \mathbb{C}) \text { acts on } A \text {. }
$$

Then A^{G} is Gorenstein if and only if all elements of G have determinant 1 or -1 .

Example. Let $A=A(a, b, c)$ be an AS-regular 3-dim Sklyanin algebra, i.e. the algebra generated by x, y, z with relations

$$
\begin{aligned}
& a x^{2}+b y z+c z y=0 \\
& a y^{2}+b z x+c x z=0 \\
& a z^{2}+b x y+c y x=0
\end{aligned}
$$

Then the fixed ring under each of the following elements g of order 3 is AS-Gorenstein:

$$
g=\left[\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega
\end{array}\right],\left[\begin{array}{rrr}
0 & \omega & 0 \\
0 & 0 & \omega^{2} \\
1 & 0 & 0
\end{array}\right] \text {, or }\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

where ω satisfies $\omega^{3}=1$.

$k\left[x_{1}, \cdots, x_{n}\right]^{G}$ a complete intersection:

Groups G with $k\left[x_{1}, \cdots, x_{n}\right]^{G}$ a complete intersection were classified by Nakajima (1984) and Gordeev (1986).

Theorem: (Kac and Watanabe - Gordeev) (1982). If $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}$ is a complete intersection then G is generated by bi-reflections (all but two eigenvalues are 1).

Example: Let $g=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ act on $k[x, y]$

$$
k[x, y]^{g}=k\left\langle x^{2}, x y, y^{2}\right\rangle \cong \frac{k[a, b, c]}{\left\langle b^{2}-a c\right\rangle}
$$

Bi-reflection of A

For an AS-regular algebra A a graded automorphism g is a "bi-reflection" of A if

$$
\begin{gathered}
\operatorname{Tr}_{A}(g, t)=\sum_{k=0}^{\infty} \operatorname{trace}\left(g \mid A_{k}\right) t^{k} \\
=\frac{1}{(1-t)^{n-2} q(t)}
\end{gathered}
$$

$$
\mathrm{n}=\mathrm{GK} \operatorname{dim} A, \text { and } q(1) \neq 0
$$

Questions

Is there a version of Kac-Watanabe-Gordeev Theorem that is true in the noncommutative setting?

If A^{G} is a complete intersection must G be generated by bi-reflections?

What is a "noncommutative complete intersection"?

Example:

A^{G} a complete intersection

$A=\mathbb{C}_{-1}[x, y, z]$ is AS-regular of dimension 3 , and

$$
g=\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

acts on it. The eigenvalues of g are $-1, i,-i$ so g is not a bi-reflection of A_{1}. However, $\operatorname{Tr}_{A}(g, t)=1 /\left((1+t)^{2}(1-t)\right)=-1 / t^{3}+$ higher degree terms and g is a "bi-reflection" with hdet $g=1$.

$$
A^{g} \cong \frac{k[X, Y, Z, W]}{\left\langle W^{2}-\left(X^{2}+4 Y^{2}\right) Z\right\rangle}
$$

a commutative complete intersection.

Example (b): $g=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ acting on $\mathbb{C}_{-1}[x, y]$.
Then $\mathbb{C}_{-1}[x, y]^{S_{2}}$ is generated by

$$
P_{1}=x+y \text { and } P_{2}=x^{3}+y^{3}
$$

with

$$
\begin{gathered}
\quad P_{1} P_{2}^{2}=P_{2}^{2} P_{1} \text { and } P_{1}^{2} P_{2}=P_{2} P_{1}^{2}, \\
\text { and } 2 P_{1}^{6}-3 P_{1}^{3} P_{2}-3 P_{2} P_{1}^{3}+4 P_{2}^{2}=0 .
\end{gathered}
$$

Let $A=\langle x, y\rangle$ with $x y^{2}=y^{2} x$ and $x^{2} y=y x^{2}$,
then A is AS-regular and

$$
\mathbb{C}_{-1}[x, y]^{S_{2}} \cong \frac{A}{\left\langle 2 x^{6}-3 x^{3} y-3 y x^{3}+4 y^{2}\right\rangle}
$$

Commutative Complete Intersections

Theorem (Y. Félix, S. Halperin and J.-C. Thomas)(1991): Let A be a connected graded noetherian commutative algebra. Then the following are equivalent.
(1) A is isomorphic to $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left(d_{1}, \ldots, d_{m}\right)$ for a homogeneous regular sequence.
(2) The Ext-algebra $\operatorname{Ext}_{A}^{*}(k, k)$ is noetherian.
(3) The Ext-algebra $\mathrm{Ext}_{A}^{*}(k, k)$ has finite GK-dimension.

Noncommutative Complete Intersections

Let A be a connected graded noetherian algebra.
(1) We say A is a classical complete intersection ring if there is a connected graded noetherian AS regular algebra R and a sequence of normal regular homogeneous elements $\left\{d_{1}, \cdots, d_{n}\right\}$ of positive degree such that A is isomorphic to $R /\left(d_{1}, \cdots, d_{n}\right)$.
(2) We say A is a complete intersection ring of type NP if the Ext-algebra $\operatorname{Ext}_{A}^{*}(k, k)$ is noetherian.
(3) We say A is a complete intersection ring of type GK if the Ext-algebra $\mathrm{Ext}_{A}^{*}(k, k)$ has finite Gelfand-Kirillov dimension.
(4) We say A is a weak complete intersection ring if the Ext-algebra Ext ${ }_{A}^{*}(k, k)$ has subexponential growth.

Noncommutative case:

classical complete intersection ring \Rightarrow complete intersection ring of type GK
complete intersection ring of type NP (GK) \Rightarrow weak complete intersection ring
complete intersection ring of type $G K \nRightarrow$ complete intersection ring of type NP

Example: $A=k\langle x, y\rangle /\left(x^{2}, x y, y^{2}\right)$ is a Koszul algebra with Ext-algebra $E:=k\langle x, y\rangle /(y x)$; GKdim $E=2$ but E is not noetherian.

Examples of noncommutative complete intersections of type NP (GK) include noetherian Koszul algebras that have Ext-algebras that are Noetherian (finite GK) for example

$$
A=\frac{\mathbb{C}_{-1}[x, y]}{\left\langle x^{2}-y^{2}\right\rangle} \text { with } \operatorname{Ext}_{A}^{*}(k, k)=A^{!}=\frac{\mathbb{C}[x, y]}{\left\langle x^{2}+y^{2}\right\rangle}
$$

or

$$
A=\frac{\mathbb{C}\langle x, y\rangle}{\left\langle x^{2}, y^{2}\right\rangle} \text { with } \operatorname{Ext}_{A}^{*}(k, k)=A^{!}=\frac{\mathbb{C}[x, y]}{\langle x y\rangle}
$$

in second case

$$
A \cong \frac{B}{\left\langle x^{2}, y^{2}\right\rangle}
$$

where B is the AS-regular algebra generated by x, y with $y x^{2}=x^{2} y$ and $y^{2} x=x y^{2}$.

Let A be a connected graded Noetherian ring. We say A is cyclotomic Gorenstein if the following conditions hold:
(i) A is AS-Gorenstein;
(ii) $H_{A}(t)$, the Hilbert series of A, is a rational function $p(t) / q(t)$ for some relatively prime polynomials $p(t), q(t) \in \mathbb{Z}[t]$ where all roots of $p(t)$ are roots of unity.

Suppose that A is isomorphic to R^{G} for some Auslander regular algebra R and a finite group $G \subseteq \operatorname{Aut}(R)$. If $\operatorname{Ext}_{A}^{*}(k, k)$ has subexponential growth, then A is cyclotomic Gorenstein.

Hence if A not cyclotomic Gorenstein, then A is not a complete intersection of any type.

Veronese Subrings

For a graded algebra A the r th Veronese $A^{\langle r\rangle}$ is the subring generated by all monomials of degree r.

If A is AS-Gorenstein of dimension d, then $A^{\langle r\rangle}$ is
AS-Gorenstein if and only if r divides ℓ where $\mathrm{Ext}_{A}^{d}(k, A)=k(\ell)$ (Jørgensen-Zhang).

Let $g=\operatorname{diag}(\lambda, \cdots, \lambda)$ for λ a primitive r th root of unity; $G=(g)$ acts on A with $A^{\langle r\rangle}=A^{G}$.

If the Hilbert series of A is $(1-t)^{-d}$ then

$$
\operatorname{Tr}_{A}\left(g^{i}, t\right)=\frac{1}{\left(1-\lambda^{i} t\right)^{d}}
$$

For $d \geq 3$ the group $G=(g)$ contains no "bi-reflections", so $A^{G}=A^{\langle r\rangle}$ should not be a complete intersection.

Theorem:

Let A be noetherian connected graded algebra.
(1) Suppose the Hilbert series of A is $(1-t)^{-d}$. If $r \geq 3$ or $d \geq 3$, then $H_{A^{\langle r\rangle}}(t)$ is not cyclotomic. Consequently, $A^{\langle r\rangle}$ is not a complete intersection of any type.
(2) Suppose A is a quantum polynomial ring of dimension 2 (and $\left.H_{A}(t)=(1-t)^{-2}\right)$. If $r=2$, then $H_{A^{(r\rangle}}(t)$ is cyclotomic and $A^{\langle r\rangle}$ is a classical complete intersection.

Permutation Actions on
 $$
A=\mathbb{C}_{-1}\left[x_{1}, \cdots, x_{n}\right]
$$

If g is a 2 -cycle then hdet $g=1$, and all A^{G} are AS-Gorenstein.

A permutation matrix g is a "bi-reflection" of A if and only if it is a 2-cycle or a 3-cycle.

Both $A^{S_{n}}$ and $A^{A_{n}}$ are classical complete intersections.

$$
A=\mathbb{C}_{-1}\left[x_{1}, \cdots, x_{n}\right]
$$

Example:

$$
g=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Then $A^{(g)}$ has Hilbert series

$$
\frac{1-2 t+4 t^{2}-2 t^{3}+t^{4}}{\left(1+t^{2}\right)^{2}(1-t)^{4}}
$$

whose numerator is not a product of cyclotomic polynomials, so $A^{(g)}$ is not any of our types of complete intersection.

Toward a Kac-Watanabe-Gordeev Theorem Examples in Dimension 3:

Consider AS-Gorenstein fixed rings of AS-regular algebras of dimension 3 (e.g. 3-dimensional Sklyanin, down-up algebras, $\left.\mathbb{C}_{-1}[x, y, z]\right)$.

Thus far all our examples are either classical complete intersections or not cyclotomic (so none of our types of complete intersection).

In all the cases where A^{G} is a complete intersection, G is generated by "bi-reflections" of A.

Down-up algebra examples

Let A be generated by x, y with relations

$$
y^{2} x=x y^{2} \text { and } y x^{2}=x^{2} y
$$

Represent the automorphism $g(x)=a x+c y$ and $g(y)=b x+d y$ by the 2×2 matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Any invertible matrix induces a graded automorphism of A.
The homological determinant of a graded automorphism g with eigenvalues λ_{1} and λ_{2} is $\left(\lambda_{1} \lambda_{2}\right)^{2}$. A^{G} is AS-Gorenstein if and only if the $\operatorname{hdet}(g)=\left(\lambda_{1} \lambda_{2}\right)^{2}=1$ for all $g \in G$.

"bi-reflections"

The trace of a graded automorphism g of A with eigenvalues λ_{1} and λ_{2} is

$$
\operatorname{Tr}_{A}(g, t)=\frac{1}{\left(1-\lambda_{1} t\right)\left(1-\lambda_{2} t\right)\left(1-\lambda_{1} \lambda_{2} t^{2}\right)}
$$

Assuming $\left(\lambda_{1} \lambda_{2}\right)^{2}=1$ for all $g \in G$, "bi-reflections" are:
Classical Reflections: One eigenvalue of g is 1 and the other eigenvalue is a root of unity; since $\left(\lambda_{1} \lambda_{2}\right)^{2}=1$ the other eigenvalue must be -1 .

In $S L_{2}(\mathbb{C})$: The eigenvalues of g are λ and λ^{-1} for $\lambda \neq 1$ (which forces the (homological) determinant to be 1).

Abelian Groups of Graded Automorphisms of A

Example:
$G=\left\langle g_{1}, g_{2}\right\rangle$ for $g_{1}=\operatorname{diag}\left[\epsilon_{n}, \epsilon_{n}^{-1}\right]$ and $g_{2}=\operatorname{diag}[1,-1]$.

The group $G=\left\langle g_{1}, g_{2}\right\rangle$ is a "bi-reflection" group of order 2 n and $G \cong \mathbb{Z}_{n} \times \mathbb{Z}_{2}$.

When n is even, A^{G} is a classical complete intersection, and when n is odd A^{G} is not cyclotomic Gorenstein (so no kind of complete intersection).

n even

For $\mathrm{n}=2 \mathrm{G}$ is a classical reflection group - the Klein-4 group. $A^{G}=k\left\langle x^{2}, y^{2},(y x)^{2},(x y)^{2}\right\rangle$, the commutative hypersurface:

$$
\frac{k[X, Y, Z, W]}{\left\langle Z W-X^{2} Y^{2}\right\rangle}
$$

For $n \geq 4 G$ is a "bi-reflection" group.
$A^{G}=k\left\langle x^{n}, y^{n},(x y)^{2},(y x)^{2}, x^{2} y^{2}\right\rangle$, the commutative complete intersection:

$$
A^{G} \cong \frac{k[X, Y, Z, W, V]}{\left(X Y-V^{n / 2}, \quad Z W-V^{2}\right)}
$$

n odd

$G=\langle g\rangle$ is generated by $g=\operatorname{diag}\left[\epsilon_{n},-\epsilon_{n}^{-1}\right]$.
The numerator of the Hilbert series for A^{G} is

$$
\begin{gathered}
=1+t^{4}+2 t^{n+2}-2 t^{2 n+2}-t^{3 n}-t^{3 n+4} \\
=\left(1-t^{n}\right)\left(1+t^{4}+t^{n}+2 t^{n+2}+t^{n+4}+t^{2 n}+t^{2 n+4}\right)
\end{gathered}
$$

which we showed is NOT a product of cyclotomic polynomials for $n>1$.

Dihedral Groups $G=\left\langle g_{1}, g_{2}\right\rangle$

$$
g_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } g_{2}=\left[\begin{array}{cc}
\epsilon_{n} & 0 \\
0 & \epsilon_{n}^{-1}
\end{array}\right]
$$

n even:

$$
A^{G}=\frac{k[X, Y, Z, W]}{\left\langle W^{2}-X Y W-4 Z^{\frac{n+2}{2}}+Y^{2} Z+X^{2} Z^{\frac{n}{2}}\right\rangle}
$$

n odd:

$$
A^{G}=\frac{k[X, Y, Z][W ; \sigma, \delta]}{\left\langle W^{2}-Y^{2} Z\right\rangle}
$$

Sklyanin Example

$$
\begin{aligned}
& a x^{2}+y z+z y=0 \\
& a y^{2}+z x+x z=0 \\
& a z^{2}+x y+y x=0
\end{aligned}
$$

with $a^{3} \neq 1$ and

$$
g=\left(\begin{array}{ccc}
\omega & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & 1
\end{array}\right),
$$

for ω a primitive cubed root of unity. hdet $g=1$ and $\operatorname{Tr}_{A}(g, t)=1 /\left(1-t^{3}\right)$, so g is a "bi-reflection".

$$
A^{g} \cong \frac{\mathbb{C}_{-1}\left[x, x^{3}-y^{3}\right][x y ; \sigma, \delta]\left[x^{3} ; \sigma^{\prime}, \delta^{\prime}\right]}{\langle f\rangle}
$$

Let

$$
h=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

then g, h generate a group G of order 27 with

$$
H_{A^{G}}(t)=\frac{1-t^{18}}{\left(1-t^{3}\right)^{2}\left(1-t^{6}\right)\left(1-t^{9}\right)},
$$

so possibly a complete intersection!

Questions:

If A is a classical complete intersection, is $\operatorname{Ext}_{A}^{*}(k, k)$ Noetherian?

Are there algebras A with $\operatorname{Ext}_{A}^{*}(k, k)$ Noetherian and finite GKdim that are not classical complete intersections?

What does $\operatorname{Ext}_{A}^{*}(k, k)$ finite GKdim say about A ?
Do "complete intersections" have small numbers of generators? (2 n -1 in commutative case).

Is there a version of the Kac-Watanabe-Gordeev Theorem in our context?

Classify the groups that give "complete intersections".

Hopf Actions on A

Hypotheses:
(1) H is a finite dimensional semisimple Hopf algebra,
(2) A is a connected graded noetherian Artin-Schelter Gorenstein algebra of dimension d, and
(3) A is a left H-module algebra and each A_{i} is a left H-module for each i.

Since $\operatorname{Ext}_{A}^{d}(k, A)$ is 1-dimensional, the left H-action on $\operatorname{Ext}_{A}^{d}(k, A)$ defines an algebra map $\eta^{\prime}: H \rightarrow k$ such that $h \cdot \mathbf{e}=\eta^{\prime}(h) \mathbf{e}$ for all $h \in H$.

The homological determinant hdet is equal to $\eta^{\prime} \circ S$, where S is the antipode of H.

The homological determinant is trivial if hdet $=\epsilon$.

Theorem. If the homological determinant hdet of the H-action on A is trivial, then the invariant subring A^{H} is Artin-Schelter Gorenstein.

Theorem. Assume in addition that A is PI. Then A^{H} is Artin-Schelter Gorenstein if and only if its Hilbert series satisfies the functional equation

$$
H_{A^{H}}\left(t^{-1}\right)= \pm t^{-m} H_{A^{H}}(t)
$$

for some integer m.

Example:

Let $A=\langle x, y\rangle$ be the AS-regular algebra with relations:

$$
x y^{2}-y^{2} x=0, \quad \text { and } \quad x^{2} y-y x^{2}=0
$$

$A=k S$ where S is semigroup generated by a, b subject to the relations

$$
a^{2} b=b a^{2}, \quad a b^{2}=b^{2} a
$$

Let $G=S /\left\langle a^{2}=1, b^{2}=1,(a b)^{4}=1\right\rangle$ is the dihedral group $G=\{\mathrm{u}=1, a, b, a b, b a, a b a, b a b, a b a b\}$.
Since G is a quotient group of S, A is a $\mathbb{Z} \times G$-graded algebra, and hence A is a $K=k G$-comodule algebra. Let $H=(k G)^{\circ}$. Then A is a left H-module algebra. H and K are semisimple Hopf algebras.
A is $\mathbb{Z} \times G$-graded with $\operatorname{deg} x=(1, a)$ and $\operatorname{deg} y=(1, b)$, we have a $\mathbb{Z} \times G$-graded resolution of the trivial A-module k :

$$
\begin{aligned}
& 0 \rightarrow A(-4, \mathrm{u}) \rightarrow A(-3, a) \oplus A(-3, b) \\
& \rightarrow A(-1, a) \oplus A(-1, b) \rightarrow A \rightarrow k \rightarrow 0
\end{aligned}
$$

Can show that $\operatorname{Ext}_{A}^{3}(k, A) \cong k(4, \mathrm{u})$ as a $\mathbb{Z} \times G$-graded vector space and hence the K-comodule action maps a basis element $\mathfrak{e} \in \operatorname{Ext}_{A}^{3}(k, A)$ to $\mathfrak{e} \otimes u=\mathfrak{e} \otimes 1_{K}$. It can be shown that hdet is trivial and hence A^{H} is Artin-Schelter Gorenstein. Also $A^{H} \neq A^{G}$ for all groups G.

