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AS-regular algebra A with m generators.

G finite group of m ×m matrices ( or H a finite dimensional
Hopf algebra) acting on it.

When is AG (AH) AS-regular?

Conjecture (proof in some cases): AG AS-regular if and only if
G is generated by elements with

TrA(g , t) =
1

(1− t)n−1q(t)

and n=GKdim(A).

AH can be AS-regular.



A may not have any such group or Hopf actions (e.g the
(non-PI) 3 dim Sklyanin algebra, Jordan plane and down-up
algebras have no “reflections” so AG is not regular, and hence
AG 6∼= A.)

More is known about when AG (AH) is AS-Gorenstein.



Watanabe’s Theorem

Watanabe’s Theorem. (1974) If G is a finite subgroup of
SL(V ) acting naturally on the commutative polynomial algebra
k[V ], then the fixed subring k[V ]G is Gorenstein.

Example: Let g =

[
−1 0
0 −1

]
act on k[x , y ]

k[x , y ]g = k〈x2, xy , y2〉 ∼=
k[a, c][b]

〈b2 − ac〉

HAg (t) =
1 + t2

(1− t2)2



The Homological Determinant

A AS-regular and G a finite group acting linearly on A.

If A is AS-regular of dimension n, then when the trace is
written as a Laurent series in t−1

TrA(g , t) = (−1)n(hdet g)−1t−` + higher terms

hdet is a homomorphism from G into C.



Noncommutative
Watanabe’s Theorem

Jørgensen-Zhang’s Theorem (2000). If G is a finite
subgroup of GL(V ) acting linearly on an Artin-Schelter regular
algebra A, if the homological determinant of each g in G is 1,
then the fixed subring AG is AS-Gorenstein.

Example. Let g =

[
0 1
1 0

]
act on C−1[x , y ].

Then

TrA(g , t) =
1

1 + t2
=

1

t2
+ higher degree terms,

so hdet(g) = 1. Then C−1[x , y ]g is AS-Gorenstein, C−1[x , y ]g

is generated by σ1 = x + y and σ2 = x3 + y3.



Noncommutative
Stanley’s Theorem

Jørgensen-Zhang’s Theorem (2000). Let A be AS-regular,
and G be a finite group of graded automorphisms of A. Then
AG is AS-Gorenstein if and only its Hilbert series satisfies the
functional equation

HAG (t−1) = ±tmHAG (t) for some integer m.

Example. Let g =

[
0 1
1 0

]
act on C−1[x , y ]. Then

HAg (t) =
1− t + t2

(1− t)2(1 + t2)
and HAg (t−1) = t2HAg (t).



Invariants of A = C−1[x1 . . . , xn] under Permutations

If g is a 2-cycle and A = C−1[x1 . . . , xn] then

TrA(g) =
1

(1 + t2)(1− t)n−2

= (−1)n
1

tn
+ higher terms

so hdet g = 1, and for ALL groups G of n × n permutation
matrices, AG is AS-Gorenstein. Not true for commutative
polynomial ring – e.g.

C[x1, x2, x3, x4]〈(1,2,3,4)〉

is not Gorenstein, while

C−1[x1, x2, x3, x4]〈(1,2,3,4)〉

is AS-Gorenstein.



Example:
Down-Up Algebra

Let A be AS-regular algebra generated by x , y with
x2y = yx2 and y2x = xy2.

GL(2,C) acts on A.

Then AG is Gorenstein if and only if all elements of G have
determinant 1 or -1.



Example. Let A = A(a, b, c) be an AS-regular 3-dim Sklyanin
algebra, i.e. the algebra generated by x , y , z with relations

ax2 + byz + czy = 0

ay2 + bzx + cxz = 0

az2 + bxy + cyx = 0.

Then the fixed ring under each of the following
elements g of order 3 is AS-Gorenstein:

g =

 ω 0 0
0 ω 0
0 0 ω

,
 0 ω 0

0 0 ω2

1 0 0

, or

 0 0 1
1 0 0
0 1 0


where ω satisfies ω3 = 1.



k[x1, · · · , xn]G a complete intersection:

Groups G with k[x1, · · · , xn]G a complete intersection were
classified by Nakajima (1984) and Gordeev (1986).

Theorem: (Kac and Watanabe – Gordeev) (1982). If
C[x1, . . . , xn]G is a complete intersection then G is generated
by bi-reflections (all but two eigenvalues are 1).

Example: Let g =

[
−1 0
0 −1

]
act on k[x , y ]

k[x , y ]g = k〈x2, xy , y2〉 ∼=
k[a, b, c]

〈b2 − ac〉



Bi-reflection of A

For an AS-regular algebra A a graded automorphism g is a
“bi-reflection” of A if

TrA(g , t) =
∞∑
k=0

trace(g |Ak)tk

=
1

(1− t)n−2q(t)
,

n = GKdim A, and q(1) 6= 0.



Questions

Is there a version of Kac-Watanabe-Gordeev Theorem that is
true in the noncommutative setting?

If AG is a complete intersection must G be generated by
bi-reflections?

What is a “noncommutative complete intersection”?



Example:
AG a complete intersection

A = C−1[x , y , z ] is AS-regular of dimension 3, and

g =

 0 −1 0
1 0 0
0 0 −1


acts on it. The eigenvalues of g are −1, i ,−i
so g is not a bi-reflection of A1.
However, TrA(g , t) = 1/((1 + t)2(1− t)) = −1/t3+ higher
degree terms and g is a “bi-reflection” with hdet g = 1.

Ag ∼=
k[X ,Y ,Z ,W ]

〈W 2 − (X 2 + 4Y 2)Z 〉
,

a commutative complete intersection.



Example (b): g =

[
0 1
1 0

]
acting on C−1[x , y ].

Then C−1[x , y ]S2 is generated by

P1 = x + y and P2 = x3 + y3

with
P1P2

2 = P2
2P1 and P2

1P2 = P2P2
1 ,

and 2P6
1 − 3P3

1P2 − 3P2P3
1 + 4P2

2 = 0.

Let A = 〈x , y〉 with xy2 = y2x and x2y = yx2,
then A is AS-regular and

C−1[x , y ]S2 ∼=
A

〈2x6 − 3x3y − 3yx3 + 4y2〉
.



Commutative
Complete Intersections

Theorem (Y. Félix, S. Halperin and J.-C. Thomas)(1991):
Let A be a connected graded noetherian commutative algebra.
Then the following are equivalent.

1 A is isomorphic to k[x1, x2, . . . , xn]/(d1, . . . , dm) for a
homogeneous regular sequence.

2 The Ext-algebra Ext∗A(k , k) is noetherian.

3 The Ext-algebra Ext∗A(k , k) has finite GK-dimension.



Noncommutative
Complete Intersections

Let A be a connected graded noetherian algebra.

1 We say A is a classical complete intersection ring if there
is a connected graded noetherian AS regular algebra R
and a sequence of normal regular homogeneous elements
{d1, · · · , dn} of positive degree such that A is isomorphic
to R/(d1, · · · , dn).

2 We say A is a complete intersection ring of type NP if the
Ext-algebra Ext∗A(k , k) is noetherian.

3 We say A is a complete intersection ring of type GK if the
Ext-algebra Ext∗A(k , k) has finite Gelfand-Kirillov
dimension.

4 We say A is a weak complete intersection ring if the
Ext-algebra Ext∗A(k , k) has subexponential growth.



Noncommutative case:

classical complete intersection ring ⇒
complete intersection ring of type GK

complete intersection ring of type NP (GK) ⇒
weak complete intersection ring

complete intersection ring of type GK 6⇒
complete intersection ring of type NP

Example: A = k〈x , y〉/(x2, xy , y2) is a Koszul algebra with
Ext-algebra E := k〈x , y〉/(yx); GKdim E = 2 but E is not
noetherian.



Examples of noncommutative complete intersections of type
NP (GK) include noetherian Koszul algebras that have
Ext-algebras that are Noetherian (finite GK) for example

A =
C−1[x , y ]

〈x2 − y2〉
with Ext∗A(k , k) = A! =

C[x , y ]

〈x2 + y2〉

or

A =
C〈x , y〉
〈x2, y2〉

with Ext∗A(k , k) = A! =
C[x , y ]

〈xy〉
;

in second case

A ∼=
B

〈x2, y2〉
where B is the AS-regular algebra generated by x , y with
yx2 = x2y and y2x = xy2.



Let A be a connected graded Noetherian ring. We say A is
cyclotomic Gorenstein if the following conditions hold:

(i) A is AS-Gorenstein;

(ii) HA(t), the Hilbert series of A, is a rational function
p(t)/q(t) for some relatively prime polynomials
p(t), q(t) ∈ Z[t] where all roots of p(t) are roots of unity.

Suppose that A is isomorphic to RG for some Auslander
regular algebra R and a finite group G ⊆ Aut(R). If
Ext∗A(k , k) has subexponential growth, then A is
cyclotomic Gorenstein.

Hence if A not cyclotomic Gorenstein, then A is not a
complete intersection of any type.



Veronese Subrings

For a graded algebra A the rth Veronese A〈r〉 is the subring
generated by all monomials of degree r .

If A is AS-Gorenstein of dimension d , then A〈r〉 is
AS-Gorenstein if and only if r divides ` where
ExtdA(k ,A) = k(`) (Jørgensen-Zhang).

Let g = diag(λ, · · · , λ) for λ a primitive rth root of unity;
G = (g) acts on A with A〈r〉 = AG .

If the Hilbert series of A is (1− t)−d then

TrA(g i , t) =
1

(1− λi t)d
.

For d ≥ 3 the group G = (g) contains no “bi-reflections”, so
AG = A〈r〉 should not be a complete intersection.



Theorem:
Let A be noetherian connected graded algebra.

1 Suppose the Hilbert series of A is (1− t)−d .
If r ≥ 3 or d ≥ 3, then HA〈r〉(t) is not
cyclotomic. Consequently,
A〈r〉 is not a complete intersection of any
type.

2 Suppose A is a quantum polynomial ring of
dimension 2 (and HA(t) = (1− t)−2). If
r = 2, then HA〈r〉(t) is cyclotomic and A〈r〉 is
a classical complete intersection.



Permutation Actions on
A = C−1[x1, · · · , xn]

If g is a 2-cycle then hdet g = 1, and all AG are
AS-Gorenstein.

A permutation matrix g is a “bi-reflection” of A
if and only if it is a 2-cycle or a 3-cycle.

Both ASn and AAn are classical complete
intersections.



A = C−1[x1, · · · , xn]

Example:

g =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


Then A(g) has Hilbert series

1− 2t + 4t2 − 2t3 + t4

(1 + t2)2(1− t)4

whose numerator is not a product of cyclotomic polynomials,
so A(g) is not any of our types of complete intersection.



Toward a Kac-Watanabe-Gordeev Theorem
Examples in Dimension 3:

Consider AS-Gorenstein fixed rings of AS-regular algebras of
dimension 3 (e.g. 3-dimensional Sklyanin, down-up algebras,
C−1[x , y , z ]).

Thus far all our examples are either classical complete
intersections or not cyclotomic (so none of our types of
complete intersection).

In all the cases where AG is a complete intersection, G is
generated by “bi-reflections” of A.



Down-up algebra examples

Let A be generated by x , y with relations

y2x = xy2 and yx2 = x2y .

Represent the automorphism g(x) = ax + cy and
g(y) = bx + dy by the 2× 2 matrix[

a b
c d

]
.

Any invertible matrix induces a graded automorphism of A.
The homological determinant of a graded automorphism g with
eigenvalues λ1 and λ2 is (λ1λ2)2.
AG is AS-Gorenstein if and only if the hdet(g) = (λ1λ2)2 = 1
for all g ∈ G .



“bi-reflections”

The trace of a graded automorphism g of A with eigenvalues
λ1 and λ2 is

TrA(g , t) =
1

(1− λ1t)(1− λ2t)(1− λ1λ2t2)
.

Assuming (λ1λ2)2 = 1 for all g ∈ G , “bi-reflections” are:

Classical Reflections: One eigenvalue of g is 1 and the other
eigenvalue is a root of unity; since (λ1λ2)2 = 1 the other
eigenvalue must be −1.

In SL2(C): The eigenvalues of g are λ and λ−1 for λ 6= 1
(which forces the (homological) determinant to be 1).



Abelian Groups of Graded
Automorphisms of A

Example:

G = 〈g1, g2〉 for g1 = diag [εn, ε
−1
n ] and g2 = diag [1,−1].

The group G = 〈g1, g2〉 is a “bi-reflection” group of order 2n
and G ∼= Zn × Z2.

When n is even, AG is a classical complete intersection, and
when n is odd AG is not cyclotomic Gorenstein (so no kind of
complete intersection).



n even

For n=2 G is a classical reflection group – the Klein-4 group.
AG = k〈x2, y2, (yx)2, (xy)2〉, the commutative hypersurface:

k[X ,Y ,Z ,W ]

〈ZW − X 2Y 2〉
.

For n ≥ 4 G is a “bi-reflection” group.
AG = k〈xn, yn, (xy)2, (yx)2, x2y2〉, the commutative complete
intersection:

AG ∼=
k[X ,Y ,Z ,W ,V ]

(XY − V n/2, ZW − V 2)
.



n odd

G = 〈g〉 is generated by g = diag [εn,−ε−1n ].

The numerator of the Hilbert series for AG is

= 1 + t4 + 2tn+2 − 2t2n+2 − t3n − t3n+4

= (1− tn)(1 + t4 + tn + 2tn+2 + tn+4 + t2n + t2n+4),

which we showed is NOT a product of cyclotomic polynomials
for n > 1.



Dihedral Groups G = 〈g1, g2〉

g1 =

[
0 1
1 0

]
and g2 =

[
εn 0
0 ε−1n

]
n even:

AG =
k[X ,Y ,Z ,W ]

〈W 2 − XYW − 4Z
n+2
2 + Y 2Z + X 2Z

n
2 〉

n odd:

AG =
k[X ,Y ,Z ][W ;σ, δ]

〈W 2 − Y 2Z 〉
.



Sklyanin Example

ax2 + yz + zy = 0

ay2 + zx + xz = 0

az2 + xy + yx = 0

with a3 6= 1 and

g =

ω 0 0
0 ω2 0
0 0 1

,
for ω a primitive cubed root of unity. hdet g = 1 and
TrA(g , t) = 1/(1− t3), so g is a “bi-reflection”.

Ag ∼=
C−1[x , x3 − y3][xy ;σ, δ][x3;σ′, δ′]

〈f 〉
.



Let

h =

0 0 1
1 0 0
0 1 0

,
then g , h generate a group G of order 27 with

HAG (t) =
1− t18

(1− t3)2(1− t6)(1− t9)
,

so possibly a complete intersection!



Questions:

If A is a classical complete intersection, is Ext∗A(k, k)
Noetherian?

Are there algebras A with Ext∗A(k , k) Noetherian and finite
GKdim that are not classical complete intersections?

What does Ext∗A(k , k) finite GKdim say about A?

Do “complete intersections” have small numbers of generators?
(2n-1 in commutative case).

Is there a version of the Kac-Watanabe-Gordeev Theorem in
our context?

Classify the groups that give “complete intersections”.



Hopf Actions on A

Hypotheses:

1 H is a finite dimensional semisimple Hopf algebra,

2 A is a connected graded noetherian Artin-Schelter
Gorenstein algebra of dimension d, and

3 A is a left H-module algebra and each Ai is a left
H-module for each i .



Since ExtdA(k ,A) is 1-dimensional, the left H-action on
ExtdA(k ,A) defines an algebra map η′ : H → k such that
h · e = η′(h)e for all h ∈ H.

The homological determinant hdet is equal to η′ ◦ S , where S
is the antipode of H.

The homological determinant is trivial if hdet = ε.



Theorem. If the homological determinant hdet of the H-action
on A is trivial, then the invariant subring AH is Artin-Schelter
Gorenstein.

Theorem. Assume in addition that A is PI. Then AH is
Artin-Schelter Gorenstein if and only if its Hilbert series
satisfies the functional equation

HAH (t−1) = ±t−mHAH (t)

for some integer m.



Example:

Let A = 〈x , y〉 be the AS-regular algebra with relations:

xy2 − y2x = 0, and x2y − yx2 = 0.

A = kS where S is semigroup generated by a, b subject to the
relations

a2b = ba2, ab2 = b2a.

Let G = S/〈a2 = 1, b2 = 1, (ab)4 = 1〉 is the dihedral group
G = {u = 1, a, b, ab, ba, aba, bab, abab}.
Since G is a quotient group of S , A is a Z× G -graded algebra,
and hence A is a K = kG -comodule algebra. Let H = (kG )◦.
Then A is a left H-module algebra. H and K are semisimple
Hopf algebras.



A is Z× G -graded with deg x = (1, a) and deg y = (1, b), we
have a Z× G -graded resolution of the trivial A-module k :

0→ A(−4, u)→ A(−3, a)⊕ A(−3, b)

→ A(−1, a)⊕ A(−1, b)→ A→ k → 0.

Can show that Ext3A(k,A) ∼= k(4, u) as a Z× G -graded vector
space and hence the K -comodule action maps a basis element
e ∈ Ext3A(k,A) to e⊗ u = e⊗ 1K . It can be shown that hdet is
trivial and hence AH is Artin-Schelter Gorenstein. Also
AH 6= AG for all groups G .


