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AS-regular algebra A with m generators.

G finite group of m x m matrices ( or H a finite dimensional
Hopf algebra) acting on it.

When is A® (AH) AS-regular?

Conjecture (proof in some cases): A® AS-regular if and only if
G is generated by elements with

1

e = e

and n=GKdim(A).

AM can be AS-regular.



A may not have any such group or Hopf actions (e.g the
(non-Pl) 3 dim Sklyanin algebra, Jordan plane and down-up
algebras have no “reflections” so A® is not regular, and hence
AC £ A)

More is known about when A® (A") is AS-Gorenstein.



Watanabe's Theorem

Watanabe’s Theorem. (1974) If G is a finite subgroup of
SL(V) acting naturally on the commutative polynomial algebra
k[V], then the fixed subring k[V/]® is Gorenstein.

Example: Let g = [ _01 _01 ] act on k|[x, y]

k(a, c][b]

klx, y]8 = k(< xy, y?) = 2 —ac)

1+ t2

Hpe(t) = 1—eyp



The Homological Determinant

A AS-regular and G a finite group acting linearly on A.

If Ais AS-regular of dimension n, then when the trace is
written as a Laurent series in t~1

Tra(g,t) = (—1)"(hdet g)_lt_g + higher terms

hdet is a homomorphism from G into C.



Noncommutative
Watanabe's Theorem

Jgrgensen-Zhang’s Theorem (2000). If G is a finite
subgroup of GL(V) acting linearly on an Artin-Schelter regular
algebra A, if the homological determinant of each g in G is 1,
then the fixed subring A® is AS-Gorenstein.

Example. Let g = [ (1) é } act on C_1[x, y].
Then

1
Tra(g,t) =2 + higher degree terms,

1+

so hdet(g) = 1. Then C_1[x, y|¢ is AS-Gorenstein, C_1[x, y|&
is generated by 01 = x + y and 0o = x® + 3.



Noncommutative
Stanley’s Theorem

Jgrgensen-Zhang’s Theorem (2000). Let A be AS-regular,
and G be a finite group of graded automorphisms of A. Then
AC is AS-Gorenstein if and only its Hilbert series satisfies the
functional equation

Hpc(t 1) = +£t™H e (t) for some integer m.

Example. Let g = [ (1) (1) } act on C_1[x, y|. Then

1—t+t2
(1—1)2(1+t2)

Hae(t) = and HAg(t_l) = t2HAg(t).



Invariants of A= C_1[x1 ..., x,| under Permutations

If gis a2-cycleand A= C_q[x;...,x,| then

1
(14+t2)(1—t)"2

Tra(g) =

1
= (—1)”; + higher terms

so hdet g =1, and for ALL groups G of n x n permutation
matrices, A® is AS-Gorenstein. Not true for commutative
polynomial ring — e.g.

C[Xl X2a X3’ X4]<(1127374)>
is not Gorenstein, while
C 1l x0, x3, %] (2239

is AS-Gorenstein.



Example:
Down-Up Algebra

Let A be AS-regular algebra generated by x, y with
x?y = yx? and y?x = xy?.

GL(2,C) acts on A.

Then A€ is Gorenstein if and only if all elements of G have
determinant 1 or -1.



Example. Let A = A(a, b, c) be an AS-regular 3-dim Sklyanin
algebra, i.e. the algebra generated by x, y, z with relations

ax® + byz + czy =0
ay? + bzx+ cxz =0

az® + bxy + cyx = 0.

Then the fixed ring under each of the following
elements g of order 3 is AS-Gorenstein:

w 0 0 0w O 00 1
g=10 w 01],]0 0 w?|,or|1 0O
0 0 w 1 0 0 010

where w satisfies w3 = 1.



k[x1,--,x,]® a complete intersection:

Groups G with k[xi,--- ,x,]® a complete intersection were
classified by Nakajima (1984) and Gordeev (1986).

Theorem: (Kac and Watanabe — Gordeev) (1982). If
C[xi,...,x,]C is a complete intersection then G is generated

by bi-reflections (all but two eigenvalues are 1).

Example: Let g = [ _01 _01 ] act on k[x, y]
k[a, b, c]

kx. v = k(x*, xy, y?) (b7~ ac)

112



Bi-reflection of A

For an AS-regular algebra A a graded automorphism g is a
“bi-reflection” of A if

Tra(g,t Z trace(g|Ax)t"
k=0

_ 1
~(L-1)"2q(t)
n = GKdim A, and ¢(1) # 0.



Questions

Is there a version of Kac-Watanabe-Gordeev Theorem that is
true in the noncommutative setting?

If AC is a complete intersection must G be generated by
bi-reflections?

What is a “noncommutative complete intersection”?



Example:
AC a complete intersection

A = C_1[x,y,z| is AS-regular of dimension 3, and

0 -1 0
g=|1 0 0
0 0 -1

acts on it. The eigenvalues of g are —1,/i, —i

so g is not a bi-reflection of Aj.

However, Tra(g,t) = 1/((1 + t)?(1 — t)) = —1/t3+ higher
degree terms and g is a “bi-reflection” with hdet g = 1.

k[X,Y,Z, W]

AE =
(W2 — (X2 + 4Y2)Z)

a commutative complete intersection.



Example (b): g = [ (1) é ] acting on C_1[x, y|.
Then C_1[x, y]* is generated by

P1 =x+y and P2:x3+y3

with
P1P3 = P2P; and P?P, = P,P?,
and 2P% — 3P} P, — 3P,P} 4+ 4PF = 0.

Let A = (x,y) with xy? = y2x and x%y = yx?,
then A is AS-regular and

]52 ~ A

Coabeyl™ = (2x6 — 3x3y — 3yx3 +4y2)’



Commutative
Complete Intersections

Theorem (Y. Félix, S. Halperin and J.-C. Thomas)(1991):
Let A be a connected graded noetherian commutative algebra.
Then the following are equivalent.

® A is isomorphic to k[xi,x2,...,%a]/(d1,...,dm) for a
homogeneous regular sequence.

@® The Ext-algebra Extj(k, k) is noetherian.

© The Ext-algebra Ext}(k, k) has finite GK-dimension.



Noncommutative
Complete Intersections

Let A be a connected graded noetherian algebra.

@ We say A is a classical complete intersection ring if there
is a connected graded noetherian AS regular algebra R
and a sequence of normal regular homogeneous elements
{dy,- -+ ,dp} of positive degree such that A is isomorphic
to R/(d1, - ,dp).

® We say A is a complete intersection ring of type NP if the
Ext-algebra Ext;(k, k) is noetherian.

© We say A is a complete intersection ring of type GK if the
Ext-algebra Ext(k, k) has finite Gelfand-Kirillov
dimension.

O We say A is a weak complete intersection ring if the
Ext-algebra Ext(k, k) has subexponential growth.



Noncommutative case:

classical complete intersection ring =
complete intersection ring of type GK

complete intersection ring of type NP (GK) =
weak complete intersection ring

complete intersection ring of type GK #
complete intersection ring of type NP

Example: A = k{x,y)/(x?, xy,y?) is a Koszul algebra with
Ext-algebra E := k(x,y)/(yx); GKdim E = 2 but E is not
noetherian.



Examples of noncommutative complete intersections of type
NP (GK) include noetherian Koszul algebras that have
Ext-algebras that are Noetherian (finite GK) for example

A= ZCX;EX’ng with Ext}(k, k) = A' = <;C2[’:L’ i ]2>
or
A= gjyﬁi with Exty(k, k) = A = C&’/)y I
in second case B
A ey

where B is the AS-regular algebra generated by x, y with
yx? = x%y and y’x = xy?.



Let A be a connected graded Noetherian ring. We say A is
cyclotomic Gorenstein if the following conditions hold:

(i) Ais AS-Gorenstein;

(i) Ha(t), the Hilbert series of A, is a rational function
p(t)/q(t) for some relatively prime polynomials
p(t), q(t) € Z[t] where all roots of p(t) are roots of unity.

Suppose that A is isomorphic to R for some Auslander
regular algebra R and a finite group G C Aut(R). If
Ext,(k, k) has subexponential growth, then A is
cyclotomic Gorenstein.

Hence if A not cyclotomic Gorenstein, then A is not a
complete intersection of any type.



Veronese Subrings
For a graded algebra A the rth Veronese A" is the subring

generated by all monomials of degree r.

If Ais AS-Gorenstein of dimension d, then AN s
AS-Gorenstein if and only if r divides ¢ where
Extd(k, A) = k() (Jgrgensen-Zhang).

Let g = diag(\, -+, \) for X a primitive rth root of unity;
G = (g) acts on A with A" = AC.

If the Hilbert series of Ais (1 — t)~¢ then

Tra(g',t) = A= N

For d > 3 the group G = (g) contains no “bi-reflections”, so
AG = A" should not be a complete intersection.



Theorem:
Let A be noetherian connected graded algebra.

© Suppose the Hilbert series of Ais (1 — t)7¢.
If r >3 or d> 3, then Hy(t) is not
cyclotomic. Consequently,
A"} is not a complete intersection of any

type.

@ Suppose A is a quantum polynomial ring of
dimension 2 (and Ha(t) = (1 —t)72). If
r = 2, then Hy(t) is cyclotomic and A" is
a classical complete intersection.



Permutation Actions on
A= Cfl[xla e 7Xn]

If g is a 2-cycle then hdet g = 1, and all A® are
AS-Gorenstein.

A permutation matrix g is a “bi-reflection” of A
if and only if it is a 2-cycle or a 3-cycle.

Both A% and A% are classical complete
intersections.



A= C*l[Xla' o 7Xn]

Example:
0100
|1 00O
£ o001
0 010

Then A®) has Hilbert series

1—2t+4t2 —2t3 + t*
(1+t2)2(1—1t)*

whose numerator is not a product of cyclotomic polynomials,
so Al8) is not any of our types of complete intersection.



Toward a Kac-Watanabe-Gordeev Theorem
Examples in Dimension 3:

Consider AS-Gorenstein fixed rings of AS-regular algebras of
dimension 3 (e.g. 3-dimensional Sklyanin, down-up algebras,
C1lx,y,2]).

Thus far all our examples are either classical complete
intersections or not cyclotomic (so none of our types of
complete intersection).

In all the cases where A® is a complete intersection, G is
generated by “bi-reflections” of A.



Down-up algebra examples

Let A be generated by x, y with relations

y?x = xy? and yx? = x%y.
Represent the automorphism g(x) = ax + cy and
g(y) = bx + dy by the 2 x 2 matrix

a b

c d |
Any invertible matrix induces a graded automorphism of A.
The homological determinant of a graded automorphism g with
eigenvalues A1 and Az is (A1)\2)2.

AC is AS-Gorenstein if and only if the hdet(g) = (M A2)? =1
forall g € G.



“bi-reflections”

The trace of a graded automorphism g of A with eigenvalues
A1 and Ay is

1

Tra(g, t) = (T Mt) (1= Mat)(1 — Mrat2)’

Assuming (A1\2)%2 =1 for all g € G, “bi-reflections” are:

Classical Reflections: One eigenvalue of g is 1 and the other
eigenvalue is a root of unity; since (A1A2)2 = 1 the other
eigenvalue must be —1.

In SL»(C): The eigenvalues of g are A and A7! for A # 1
(which forces the (homological) determinant to be 1).



Abelian Groups of Graded
Automorphisms of A

Example:
G = (g1, 8) for g1 = diag [e,,,e;l] and g» = diag [1,—1].

The group G = (g1, 42) is a "bi-reflection” group of order 2n
and G = Z, X Z».

When n is even, AC is a classical complete intersection, and
when n is odd A® is not cyclotomic Gorenstein (so no kind of
complete intersection).



n even

For n=2 G is a classical reflection group — the Klein-4 group.
AC = k(x? y?, (yx)?, (xy)?), the commutative hypersurface:

KX, Y,Z, W]
(ZW — X2Y?2)

For n > 4 G is a "bi-reflection” group.
AC = k(x",y" (xy)?, (yx)?, x2y?), the commutative complete
intersection:
k[(X,Y,Z,W,V]
(XY —Vvn/2. ZW — v2)’

1

AG



n odd

G = (g) is generated by g = diag [en, —€,,].
The numerator of the Hilbert series for AC is
-1 + t4 + 2tn+2 _ 2t2n+2 _ t3n _ t3n+4

= (1=t 1+t " 4 262 4 £ 4 20 4 2,

which we showed is NOT a product of cyclotomic polynomials
for n > 1.



Dihedral Groups G = (g1, )

_01 d_en0
gl_loan gz—o el

n

n even:
kIX,Y,Z,W]
(W2 — XYW — 47" + Y27 + X225)

AC =

n odd:

_ KX, Y, Z][W;0,0]

AG
(W2 -v27)



Sklyanin Example

ax®?+yz+zy=0

3y2+zx+xz:0

az’ +xy +yx =0
with a3 # 1 and

w 0 0
g=[0 w? 0],
0 0 1

for w a primitive cubed root of unity. hdet g =1 and
Tra(g,t) = 1/(1 — t3), so g is a “bi-reflection”.

N C_1[x, x3 — y3][xy; 0, 8][x3; o', 8]

" G




Let

h:

o = O
= O O
O O =

then g, h generate a group G of order 27 with

Huc(t) = (1—t3)2(1 — t5)(1 — 9)’

so possibly a complete intersection!



Questions:

If A'is a classical complete intersection, is Ext}(k, k)
Noetherian?

Are there algebras A with Ext}(k, k) Noetherian and finite
GKdim that are not classical complete intersections?

What does Ext (k, k) finite GKdim say about A?

Do “complete intersections” have small numbers of generators?
(2n-1 in commutative case).

Is there a version of the Kac-Watanabe-Gordeev Theorem in
our context?

Classify the groups that give “complete intersections”.



Hopf Actions on A

Hypotheses:

@ H is a finite dimensional semisimple Hopf algebra,

® A is a connected graded noetherian Artin-Schelter
Gorenstein algebra of dimension d, and

© A is a left H-module algebra and each A; is a left
H-module for each i.



Since Ext9(k, A) is 1-dimensional, the left H-action on
Ext9(k, A) defines an algebra map 7/ : H — k such that
h-e=n'(h)e forall he H.

The homological determinant hdet is equal to 1/ 0 S, where S
is the antipode of H.

The homological determinant is trivial if hdet = e.




Theorem. If the homological determinant hdet of the H-action
on A is trivial, then the invariant subring AH is Artin-Schelter
Gorenstein.

Theorem. Assume in addition that A is Pl. Then A" is
Artin-Schelter Gorenstein if and only if its Hilbert series
satisfies the functional equation

Han(t71) = £t Hau(t)

for some integer m.



Example:

Let A= (x,y) be the AS-regular algebra with relations:
xy?> —y?’x =0, and x%y —yx®=0.

A = kS where S is semigroup generated by a, b subject to the
relations

a’b = ba®, ab® = b?a.
Let G =S/(a®> =1, b> =1, (ab)* = 1) is the dihedral group
G ={u=1,a,b,ab, ba, aba, bab, abab}.
Since G is a quotient group of S, Ais a Z x G-graded algebra,
and hence A is a K = kG-comodule algebra. Let H = (kG)°.
Then A is a left H-module algebra. H and K are semisimple
Hopf algebras.



A'is Z x G-graded with deg x = (1, a) and degy = (1, b), we
have a Z x G-graded resolution of the trivial A-module k:

0— A(—4,u) = A(—3,3) ® A(-3, b)

— A(-1,a) ® A(-1,b) > A— k — 0.

Can show that Ext3(k, A) = k(4,u) as a Z x G-graded vector
space and hence the K-comodule action maps a basis element
¢ € Ext3(k,A) to e ® u = ¢ ® 1. It can be shown that hdet is
trivial and hence A" is Artin-Schelter Gorenstein. Also

AH £ AC for all groups G.



