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1 Introduction

We fix some notation.

• R is a discrete valuation ring, with maximal ideal πR,

• k = R/πR is the residue field of R, and

• K = Q(R) is the field of fractions of R.

It may be helpful to keep the examples R = Zp and R = C[[t]] in mind.

Definition 1.1. 1. Let A be a K-algebra, with a Z-filtration F•A. We say
that A is a sliced K-algebra if

• F•A is complete,

• R ⊆ F0A, and

• FnA = π−nF0A for all n ∈ Z.

We call the k-algebra gr0A := F0A/πF0A the slice of A.

2. Let B be a k-algebra, with an N-filtration F•B. We say that B is an
almost commutative k-algebra if

• k ⊆ F0B, and

• grB is a finitely generated commutative k-algebra.

3. An almost commutative affinoid K-algebra is a sliced K-algebra with an
almost commutative slice. We write Gr(A) := gr(gr0A).

Remarks 1.2. • The filtration on a sliced K-algebra is completely deter-
mined by the “unit ball” F0A. When R = Zp and K = Qp, sliced K-
algebras are examples of p-adic Banach algebras.

• The associated graded ring of a sliced K-algebra is always of the form
grA = (gr0A)[s, s−1] where s is the principal symbol of π ∈ F0A. It is
therefore completely determined by the slice gr0A.
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• To define an almost commutative affinoid K-algebra, one needs extra data
of an N-filtration on the slice gr0A of a sliced K-algebra A.

Examples 1.3. 1. Let g be an R-Lie algebra which is free of finite rank as
an R-module. Let

F0A := Û(g) := lim←−
U(g)

πnU(g)

be the π-adic completion of the R-enveloping algebra U(g) of g. Then

A := Û(g)K := F0A

[
1

π

]
becomes a sliced K-algebra with slice

gr0A =
U(g)

πU(g)
∼= U(gk),

the enveloping algebra of the mod π reduction gk := g/πg of g. Since
this last enveloping algebra is well-known to be almost commutative, we

see that Û(g)K is an almost commutative affinoid K-algebra. We call it
an affinoid enveloping algebra.

2. Let Am(R) = R[x1, . . . , xm; ∂1, . . . , ∂m] be the mth Weyl algebra over R;
thus

Am(R) =
R〈x1, . . . , xm, y1, . . . , ym〉

〈[xi, xj ] = 0, [yi, yj ] = 0, [yi, xj ] = δij〉
.

We form ̂Am(R)K in the same way; thus

Âm(R) = lim←−
Am(R)

πnAm(R)

is the π-adic completion of Am(R) and

̂Am(R)K = Âm(R)

[
1

π

]
is again an almost commutative affinoid K-algebra. We call it the mth-
affinoid Weyl algebra.

Lemma 1.4. Let A be an almost commutative affinoid K-algebra. Then

1. A is Noetherian.

2. Every quotient of A is again almost commutative affinoid.

3. If Gr(A) is a domain/has finite global dimension/is Auslander-regular/
· · · , then A also has the corresponding property.
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2 Motivation

• Affinoid enveloping algebras Û(g)K arise as particular microlocalisations
of Iwasawa algebras.

• Affinoid Weyl algebras ̂Am(R)K arise in Berthelot’s theory of arithmetic
differential operators.

• The slice of the affinoid Weyl algebra is just the Weyl algebra Am(k) over
the residue field k of R. In particular, if k = Fp is the algebraic closure
of Fp then we can view this slice as the algebra of crystalline differential
operators on the affine m-space Amk .

• Crystalline differential operators were used by Bezrukavnikov, Mirkovic
and Rumynin to study representations of Lie algebras in prime character-
istic.

• Soibelman also constructed examples of almost commutative affinoid alge-
bras by π-adically completing quantized function algebras and quantized
enveloping algebras.

However, the main motivation comes from rigid analytic geometry.

3 Rigid analytic geometry

Let g = Rx, the one-dimensional Lie algebra over R. Then it is easy to see that

K〈x〉 := Û(g)K =

{ ∞∑
a=0

λax
a ∈ K[[x]] : λa → 0 as a→∞

}

is an algebra. It is known as the Tate algebra. Note that every f ∈ K〈x〉 can
be evaluated at any point ξ in the unit ball

oK := {ξ ∈ K : |ξ| 6 1}.

Fact 3.1. Let GK := Gal(K/K) be the absolute Galois group of K. Evaluation
at ξ ∈ oK induces a bijection between the GK-orbits on oK , and the maximal
ideals in K〈x〉:

oK/GK
∼=−→ MaxSpecK〈x〉.

Here are the classical definitions in the commutative theory.

Definition 3.2. 1. An affinoid algebra is a quotient of some Tate algebra

K〈x1, . . . , xn〉 := Û(a)K

for some abelian R-Lie algebra a = Rx1 ⊕ · · · ⊕Rxn.

2. A rigid analytic variety is MaxSpec(A) for some affinoid K-algebra A.
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Examples 3.3. 1. The set of GK-orbits on the n-dimensional polydisc on
K

arises as the maximal ideal spectrum of the nth-Tate algebraK〈x1, . . . , xn〉.

2. The descending chain of Tate algebras

K〈x〉 ⊃ K〈πx〉 ⊃ K〈π2x〉 ⊃ · · ·

corresponds to a cover of the full π-adic line K by closed balls of ever-
increasing radius:

oK ⊂
1

π
oK ⊂

1

π2
oK ⊂ · · ·

3. The “unit circle” {ξ ∈ K : |ξ| = 1}/GK is a rigid analytic variety, since

{ξ ∈ K : |ξ| = 1}/GK = MaxSpecK〈x, x−1〉 = MaxSpec
K〈x, y〉
〈xy − 1〉

.

It is open in the usual π-adic topology by the strict triangle inequality
|a+ b| 6 max |a|, |b| which is always valid in the p-adic world.

Remarks 3.4. 1. Because the p-adic topology is totally disconnected, the
naive definition of analytic functions as those that locally have a power
series expansion does not lead to a satisfying theory. Instead, John Tate
defined in 1962 a very weak topology on p-adic spaces such as K/GK
(actually, a Grothendieck topology) — and also a sheaf O of rigid analytic
functions on these p-adic spaces, by using affinoid algebras. For example,
O(oK/GK) = K〈x〉 and more generally, O(MaxSpec(A)) = A for an
affinoid algebra A.

2. An excellent introduction to this subject can be found in an expository
paper by Peter Schneider, available here:

http://www.math.uni-muenster.de/u/pschnei/publ/pap/rigid.ps

3. Now return to our original setting, where gR was an arbitrary R-Lie al-
gebra, free of rank n as an R-module. If x1, . . . , xn is a basis for g over
R, then as a K-vector space we can still view the affinoid enveloping

algebra Û(g)K as an algebra of certain power series, this time in the non-
commuting variables x1, . . . , xn:

Û(g)K =

{∑
α∈Nn

λαx
α : λα → 0 as |α| → ∞

}
.

It is tempting to therefore think of Û(g)K as a rigid analytic quantization
of the polydisc on

K
/GK .
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4. More generally, the descending chain of affinoid enveloping algebras

Û(g)K ⊃ Û(πg)K ⊃ ̂U(π2g)K ⊃ · · ·

should be viewed as a rigid analytic quantization of the closed balls

on
K
⊂ 1

π
on
K
⊂ 1

π2
on
K
⊂ · · ·

of course, up to the action of the Galois group GK .

5. We are currently trying to “quantize” rigid analytic symplectic spaces,
such as cotangent bundles of smooth rigid analytic varieties. To do this,
we plan to use the affinoid Weyl algebra and its various deformations.

4 Simple modules

Recall “Quillen’s Lemma”, which is really a Theorem!

Theorem 4.1 (Quillen, 1969). Let M be a simple module over an almost com-
mutative k-algebra A and let ϕ : M →M be an A-linear endomorphism. Then
ϕ is algebraic over k.

Corollary 4.2. Every simple U(gk)-module has a central character.

It is natural to try to prove a direct analogue of Quillen’s Lemma in the
affinoid world. Thus we make the following

Conjecture 4.3. Let M be a simple module over an almost commutative affi-
noid K-algebra A and let ϕ : M → M be an A-linear endomorphism. Then ϕ
is algebraic over K.

Here is our main result, which has already been improved during the Work-
shop! Thanks are due to Michel Van den Bergh and Lance Small for several
very helpful remarks.

Theorem 4.4. Suppose that Gr(A) is Gorenstein. Then the conjecture holds.

To explain some of the ideas involved in the proof of this result, let us begin
by recalling Quillen’s original argument.

Proof of Theorem 4.1. Give M some good filtration over A[ϕ], and view grM
as a finitely generated (grA)[ϕ]-module. By the Generic Flatness Lemma, we
may find some non-zero element f ∈ k[ϕ] such that (grM)f = gr(Mf ) is free as
a module over k[ϕ]f . It follows that Mf is also free over k[ϕ]f . But k[ϕ]f acts
invertibly on M by Schur’s Lemma so k[ϕ]f ∼= k[ϕ, t]/〈tf − 1〉 has to be a field.
By the Nullstellensatz, this can only happen if ϕ is algebraic over k.

Definition 4.5. Let A,M be as in Conjecture 4.2.
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1. An F0A-lattice in M is a finitely generated F0A-submodule N of M such
that M = NK.

2. For any F0A-lattice N in M , let

BN := {b ∈ K(ϕ) : bN ⊆ N}

be its normalizer in K(ϕ).

Remarks 4.6. • BN is always an order in the commutative field K(ϕ), and
BN/πBN acts faithfully on N/πN .

• If we’re lucky and BN/πBN happens to be a field, then we can run
Quillen’s proof “on the slice” to deduce that BN/πBN is algebraic over k.

• Because gr0A is strongly Noetherian, it follows that BN/πBN is finite
dimensional over k.

• This is enough to deduce that K(ϕ) is finite dimensional over K.

We won’t be so lucky in general. So we hope to improve matters by changing
the lattice N .

Definition 4.7. We say thatN is a regular ϕ-lattice if BN is a discrete valuation
ring.

This is a slightly weaker condition than what we had considered before, but
in fact it suffices: the same proof shows that if M has a regular ϕ-lattice, then
ϕ must be algebraic over K.

5 Finding a regular ϕ-lattice

Here is our strategy:

• Microlocalise M to make gr0M finite length.

• Use this condition to find a microlocal regular ϕ-lattice.

• Use dimension theory over Auslander-Gorenstein rings to lift this microlo-
cal regular ϕ-lattice back to M .

Let us assume for simplicity that gr0A is commutative. After microlocalis-
ing, we may assume that Q is a sliced K-algebra with commutative Noetherian
semilocal slice and that V is a simple Q-module with slice gr0 V of finite length.
By the functoriality of microlocalisaton, V is still a K(ϕ)-module.

• Fix some F0Q-lattice L0 in V .

• Let L = {F0Q-lattices L ⊆ V : L ⊆ L0 but L * πL0}. We search for a
microlocal regular ϕ-lattice in L.
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• Let P = {BL : L ∈ L}, defined in a similar way.

Here are the main steps of our proof:

Theorem 5.1. P has a maximal element.

Theorem 5.2. If B ∈ P is maximal, then it must be a discrete valuation ring.

So the corresponding F0Q-lattice in V is a regular ϕ-lattice.

Sketch proof of Theorem 5.1. Use Zorn’s Lemma. Let (Bα)α∈A be a chain in P
and for each α ∈ A let Lα ∈ L be the largest Bα − F0Q subbimodule of L0.
Then

α 6 β ⇒ Bα ⊆ Bβ ⇒ BαLβ ⊆ Lβ ⇒ Lβ ⊆ Lα,

so (Lα)α∈A is a descending chain.

• Since gr0 V has finite length and F0Q is π-adically complete,

L∞ :=
⋂
α∈A

Lα

is again a lattice in L.

Therefore B∞ := BL∞ ∈ P. We claim that B∞ is an upper bound for the chain
(Bα) in P. To see this, let α ∈ A; then

β > α ⇒ BαL∞ ⊆ BαLβ ⊆ BβLβ ⊆ Lβ

so
BαL∞ ⊆

⋂
β>α

Lβ = L∞ for all α ∈ A,

whence
⋃
α∈ABα ⊆ B∞.

More details can be found in Section 8 of our preprint, available here:

http://arxiv.org/abs/1102.2606
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