Your Name


Your Signature
$\square$
Student ID \#


Professor's Name



TA's Name
$\square$

- CHECK that your exam contains 8 problems.
- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes and a scientific calculator with no graphing, programming, or calculus capabilities. Do not share notes or calculators.
- Unless otherwise specified, you should give your answers in exact form. (For example, $\frac{\pi}{4}$ and $\sqrt{2}$ are in exact form and are preferable to their decimal approximations.)
- In order to receive full credit, you must show all of your work.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER.
- Raise your hand if you have a question.

| Problem | Total Points | Score |
| :---: | :---: | :---: |
| 1 | 12 |  |
| 2 | 12 |  |
| 3 | 13 |  |
| 4 | 14 |  |


| Problem | Total Points | Score |
| :---: | :---: | :---: |
| 5 | 12 |  |
| 6 | 12 |  |
| 7 | 12 |  |
| 8 | 13 |  |
| Total | 100 |  |

1. (12 points) Find an equation for the plane containing the point $(1,1,1)$ and the line

$$
(x, y, z)=(1+2 t, 3-t, t) .
$$

2. (12 points) Consider surfaces of the form $x^{2}+b y^{2}+c z^{2}=0$, where $b$ and $c$ real numbers.
(a) Describe the horizontal traces (slices by planes parallel to the $x y$-plane) of these surfaces: i. when $b>0$ and $c<0$.
ii. when $b<0$ is negative and $c>0$.
(b) Describe all pairs of numbers $(b, c)$ such that the surface $x^{2}+b y^{2}+c z^{2}=0$ contains the line $(x, y, z)=(4 t, 2 t, t)$. Your answer should include an equation that relates $b$ and $c$.
(c) Consider the horizontal trace $z=1$ in the surfaces of part (b) (i.e., those that contain the given line). For which values of $b$ and $c$ is the horizontal trace a circle?
3. (13 points) On a very windy day, a math student launches a small water balloon into the air (towards an instructor). At time $t=0$, the balloon is at the origin. The velocity vector for the balloon at time $t$ seconds is given by $\mathbf{r}^{\prime}(t)=\langle 6+2 t, 4,15-10 t\rangle$.
(a) Find the speed of the balloon at the positive time, $t$, when it hits the $x y$-plane.
(b) Find the time at which the tangential component of acceleration for the balloon is zero.
(c) Determine if each of the following is true or false at the time you found in part (b). No work is needed to answer this question. Circle your answer.

T F The acceleration $\mathbf{a}$ is orthogonal to the unit tangent vector $\mathbf{T}$.

T F The acceleration $\mathbf{a}$ is orthogonal to the principal unit normal vector $\mathbf{N}$.

T F The acceleration $\mathbf{a}$ is orthogonal to the binormal vector $\mathbf{B}$.
4. (14 points) Consider the curve $\mathbf{r}_{1}(t)=\left\langle t, 4-t, 25-t^{2}\right\rangle$.
(a) Find the point $(x, y, z)$ where the tangent line to the curve $\mathbf{r}_{1}(t)$ at $t=2$ intersects the plane $2 x-3 y+z=0$.
(b) A second curve is given by $\mathbf{r}_{2}(s)=\langle 4, \sin (5 s), 9-3 s\rangle$. The two curves $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(s)$ have one point of intersection. Find the angle of intersection $\theta$ correct to the degree.
5. (12 points) The equation $2 x+y-z=2$ defines a plane in $\mathbb{R}^{3}$. Find all points on that plane at which the following function has a local minimum:

$$
f(x, y, z)=x^{2}+x z+2 y^{2}-2 x y
$$

Use the Second Derivative Test to show that the point you found does indeed give a local minimum.
6. (12 points) Compute the integral

$$
\int_{0}^{1} \int_{\sqrt[3]{y}}^{1} y e^{-2 x^{7}} d x d y
$$

7. (12 points) Let $A(x)=\int_{0}^{x} e^{-t^{2}} d t$.
(a) Find the first Taylor polynomial (linear approximation) $T_{1}(x)$ and the second Taylor polynomial $T_{2}(x)$ for $A(x)$ based at $b=0$.
(b) Use the $T_{2}(x)$ you found to approximate $A\left(\frac{1}{2}\right)=\int_{0}^{1 / 2} e^{-t^{2}} d t$.
(c) Find an upper bound on the error $\left|T_{2}\left(\frac{1}{2}\right)-A\left(\frac{1}{2}\right)\right|$.
8. (13 points) Let $f(x)=x \arctan x-\frac{1}{2} \ln \left(1+x^{2}\right)$
(a) Find the Taylor series for $f(x)$ based at $b=0$. Express your answer using one sigma $\operatorname{sign}(\Sigma)$ and write out the first three non-zero terms of the series.
(b) Find the open interval where the Taylor series in (a) converges.
