Fast Fourier Transform

March 26, 2011

1 Definitions

1.1 The basic FFT

This note will discuss the fast Fourier transform (FFT). It is extracted from Henrici's paper. I will switch to his notation. Let $w_{n}=\exp \left(\frac{2 \pi i}{n}\right)$. Also suppose that all sequences are n-periodic, so $x_{j}=x_{j+n}$, and are defined for all n. We will denote the discrete Fourier transform by \mathcal{F}_{n}.

$$
y_{m}=\left(\mathcal{F}_{n} x\right)_{m}=\frac{1}{n} \sum_{k=0}^{n-1} w_{n}^{-m k} x_{k} .
$$

Now suppose $n=p q$. Then we divide the numbers components of x into p sets of q-vectors

$$
x^{(j)}=\left(x_{j}, x_{j+p}, \ldots, x_{j+p(q-1)}\right),
$$

$j=0,1, \ldots p-1$. Assume we know $\mathcal{F}_{q} x^{(j)}$ for $j=0,1, \ldots p-1$. Then we rewrite the formula for y_{m}, using $n=p q$.

$$
y_{m}=\frac{1}{p} \sum_{j=0}^{p-1} \frac{1}{q} \sum_{k=0}^{q-1} w_{n}^{-m(j+p h)} x_{j+p h} .
$$

Next notice $w_{n}^{-m j-m p h}=w_{n}^{-m j} w_{q}^{-m h}$, since $w_{n}^{p}=\exp \left(\frac{2 p \pi i}{p q}\right)=\exp \left(\frac{2 \pi i}{q}\right)=w_{q}$. So

$$
y_{m}=\frac{1}{p} \sum_{j=0}^{p-1} w_{n}^{-m j}\left(\frac{1}{q} \sum_{h=0}^{q-1} w_{q}^{-m h} x_{j+p h}\right) .
$$

Let

$$
y_{m}^{(j)}=\frac{1}{q} \sum_{h=0}^{q-1} w_{q}^{-m h} x_{j+p h} .
$$

Then

$$
y^{(j)}=\mathcal{F}_{q} x^{(j)},
$$

and

$$
y_{m}=\frac{1}{p} \sum_{j=0}^{p-1} w_{n}^{-m j} y_{m}^{(j)}
$$

If we know the $p q$-vectors $y^{(j)}, j=0,1, \ldots, p-1$, then the cost of computing each component y_{m} is $p-1$ ops (we don't count multiplication by 1). There are n components of y so the cost is $n(p-1)$. If we stop at this point the cost of computing each $y^{(j)}$ is $(q-1)^{2}$ so the total is $n(p-1)+p(q-1)^{2}$. We over estimate
the last term with $p q(q-1)=n(q-1)$ and the cost is $n(p-1+q-1)$. Suppose we have a factorization $n=n_{1} n_{2} \ldots n_{\ell}$. We continue this argument to find the cost is

$$
n \sum_{i=1}^{\ell}\left(n_{i}-1\right)
$$

If $n=2^{\ell}$ each $n_{i}=2$ and the cost is

$$
n \ell=n \log _{2}(n)
$$

We can reduce this even further, if $p=2$ in the initial discussion. The computation in equation (1) can be rewritten. Let $m=k+\ell q, k=0,1, \ldots, q-1, \ell=0,1, \ldots, p-1$ in equation (1) and in case $p=2$, $p-1=1$ Then

$$
w_{n}^{-(k+\ell q) j}=w_{2}^{-\ell j} w_{n}^{-k j}=(-1)^{-\ell j} w_{n}^{-k j}
$$

so

$$
y_{m}=y_{k+\ell q}=\frac{1}{2}\left(y_{k}^{(0)}+(-1)^{-\ell} w_{n}^{-k} y_{k}^{(1)}\right), k=0,1, \ldots, q-1, \ell=0,1
$$

and the only products that must be computed are $w_{n}^{-k} y_{k}^{(1)}, k=0,1, \ldots, q-1$. (There are only two vectors $y^{(0)}, y^{(1)}$.) There are $q-1$ of these and they only need to be computed once. Before the cost of this stage was $n(p-1)=n$ if $p=2$. Now it is $q-1$ which we overestimate with $q=\frac{n}{2}$, half as many ops. This continues, to result in a cost of

$$
\frac{n}{2} \log _{2} n .
$$

Here's another, recursive, way to describe the fft in the case $n=2^{\ell}$. First let's assume that $n=2 m$. Then let $y=\mathcal{F}_{n} x$ so

$$
\begin{align*}
n y_{k}= & x_{0}+w_{n}^{-2 k} x_{2}+\ldots w_{n}^{-(2 m-2) k} x_{2 m-2} \tag{1}\\
& +w_{n}^{-k} x_{1}+w_{n}^{-3 k} x_{3}+\ldots w_{n}^{-(2 m-1) k} x_{2 m-1} . \tag{2}
\end{align*}
$$

Suppose k is even, $k=2 q$. Then $w_{n}^{-j k}=w_{n}^{-j 2 q}=w_{m}^{-j q}$. To simplify the notation, let's replace w_{n} with w and let $\mu=w^{2}$ and $\mu^{m}=1$. Now we can write

$$
\begin{align*}
n y_{k} & =\left(x_{0}+x_{m} w^{-m k}\right)+\left(x_{1} w^{-k}+x_{m+1} w^{-(m+1) k}\right)+\ldots \tag{3}\\
& =\left(x_{0}+x_{m} \mu^{-m q}\right)+\left(x_{1} \mu^{-q}+x_{m+1} \mu^{-(m+1) q}\right)+\ldots \tag{4}\\
& =\left(x_{0}+x_{m}\right)+\left(x_{1}+x_{m+1}\right) \mu^{-q}+\left(x_{2}+x_{m+2}\right) \mu^{-2 q}+\ldots \tag{5}
\end{align*}
$$

Or also

$$
y_{2 q}=\frac{1}{m}\left[\frac{\left(x_{0}+x_{m}\right)}{2}+\frac{\left(x_{1}+x_{m+1}\right)}{2} \mu^{-q}+\frac{\left(x_{2}+x_{m+2}\right)}{2} \mu^{-2 q}+\ldots\right]
$$

Similarly

$$
y_{2 q+1}=\frac{1}{m}\left[\frac{\left(x_{0}-x_{m}\right)}{2}+w^{-1} \frac{\left(x_{1}-x_{m+1}\right)}{2} \mu^{-q}+w^{-2} \frac{\left(x_{2}-x_{m+2}\right)}{2} \mu^{-2 q}+\ldots\right]
$$

Let's denote x^{+}by $x_{j}^{+}=x_{j}+x_{j+m}$ and x^{-}by $x_{j}^{-}=w^{-j}\left(x_{j}-x_{j+m}\right)$. Let's also write $y^{e}=\left[y_{0}, y_{2}, \ldots y_{n-2}\right]$ and $y^{o}=\left[y_{1}, y_{3}, \ldots, y_{n-1}\right]$. Then all of this can be written

$$
y^{e}=\frac{1}{2} \mathcal{F}_{m}\left(x^{+}\right), 2 y^{o}=\frac{1}{2} \mathcal{F}_{m}\left(x^{-}\right) .
$$

If we don't count the divisions by 2 , the cost is just the cost of two computations of \mathcal{F}_{m} and the cost of computing y^{-}which involves multiplying by m powers of w. Let $M(n)$ be the cost of computing \mathcal{F}_{n}. Then we have proved $M(2 m)=2 M(m)+m$. Let's rewrite this as

$$
\begin{align*}
M(n) & =2 M\left(\frac{n}{2}\right)+\frac{n}{2} \tag{7}\\
& =2\left(2 M\left(\frac{n}{2^{2}}\right)+\frac{n}{2^{2}}\right)+\frac{n}{2} \tag{8}\\
& =2^{2} M\left(\frac{n}{2^{2}}\right)+2 \frac{n}{2} \tag{9}\\
& =2^{3} M\left(\frac{n}{2^{3}}\right)+3 \frac{n}{2} \tag{10}\\
& =2^{\ell-1} M(2)+(\ell-1) 2^{\ell-1} \tag{11}\\
& =(1+\ell-1) 2^{\ell-1} \tag{12}\\
& =\frac{n}{2} \log _{2} n . \tag{13}
\end{align*}
$$

1.2 Reversion Operator

We will find the reversion operator useful when we discuss convolutions.
Definition 1. The reversion operator R is defined by

$$
(R x)_{m}=x_{-m}
$$

We have the following useful identities

$$
\begin{align*}
\left(R \mathcal{F}_{n} x\right)_{m} & =\frac{1}{n} \sum_{k=0}^{n-1} w_{n}^{m k} x_{k} \tag{14}\\
\left(\mathcal{F}_{n} R x\right)_{m} & =\frac{1}{n} \sum_{k=0}^{n-1} w_{n}^{-m k} x_{-k} \tag{15}\\
& =\frac{1}{n} \sum_{k=0}^{n-1} w_{n}^{m k} x_{k} . \tag{16}
\end{align*}
$$

Hence

$$
\mathcal{F}_{n} R=R \mathcal{F}_{n}
$$

and thus

$$
n \mathcal{F}_{n} R=n R \mathcal{F}_{n}=\mathcal{F}^{-1}
$$

2 Applications

2.1 Convolutions

First we define a useful product that Henrici calls the Hadamard product and we denote it by a dot •, $(x \bullet y)_{k}=x_{k} y_{k}$. Another multiplication, convolution, is denoted by $*$ is defined by $(x * y)_{k}=\sum_{j=0}^{n-1} x_{j} y_{k-j}=$ $\sum_{j=0}^{n-1} y_{j} x_{k-j}=(y * x)_{k}$.

Theorem 1.

$$
\begin{align*}
& \mathcal{F}_{n}(x * y)=n \mathcal{F}_{n} x \bullet \mathcal{F}_{n} y \tag{17}\\
& \mathcal{F}_{n}(x \bullet y)=\mathcal{F}_{n} x * \mathcal{F}_{n} y \tag{18}
\end{align*}
$$

Proof. Let

$$
u=\mathcal{F}_{n} x, v=\mathcal{F}_{n} y
$$

Now

$$
\left(\mathcal{F}_{n}(x \bullet y)\right)_{n}=\frac{1}{n} \sum_{k=0}^{n-1} w^{-m k} x_{k} y_{k}
$$

By the inversion formula

$$
y_{k}=\left(\mathcal{F}_{n} v\right)_{k}=\sum_{j=0}^{n-1} w^{k j} v_{j}
$$

So

$$
\begin{align*}
\left(\mathcal{F}_{n}(x \bullet y)\right)_{m} & =\frac{1}{n} \sum_{k=0}^{n-1} w^{-m k} x_{k}\left(\sum_{j=0}^{n-1} w^{k j} v_{j}\right) \tag{19}\\
& =\sum_{j=0}^{n-1} v_{j}\left(\frac{1}{n} \sum_{k=0}^{n-1} w^{-(m-j) k} x_{k}\right) \tag{20}\\
& =\sum_{j=0}^{n-1} v_{j} u_{m-j} \tag{21}\\
& =\left(\mathcal{F}_{n} y * \mathcal{F}_{n} x\right)_{m} \tag{22}\\
& =\left(\mathcal{F}_{n} x * \mathcal{F}_{n} y\right)_{m} \tag{23}
\end{align*}
$$

The first statement of the theorem will be proved using the reversion operator. In this last formula, let $x=\mathcal{F}_{n}^{-1} u, y=\mathcal{F}_{n}^{-1} v$. Then we get

$$
\begin{align*}
u * v & =\mathcal{F}_{n}\left(\mathcal{F}_{n}^{-1} u \bullet \mathcal{F}_{n}^{-1} v\right) \tag{24}\\
& =n^{2} \mathcal{F}_{n}\left(R \mathcal{F}_{n} u \bullet R \mathcal{F}_{n} v\right) \tag{25}\\
& =n^{2} \mathcal{F}_{n} R\left(\mathcal{F}_{n} u \bullet \mathcal{F}_{n} v\right) \tag{26}\\
& =n^{2} R \mathcal{F}_{n}\left(\mathcal{F}_{n} u \bullet \mathcal{F}_{n} v\right) \tag{27}\\
& =n \mathcal{F}_{n} u \bullet \mathcal{F}_{n} v, \tag{28}
\end{align*}
$$

since

$$
n \mathcal{F}_{n} R=n R \mathcal{F}_{n}=\mathcal{F}^{-1}
$$

Corollary 1.

$$
u * v=n^{2} R \mathcal{F}_{n}\left(\mathcal{F}_{n} u \bullet \mathcal{F}_{n} v\right)
$$

Corollary 2. If $n=2^{\ell}$ the convolution of two sequences can be computed by taking three discrete Fourier transforms via the fft and one Hadamard product. The cost is no more than

$$
\frac{3 n}{2} \log _{2}(n)+n=\frac{3 n}{2} \log _{2}(n)+n \log _{2}(2)<\frac{3 n}{2} \log _{2}(2 n)
$$

complex multiplications.
2.2 Multiplying Polynomials and Large Integers

