Invariant Theory of Artin-Schelter Regular Algebras: Gorenstein Invariant Subrings

Ellen Kirkman

University of Washington: May 27, 2012

AS-regular algebra A with m generators.

G finite group of $m \times m$ matrices (or H a finite dimensional Hopf algebra) acting on it.

When is $A^{G}(A^{H})$ AS-regular?

Conjecture (proof in some cases): A^G AS-regular if and only if G is generated by elements with

$$Tr_{A}(g,t) = rac{1}{(1-t)^{n-1}q(t)}$$

and n = GKdim(A).

 A^H can be AS-regular.

A may not have any such group or Hopf actions (e.g the (non-PI) 3 dim Sklyanin algebra, Jordan plane and down-up algebras have no "reflections" so A^G is not regular, and hence $A^G \ncong A$.)

More is known about when $A^G(A^H)$ is AS-Gorenstein.

Watanabe's Theorem

Watanabe's Theorem. (1974) If G is a finite subgroup of SL(V) acting naturally on the commutative polynomial algebra k[V], then the fixed subring $k[V]^G$ is Gorenstein.

Example: Let
$$g = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 act on $k[x, y]$
$$k[x, y]^g = k\langle x^2, xy, y^2 \rangle \cong \frac{k[a, c][b]}{\langle b^2 - ac \rangle}$$
$$H_{A^g}(t) = \frac{1 + t^2}{(1 - t^2)^2}$$

The Homological Determinant

A AS-regular and G a finite group acting linearly on A.

If A is AS-regular of dimension n, then when the trace is written as a Laurent series in t^{-1}

$$Tr_A(g, t) = (-1)^n (\text{hdet } g)^{-1} t^{-\ell} + \text{higher terms}$$

hdet is a homomorphism from G into \mathbb{C} .

Noncommutative Watanabe's Theorem

Jørgensen-Zhang's Theorem (2000). If G is a finite subgroup of GL(V) acting linearly on an Artin-Schelter regular algebra A, if the homological determinant of each g in G is 1, then the fixed subring A^G is AS-Gorenstein.

Example. Let
$$g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 act on $\mathbb{C}_{-1}[x, y]$.
Then

$$Tr_A(g, t) = \frac{1}{1+t^2} = \frac{1}{t^2} + \text{ higher degree terms},$$

so hdet(g) = 1. Then $\mathbb{C}_{-1}[x, y]^g$ is AS-Gorenstein, $\mathbb{C}_{-1}[x, y]^g$ is generated by $\sigma_1 = x + y$ and $\sigma_2 = x^3 + y^3$.

Noncommutative Stanley's Theorem

Jørgensen-Zhang's Theorem (2000). Let A be AS-regular, and G be a finite group of graded automorphisms of A. Then A^G is AS-Gorenstein if and only its Hilbert series satisfies the functional equation

$$H_{A^G}(t^{-1}) = \pm t^m H_{A^G}(t)$$
 for some integer *m*.

Example. Let
$$g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 act on $\mathbb{C}_{-1}[x, y]$. Then
 $H_{\mathcal{A}\mathcal{B}}(t) = \frac{1 - t + t^2}{(1 - t)^2(1 + t^2)}$ and $H_{\mathcal{A}\mathcal{B}}(t^{-1}) = t^2 H_{\mathcal{A}\mathcal{B}}(t)$.

Invariants of $A = \mathbb{C}_{-1}[x_1 \dots, x_n]$ under Permutations

If g is a 2-cycle and $A = \mathbb{C}_{-1}[x_1 \dots, x_n]$ then

$$Tr_{A}(g) = rac{1}{(1+t^2)(1-t)^{n-2}}$$

= $(-1)^n rac{1}{t^n}$ + higher terms

so hdet g = 1, and for ALL groups G of $n \times n$ permutation matrices, A^G is AS-Gorenstein. Not true for commutative polynomial ring – e.g.

$$\mathbb{C}[x_1, x_2, x_3, x_4]^{\langle (1,2,3,4) \rangle}$$

is not Gorenstein, while

$$\mathbb{C}_{-1}[x_1, x_2, x_3, x_4]^{\langle (1,2,3,4) \rangle}$$

is AS-Gorenstein.

Example: Down-Up Algebra

Let A be AS-regular algebra generated by x, y with $x^2y = yx^2$ and $y^2x = xy^2$.

 $GL(2,\mathbb{C})$ acts on A.

Then A^G is Gorenstein if and only if all elements of G have determinant 1 or -1.

Example. Let A = A(a, b, c) be an AS-regular 3-dim Sklyanin algebra, i.e. the algebra generated by x, y, z with relations

$$ax^{2} + byz + czy = 0$$
$$ay^{2} + bzx + cxz = 0$$
$$az^{2} + bxy + cyx = 0.$$

Then the fixed ring under each of the following elements g of order 3 is AS-Gorenstein:

$$g = \begin{bmatrix} \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega \end{bmatrix}, \begin{bmatrix} 0 & \omega & 0 \\ 0 & 0 & \omega^2 \\ 1 & 0 & 0 \end{bmatrix}, \text{ or } \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

where ω satisfies $\omega^3 = 1$.

 $k[x_1, \cdots, x_n]^G$ a complete intersection:

Groups G with $k[x_1, \dots, x_n]^G$ a complete intersection were classified by Nakajima (1984) and Gordeev (1986).

Theorem: (Kac and Watanabe – Gordeev) (1982). If $\mathbb{C}[x_1, \ldots, x_n]^G$ is a complete intersection then *G* is generated by bi-reflections (all but <u>two</u> eigenvalues are 1).

(日) (同) (三) (三) (三) (○) (○)

Example: Let
$$g = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
 act on $k[x, y]$
 $k[x, y]^g = k\langle x^2, xy, y^2 \rangle \cong \frac{k[a, b, c]}{\langle b^2 - ac \rangle}$

Bi-reflection of A

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For an AS-regular algebra A a graded automorphism g is a "bi-reflection" of A if

$$egin{aligned} &Tr_{\mathcal{A}}(g,t) = \sum_{k=0}^{\infty} trace(g|\mathcal{A}_k)t^k \ &= rac{1}{(1-t)^{n-2}q(t)}, \end{aligned}$$

n = GKdim A, and $q(1) \neq 0$.

Questions

Is there a version of Kac-Watanabe-Gordeev Theorem that is true in the noncommutative setting?

If A^G is a complete intersection must G be generated by bi-reflections?

What is a "noncommutative complete intersection"?

Example: A^G a complete intersection

 $A = \mathbb{C}_{-1}[x, y, z]$ is AS-regular of dimension 3, and

$$g = \left[egin{array}{ccc} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \end{array}
ight]$$

acts on it. The eigenvalues of g are -1, i, -iso g is not a bi-reflection of A_1 . However, $Tr_A(g, t) = 1/((1 + t)^2(1 - t)) = -1/t^3 +$ higher degree terms and g is a "bi-reflection" with hdet g = 1.

$$A^{g} \cong rac{k[X,Y,Z,W]}{\langle W^2 - (X^2 + 4Y^2)Z \rangle},$$

a commutative complete intersection.

Example (b): $g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ acting on $\mathbb{C}_{-1}[x, y]$. Then $\mathbb{C}_{-1}[x, y]^{S_2}$ is generated by

$$P_1 = x + y$$
 and $P_2 = x^3 + y^3$

with

$$P_1P_2^2 = P_2^2P_1$$
 and $P_1^2P_2 = P_2P_1^2$,
and $2P_1^6 - 3P_1^3P_2 - 3P_2P_1^3 + 4P_2^2 = 0$.
Let $A = \langle x, y \rangle$ with $xy^2 = y^2x$ and $x^2y = yx^2$,
then A is AS-regular and

$$\mathbb{C}_{-1}[x,y]^{S_2} \cong \frac{A}{\langle 2x^6 - 3x^3y - 3yx^3 + 4y^2 \rangle}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Commutative Complete Intersections

Theorem (Y. Félix, S. Halperin and J.-C. Thomas)(1991): Let A be a connected graded noetherian commutative algebra. Then the following are equivalent.

- **1** A is isomorphic to $k[x_1, x_2, ..., x_n]/(d_1, ..., d_m)$ for a homogeneous regular sequence.
- **2** The Ext-algebra $Ext^*_A(k, k)$ is noetherian.
- **3** The Ext-algebra $Ext^*_A(k, k)$ has finite GK-dimension.

Noncommutative Complete Intersections

Let A be a connected graded noetherian algebra.

- We say A is a classical complete intersection ring if there is a connected graded noetherian AS regular algebra R and a sequence of normal regular homogeneous elements {d₁, ..., d_n} of positive degree such that A is isomorphic to R/(d₁, ..., d_n).
- We say A is a complete intersection ring of type NP if the Ext-algebra Ext^{*}_A(k, k) is noetherian.
- We say A is a complete intersection ring of type GK if the Ext-algebra Ext^{*}_A(k, k) has finite Gelfand-Kirillov dimension.
- We say A is a weak complete intersection ring if the Ext-algebra Ext^{*}_A(k, k) has subexponential growth.

Noncommutative case:

classical complete intersection ring ⇒ complete intersection ring of type GK

complete intersection ring of type NP (GK) \Rightarrow weak complete intersection ring

complete intersection ring of type GK ↑ complete intersection ring of type NP

Example: $A = k\langle x, y \rangle / (x^2, xy, y^2)$ is a Koszul algebra with Ext-algebra $E := k\langle x, y \rangle / (yx)$; GKdim E = 2 but E is not noetherian.

Examples of noncommutative complete intersections of type NP (GK) include noetherian Koszul algebras that have Ext-algebras that are Noetherian (finite GK) for example

$$A = \frac{\mathbb{C}_{-1}[x, y]}{\langle x^2 - y^2 \rangle} \text{ with } \mathsf{Ext}^*_{\mathcal{A}}(k, k) = A^! = \frac{\mathbb{C}[x, y]}{\langle x^2 + y^2 \rangle}$$

or

$$A = rac{\mathbb{C}\langle x, y
angle}{\langle x^2, y^2
angle}$$
 with $\operatorname{Ext}_A^*(k, k) = A^! = rac{\mathbb{C}[x, y]}{\langle xy
angle}$;

in second case

$$A \cong \frac{B}{\langle x^2, y^2 \rangle}$$

where *B* is the AS-regular algebra generated by x, y with $yx^2 = x^2y$ and $y^2x = xy^2$.

Let *A* be a connected graded Noetherian ring. We say *A* is cyclotomic Gorenstein if the following conditions hold:

(i) A is AS-Gorenstein;

(ii) $H_A(t)$, the Hilbert series of A, is a rational function p(t)/q(t) for some relatively prime polynomials $p(t), q(t) \in \mathbb{Z}[t]$ where all roots of p(t) are roots of unity.

Suppose that A is isomorphic to R^G for some Auslander regular algebra R and a finite group $G \subseteq \operatorname{Aut}(R)$. If $\operatorname{Ext}_A^*(k,k)$ has subexponential growth, then A is cyclotomic Gorenstein.

Hence if A not cyclotomic Gorenstein, then A is not a complete intersection of any type.

Veronese Subrings

For a graded algebra A the *r*th Veronese $A^{(r)}$ is the subring generated by all monomials of degree *r*.

If A is AS-Gorenstein of dimension d, then $A^{\langle r \rangle}$ is AS-Gorenstein if and only if r divides ℓ where $\operatorname{Ext}_{A}^{d}(k, A) = k(\ell)$ (Jørgensen-Zhang).

Let $g = \text{diag}(\lambda, \dots, \lambda)$ for λ a primitive *r*th root of unity; G = (g) acts on A with $A^{\langle r \rangle} = A^G$.

If the Hilbert series of A is $(1-t)^{-d}$ then

$$Tr_{\mathbf{A}}(g^{i},t) = \frac{1}{(1-\lambda^{i}t)^{d}}$$

For $d \ge 3$ the group G = (g) contains no "bi-reflections", so $A^G = A^{\langle r \rangle}$ should not be a complete intersection.

Theorem:

Let A be noetherian connected graded algebra.

- Suppose the Hilbert series of A is $(1 t)^{-d}$. If $r \ge 3$ or $d \ge 3$, then $H_{A^{(r)}}(t)$ is not cyclotomic. Consequently, $A^{(r)}$ is not a complete intersection of any type.
- Suppose A is a quantum polynomial ring of dimension 2 (and $H_A(t) = (1 t)^{-2}$). If r = 2, then $H_{A^{(r)}}(t)$ is cyclotomic and $A^{(r)}$ is a classical complete intersection.

Permutation Actions on $A = \mathbb{C}_{-1}[x_1, \cdots, x_n]$

If g is a 2-cycle then hdet g = 1, and all A^{G} are AS-Gorenstein.

A permutation matrix g is a "bi-reflection" of A if and only if it is a 2-cycle or a 3-cycle.

Both A^{S_n} and A^{A_n} are classical complete intersections.

$$A = \mathbb{C}_{-1}[x_1, \cdots, x_n]$$

Example:

$$g = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Then $A^{(g)}$ has Hilbert series

$$\frac{1-2t+4t^2-2t^3+t^4}{(1+t^2)^2(1-t)^4}$$

whose numerator is not a product of cyclotomic polynomials, so $A^{(g)}$ is not any of our types of complete intersection.

Toward a Kac-Watanabe-Gordeev Theorem Examples in Dimension 3:

Consider AS-Gorenstein fixed rings of AS-regular algebras of dimension 3 (e.g. 3-dimensional Sklyanin, down-up algebras, $\mathbb{C}_{-1}[x, y, z]$).

Thus far all our examples are either classical complete intersections or not cyclotomic (so none of our types of complete intersection).

In all the cases where A^G is a complete intersection, G is generated by "bi-reflections" of A.

Down-up algebra examples

Let A be generated by x, y with relations

$$y^2x = xy^2$$
 and $yx^2 = x^2y$.

Represent the automorphism g(x) = ax + cy and g(y) = bx + dy by the 2 × 2 matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Any invertible matrix induces a graded automorphism of A. The homological determinant of a graded automorphism g with eigenvalues λ_1 and λ_2 is $(\lambda_1\lambda_2)^2$. A^G is AS-Gorenstein if and only if the $hdet(g) = (\lambda_1\lambda_2)^2 = 1$ for all $g \in G$.

"bi-reflections"

The trace of a graded automorphism g of ${\it A}$ with eigenvalues λ_1 and λ_2 is

$$Tr_{\mathcal{A}}(g,t) = rac{1}{(1-\lambda_1 t)(1-\lambda_2 t)(1-\lambda_1 \lambda_2 t^2)}.$$

Assuming $(\lambda_1\lambda_2)^2 = 1$ for all $g \in G$, "bi-reflections" are:

<u>Classical Reflections</u>: One eigenvalue of g is 1 and the other eigenvalue is a root of unity; since $(\lambda_1 \lambda_2)^2 = 1$ the other eigenvalue must be -1.

In $SL_2(\mathbb{C})$: The eigenvalues of g are λ and λ^{-1} for $\lambda \neq 1$ (which forces the (homological) determinant to be 1).

Abelian Groups of Graded Automorphisms of *A*

Example:

 $G = \langle g_1, g_2 \rangle$ for $g_1 = \text{diag } [\epsilon_n, \epsilon_n^{-1}]$ and $g_2 = \text{diag } [1, -1]$.

The group $G = \langle g_1, g_2 \rangle$ is a "bi-reflection" group of order 2n and $G \cong \mathbb{Z}_n \times \mathbb{Z}_2$.

When *n* is even, A^G is a classical complete intersection, and when *n* is odd A^G is not cyclotomic Gorenstein (so no kind of complete intersection).

n even

For n=2 *G* is a classical reflection group – the Klein-4 group. $A^G = k \langle x^2, y^2, (yx)^2, (xy)^2 \rangle$, the commutative hypersurface:

$$\frac{k[X,Y,Z,W]}{\langle ZW-X^2Y^2\rangle}.$$

For $n \ge 4$ *G* is a "bi-reflection" group. $A^G = k \langle x^n, y^n, (xy)^2, (yx)^2, x^2y^2 \rangle$, the commutative complete intersection:

$$\mathcal{A}^{\mathsf{G}} \cong \frac{k[X,Y,Z,W,V]}{(XY-V^{n/2},\ ZW-V^2)}.$$

n odd

$$G = \langle g \rangle$$
 is generated by $g = \text{diag } [\epsilon_n, -\epsilon_n^{-1}].$

The numerator of the Hilbert series for A^G is

$$= 1 + t^{4} + 2t^{n+2} - 2t^{2n+2} - t^{3n} - t^{3n+4}$$
$$= (1 - t^{n})(1 + t^{4} + t^{n} + 2t^{n+2} + t^{n+4} + t^{2n} + t^{2n+4}),$$

which we showed is NOT a product of cyclotomic polynomials for n > 1.

Dihedral Groups $G = \langle g_1, g_2 \rangle$

$$g_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $g_2 = \begin{bmatrix} \epsilon_n & 0 \\ 0 & \epsilon_n^{-1} \end{bmatrix}$

n even:

$$A^{G} = \frac{k[X, Y, Z, W]}{\langle W^{2} - XYW - 4Z^{\frac{n+2}{2}} + Y^{2}Z + X^{2}Z^{\frac{n}{2}} \rangle}$$

n odd:

$$\mathcal{A}^{\mathsf{G}} = \frac{k[X, Y, Z][W; \sigma, \delta]}{\langle W^2 - Y^2 Z \rangle}.$$

Sklyanin Example

$$ax2 + yz + zy = 0$$

$$ay2 + zx + xz = 0$$

$$az2 + xy + yx = 0$$

with $a^3 \neq 1$ and

$$g = egin{pmatrix} \omega & 0 & 0 \ 0 & \omega^2 & 0 \ 0 & 0 & 1 \end{pmatrix},$$

for ω a primitive cubed root of unity. hdet g = 1 and $Tr_A(g, t) = 1/(1 - t^3)$, so g is a "bi-reflection".

$$\mathcal{A}^{g} \cong \frac{\mathbb{C}_{-1}[x, x^{3} - y^{3}][xy; \sigma, \delta][x^{3}; \sigma', \delta']}{\langle f \rangle}.$$

Let

$$h=egin{pmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix},$$

then g, h generate a group G of order 27 with

$$H_{A^G}(t) = rac{1-t^{18}}{(1-t^3)^2(1-t^6)(1-t^9)},$$

so possibly a complete intersection!

Questions:

If A is a classical complete intersection, is $Ext^*_A(k, k)$ Noetherian?

Are there algebras A with $Ext^*_A(k, k)$ Noetherian and finite GKdim that are not classical complete intersections?

What does $Ext^*_A(k, k)$ finite GKdim say about A?

Do "complete intersections" have small numbers of generators? (2n-1 in commutative case).

Is there a version of the Kac-Watanabe-Gordeev Theorem in our context?

Classify the groups that give "complete intersections".

Hopf Actions on A

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Hypotheses:

- **1** *H* is a finite dimensional semisimple Hopf algebra,
- A is a connected graded noetherian Artin-Schelter Gorenstein algebra of dimension d, and
- A is a left H-module algebra and each A_i is a left H-module for each i.

Since $\operatorname{Ext}_{A}^{d}(k, A)$ is 1-dimensional, the left *H*-action on $\operatorname{Ext}_{A}^{d}(k, A)$ defines an algebra map $\eta' : H \to k$ such that $h \cdot \mathbf{e} = \eta'(h)\mathbf{e}$ for all $h \in H$.

The homological determinant hdet is equal to $\eta' \circ S$, where S is the antipode of H.

The homological determinant is <u>trivial</u> if hdet = ϵ .

Theorem. If the homological determinant hdet of the *H*-action on *A* is trivial, then the invariant subring A^H is Artin-Schelter Gorenstein.

Theorem. Assume in addition that A is PI. Then A^H is Artin-Schelter Gorenstein if and only if its Hilbert series satisfies the functional equation

 $H_{\mathcal{A}^{\mathcal{H}}}(t^{-1}) = \pm t^{-m} H_{\mathcal{A}^{\mathcal{H}}}(t)$

for some integer *m*.

Example:

Let $A = \langle x, y \rangle$ be the AS-regular algebra with relations:

$$xy^2 - y^2x = 0$$
, and $x^2y - yx^2 = 0$.

A = kS where S is semigroup generated by a, b subject to the relations

$$a^2b = ba^2$$
, $ab^2 = b^2a$.

Let $G = S/\langle a^2 = 1, b^2 = 1, (ab)^4 = 1 \rangle$ is the dihedral group $G = \{u = 1, a, b, ab, ba, aba, bab, abab\}$. Since G is a quotient group of S, A is a $\mathbb{Z} \times G$ -graded algebra, and hence A is a K = kG-comodule algebra. Let $H = (kG)^{\circ}$. Then A is a left H-module algebra. H and K are semisimple Hopf algebras. A is $\mathbb{Z} \times G$ -graded with deg x = (1, a) and deg y = (1, b), we have a $\mathbb{Z} \times G$ -graded resolution of the trivial A-module k:

$$0 \to A(-4, \mathbf{u}) \to A(-3, \mathbf{a}) \oplus A(-3, \mathbf{b})$$
$$\to A(-1, \mathbf{a}) \oplus A(-1, \mathbf{b}) \to A \to \mathbf{k} \to 0.$$

Can show that $\operatorname{Ext}_{A}^{3}(k, A) \cong k(4, u)$ as a $\mathbb{Z} \times G$ -graded vector space and hence the *K*-comodule action maps a basis element $\mathfrak{e} \in \operatorname{Ext}_{A}^{3}(k, A)$ to $\mathfrak{e} \otimes \mathfrak{u} = \mathfrak{e} \otimes \mathfrak{1}_{K}$. It can be shown that hdet is trivial and hence A^{H} is Artin-Schelter Gorenstein. Also $A^{H} \neq A^{G}$ for all groups *G*.