Worksheet for Week 4: Limits and Derivatives

This worksheet reviews limits and the definition of the derivative with graphs and computations.

1. Answer the following questions using the graph $y=f(x)$ below. The function $f(x)$ has domain all numbers except 7 as seen from the graph.

(h) $\lim _{h \rightarrow 0^{+}} \frac{f(-8+h)-f(-8)}{h}=\infty$
(a) $\lim _{x \rightarrow 4} f(x)=$ DNE
(i) $\lim _{h \rightarrow 0} \frac{f(-8+h)}{h}=\infty$
(b) $\lim _{x \rightarrow 7^{+}} f(x)=\infty$
(c) $f^{\prime}(0)=\frac{5}{3}$
(j) $\lim _{h \rightarrow 0} \frac{f(-6+h)-f(-6)}{h}=f^{\prime}(-6)=0$
(d) $\lim _{x \rightarrow-3} f(x)=-5$
(k) $\lim _{h \rightarrow 0^{+}} \frac{f(-3+h)+5}{h}=\frac{5}{3}$
(e) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=f^{\prime}(0)=\frac{5}{3}$
(l) List all the intervals where the derivative $f^{\prime}(x)$ is negative. $(-6,-3),(5,7),(7,8)$
(f) $\lim _{h \rightarrow 0} \frac{f(3+h)-5}{h}=f^{\prime}(3)=\frac{5}{3}$
(m) List all the intervals where the derivative $f^{\prime}(x)$ is decreasing. $(-8,-3),(4,7)$
(g) $f^{\prime}(5)=0$
(n) A critical value for $f(x)$ is any x in the domain of $f(x)$ where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined. List all critical values of $f(x)$. $x=-8,-6,-3,4,5,8$
2. Evaluate the following limits and then match the functions with their graphs shown below using your limit results. Some will require you to compute left and right hand limits.
(a) $\lim _{x \rightarrow 5} \frac{1}{x-5}=$

Solution:

$$
\lim _{x \rightarrow 5^{+}} \frac{1}{x-5}=\infty \quad \text { and } \quad \lim _{x \rightarrow 5^{-}} \frac{1}{x-5}=-\infty
$$

so the limit Does Not Exist.
(b) $\lim _{x \rightarrow 5} \frac{-x}{(x-5)^{2}}=$

Solution:

$$
\lim _{x \rightarrow 5} \frac{-x}{(x-5)^{2}}=-\infty
$$

(c) $\lim _{x \rightarrow 5} \frac{-x^{2}-2 x+35}{x^{2}-4 x-5}=$

Solution:

$$
\lim _{x \rightarrow 5} \frac{-x^{2}-2 x+35}{x^{2}-4 x-5}=\lim _{x \rightarrow 5} \frac{-(x-5)(x+7)}{(x-5)(x+1)}=\lim _{x \rightarrow 5} \frac{-(x+7)}{x+1}=\frac{-12}{6}=-2
$$

(d) $\lim _{x \rightarrow 5} \frac{x-\sqrt{3 x+10}}{x-5}=$

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow 5} \frac{x-\sqrt{3 x+10}}{x-5} \cdot \frac{x+\sqrt{3 x+10}}{x+\sqrt{3 x+10}}=\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{(x-5)(x+\sqrt{3 x+10})} \\
=\lim _{x \rightarrow 5} \frac{(x-5)(x+2)}{(x-5)(x+\sqrt{3 x+10})}=\lim _{x \rightarrow 5} \frac{x+2}{x+\sqrt{3 x+10}}=\frac{7}{10}
\end{gathered}
$$

Page 3
3. Use the definition of the derivative $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ to compute $f^{\prime}(3)$ for the following functions. Then match the functions with their graphs shown below using your limit results.
(a) $f(x)=(x-3)^{\frac{1}{3}}+2$

Solution:

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{(3+h-3)^{1 / 3}+2-2}{h}=\lim _{h \rightarrow 0} \frac{h^{1 / 3}}{h}=\lim _{h \rightarrow 0} \frac{1}{h^{2 / 3}}=\infty
$$

so $f^{\prime}(3)$ does not exist.
(b) $f(x)=(x-3)^{\frac{2}{3}}+2$

Solution:

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{(3+h-3)^{2 / 3}+2-2}{h}=\lim _{h \rightarrow 0} \frac{h^{2 / 3}}{h}=\lim _{h \rightarrow 0} \frac{1}{h^{1 / 3}}
$$

The limit does not exists because the left and right limits are $-\infty$ and ∞, respectively. So $f^{\prime}(3)$ does not exist.
(c) $f(x)=|x-3|+2$

Solution:

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{|3+h-3|+2-2}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

The limit does not exists because the left and right limits are -1 and 1 , respectively. So $f^{\prime}(3)$ does not exist.

$y=|x-3|+2$

$y=(x-3)^{\frac{2}{3}}+2$

$y=(x-3)^{\frac{1}{3}}+2$
4. Find, if any, the horizontal asymptotes of the following functions and use that information to match them with their graphs on the next page. Each question should have two limit computations with $x \rightarrow \infty$ and $x \rightarrow-\infty$.
(a) $f(x)=\frac{(x+1)^{4}}{x^{4}+3 x^{2}+7 x+10}$

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{(x+1)^{4}}{x^{4}+3 x^{2}+7 x+10}=\lim _{x \rightarrow \infty} \frac{\frac{(x+1)^{4}}{x^{4}}}{\frac{x^{4}+3 x^{2}+7 x+10}{x^{4}}} \\
=\lim _{x \rightarrow \infty} \frac{\left(\frac{x+4}{x}\right)^{4}}{\frac{x^{4}}{x^{4}}+\frac{3 x^{2}}{x^{4}}+\frac{7 x}{x^{4}}+\frac{10}{x^{4}}}=\lim _{x \rightarrow \infty} \frac{\left(1+\frac{1}{x}\right)^{4}}{1+\frac{3}{x^{2}}+\frac{7}{x^{3}}+\frac{10}{x^{4}}}=\frac{(1+0)^{4}}{1+0+0+0}=1
\end{gathered}
$$

$\lim _{x \rightarrow-\infty} f(x)$ has the same steps and answer so $y=1$ is the horizontal asymptote on both sides.
(b) $f(x)=\frac{x+3}{x^{2}+8 x+26}$

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x+3}{x^{2}+8 x+26}=\lim _{x \rightarrow \infty} \frac{\frac{x+3}{x^{2}}}{\frac{x^{2}+8 x+26}{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{2}}+\frac{3}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{8 x}{x^{2}}+\frac{26}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{3}{x^{2}}}{1+\frac{8}{x}+\frac{26}{x^{2}}}=\frac{0+0}{1+0+0}=0
\end{gathered}
$$

$\lim _{x \rightarrow-\infty} f(x)$ has the same steps and answer so $y=0$ is the horizontal asymptote on both sides.
(c) $f(x)=\frac{x^{3}+4 x+9}{x^{2}+4}$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x^{3}+4 x+9}{x^{2}+4}=\lim _{x \rightarrow \infty} \frac{\frac{x^{3}+4 x+9}{x^{3}}}{\frac{x^{2}+4}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{x^{3}}{x^{3}}+\frac{4 x}{x^{3}}+\frac{9}{x^{3}}}{\frac{x^{2}}{x^{3}}+\frac{4}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{1+\frac{4}{x^{2}}+\frac{9}{x^{3}}}{\frac{1}{x}+\frac{4}{x^{3}}}=\infty
\end{aligned}
$$

The other limit has similar steps:

$$
\lim _{x \rightarrow-\infty} \frac{x^{3}+4 x+9}{x^{2}+4}=\ldots=\lim _{x \rightarrow-\infty} \frac{1+\frac{4}{x^{2}}+\frac{9}{x^{3}}}{\frac{1}{x}+\frac{4}{x^{3}}}=-\infty
$$

because the denominator now is taking negative values with $x \rightarrow-\infty$. The graph of this function has no horizontal asymptotes.
(d) $f(x)=-7 x^{4}+x^{3}-12 x+20$

Solution:

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}-7 x^{4}+x^{3}-12 x+20=-\infty
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}-7 x^{4}+x^{3}-12 x+20=-\infty
$$

The graph of this function has no horizontal asymptotes.
(e) $f(x)=\frac{\sqrt{8 x^{2}+4}}{x+2}$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\sqrt{8 x^{2}+4}}{x+2}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{8 x^{2}+4}}{x}}{\frac{x+2}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{8 x^{2}+4}}{\sqrt{x^{2}}}}{\frac{x+2}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{8 x^{2}+4}{x^{2}}}}{\frac{x+2}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{8 x^{2}}{x^{2}}+\frac{4}{x^{2}}}}{\frac{x}{x}+\frac{8}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{8+\frac{4}{x^{2}}}}{1+\frac{8}{x}}=\sqrt{8}
\end{aligned}
$$

Now for the next one look carefully to see where the difference in steps is:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\sqrt{8 x^{2}+4}}{x+2}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{8 x^{2}+4}}{x}}{\frac{x+2}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{8 x^{2}+4}}{-\sqrt{x^{2}}}}{\frac{x+2}{x}} \\
=\lim _{x \rightarrow \infty} \frac{-\sqrt{\frac{8 x^{2}+4}{x^{2}}}}{\frac{x+2}{x}}=-\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{8 x^{2}}{x^{2}}+\frac{4}{x^{2}}}}{\frac{x}{x}+\frac{8}{x}}=-\lim _{x \rightarrow \infty} \frac{\sqrt{8+\frac{4}{x^{2}}}}{1+\frac{8}{x}}=-\sqrt{8}
\end{gathered}
$$

When you use $\sqrt{x^{2}}=x$ you have to be careful because it is ONLY true when $x \geq 0$! If $x<0$ (in this case $x \rightarrow-\infty$) we have $\sqrt{x^{2}}=-x$. Try $x=-3$, for example.
So this function has two horizontal asymptotes: The graph approaches $y=\sqrt{8}$ on the right as $x \rightarrow \infty$ and it approaches $y=-\sqrt{8}$ on the left as $x \rightarrow-\infty$.
(f) $f(x)=3 e^{x}$

Solution:

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} 3 e^{x}=\infty
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 3 e^{x}=0
$$

The graph has $y=0$ as a horizontal asymptote on the left side only.
(g) $f(x)=7-e^{-x}$

Solution:

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} 7-e^{-x}=7-0=7
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 7-e^{-x}=-\infty
$$

The graph has $y=7$ as a horizontal asymptote on the right side only.

When you match the functions with these graphs, add (if any) horizontal asymptotes to the pictures.

$y=\frac{x^{3}+4 x+9}{x^{2}+4} \quad y=\frac{\sqrt{8 x^{2}+4}}{x+2} \quad y=-7 x^{4}+x^{3}-12 x+20 \quad y=\frac{(x+1)^{4}}{x^{4}+3 x^{2}+7 x+10}$

$$
y=7-e^{-x} \quad y=3 e^{x} \quad y=\frac{x+3}{x^{2}+8 x+26}
$$

