Reconstruction of the Dirichlet to Neumann Map
for a Resistor Network

Adrian V. Mariano Miriam A. Myjak
University of Washington Seattle University

June 21, 2003

Abstract

We describe methods of reconstructing partial Dirichlet to Neu-
mann maps for square resistor networks. We consider possible uses
and potential pitfalls inherent in the algorithm.

1 Introduction

We consider square resistor networks in the plane. In the forward Dirichlet to Neu-
mann problem, the values of currents flowing through boundary nodes of an order n
network are calculated given voltages on the boundary nodes and the conductivities
~ of the resistors in the network. ;From the solution of this problem, a matrix A
is generated which maps voltages to currents at the boundary nodes. Curtis and
Morrow showed that it is possible to parameterize A using a set of 2n(n + 1) values
from A — call this the standard set — and that A can be reconstructed from the
standard set using various algebraic relations that hold for sets of elements in A [1].
We wrote FORTRAN computer programs to reconstruct the entire A from an incom-
plete A. Our first program reconstructed based on the standard parameter set using
the method described in [1]. A later program used the algebraic relations of A to
reconstruct as much the of the A as possible from any initial parameter set.

Using our reconstruction programs, we examined the accuracy of the resultant
A’s. We ran test cases to determine the influence of errors in the parameter set,
and attempted to develop a method of increasing the accuracy of 4’s obtained from

inaccurate A’s.

2 The Standard Set

The first program that we wrote, DRECON.F took the standard parameter set and
reconstructed the whole A from it. The positions of the parameters are indicated by

the *’s in the following figure (illustrated with n = 4).

* K ¥ *
* X X
* ¥
* K KX X
* K ¥ *
* K KX X
* K ¥ X
* ¥ ¥
* K K X

*

2.1 Round Off Error

In order to determine the limitations of the reconstruction process, we used param-
eters from an accurate A for all ¥ = 1 to obtain a reconstructed matrix A. We
attempted to reconstruct A for large n from accurate data using 14 digits of preci-

sion. To evaluate accuracy, we examined the following quantities:

E)\w-)\i,j)\z J
> By,
T iA
A7 1602 — 4n

o)\ — Z Ei’j

i#]

Here is sample error data from attempts to reconstruct an order n A for all v’s=1

| Exe E,\ Ox

10 | 0.0003912898 | 2.077439 x 107% | 0.0008279846
11 | 0.007238837 | 3.179374 x 107 | 0.01527787
12] 16.76129 0.08454078 37.08324

When A was used to recover ~ for all Q; using inverse code we wrote (the inverse
algorithm is described in [1]), we obtained reasonable results for n = 10, but poor
values for n = 11 and meaningless values for n = 12. ;From these cases, we con-
clude that, unless higher precision calculations are available, round off error makes
the reconstruction process useless for n > 10. As above, we evaluated accuracy by

examining the following:

E%‘ = |’7i - ’%|
2 kB,
T _ i€Qq
7 2n(n+1)

U’Y = Z E’i

1€Q

When v was obtained directly from A, we obtained

n | Ey.. E, o
10 | 0.0010833 | 0.00010139 | 0.0038351
11 | 0.033531 | 0.002264 0.10202

12 1 0.9197 0.047134 2.5738

When ~ was obtained from A we got

N B £, Oy

10 | 0.010489 0.00044368 0.021024
11 | 19.452 0.20993 26.703

12 | 4.7978 x 10%° | 3.0755 x 10™® | 6.7851 x 108

2.2 Introduced Errors

We considered the impact of adding errors to A. For several different cases with n = 3
we added an error of .1 to one of the elements in the parameter set. The following
figures display the top section of the standard parameter set. In the figures, the 24
A’s in the standard set were divided into groups of six according to o, resulting from

an error at that location. the six A’s with the lowest o, are indicated by “”. The

3

Figure 1: Constant conductors

* O e e O

O

[¢] []

%

Figure 2: Conductors vary from .3 to 21

Figure 3: Conductors vary from 1 to 49

®e O e e O
O O O *

*x O *x @ % e

Figure 4: Conductors vary from 1 to 9

[P Wy”

next group is indicated by “o”, and the next by “x”. The six elements which yielded
the largest error are labeled as “e”.

Changes at elements (1,4), (1,6), (1,7), (3,9), (3,10), and (3,12) consistently
yielded large errors in A. These values are used immediately in the reconstruction
to form ratios which we believe explains the sensitivity of the algorithm to varia-
tions there. Changes at (2,4), (3,4), (1,12), and (2,12) had a minimal effect on the
reconstruction, reflecting the infrequent use that these elements get during the recon-

struction.

3 Generalized Reconstruction

Kirchoft’s Law states that the sum of currents entering a node is zero. The algebraic

relations from this law are summarized in [1] as

k
Aigm + Z Aija; =0 (1)

j=1
with 4, 7, k,m integers, 1 <k <n, m =4n—k+1, and k <i < m. Recall that A; ; is
the current at boundary node ¢ due to a voltage of one at boundary node j with zero
potential on all other boundary nodes; «; is the potential at the jth boundary node.
The sum of any row or column of A is thus zero because the net current entering the
network must be zero.

The FORTRAN code LAMFILL.F uses equation (1). A complete code listing
is given in Appendix A. Sample input and output files are contained in Appendix
B. First, LAMFILL.F calls the input subroutine LAMIN.F which reads input from
fort.10 and fort.11. The complete A, if known, is contained in fort.10. (The forward
Dirichlet program, FORDIRB.F, generates a A in the correct format.) The order n of
the network appears on the first line of fort.10 followed by the rows of the matrix with
one column-element appearing per line and one blank line separating different rows of
the matrix. The purpose of reading the entire A is to compare the original matrix to
the reconstructed matrix. The fort.11 file has the same form as the fort.10 file except
that all elements have been zeroed out except the chosen parameters from which the
reconstruction proceeds. A fort.11 file can be created using the filter program which

reads in a A and a template file. A template file consists of the order, n, of the

5

problem, followed by 4n lines of 4n characters. A “.” in the template file excludes
the corresponding A from the output. Any other character includes the element as
an initial parameter used for the reconstruction.

In LAMIN.F, and throughout the program, the symmetry property of A is used
to fill in the symmetric element of any new entry that is found. Further, a running
total is kept of how many entries of A are known. Equation (1) gives relationships
around a single corner. Similar relationships exist for the other corners, and all of
the relationships have a form going clockwise around the resistor network, with a
corresponding counterclockwise form. Thus, for a given k, eight different sets of
equations of the form of (1) are possible.

In order to reconstruct new elements, A, the o in (1) must be known. LAMFILL.F
calls ALPHSOL.F, a subroutine designed to solve for the «;. For a given corner in a
given direction (clockwise or counterclockwise), the code checks to see if all \; ; and
the \;,, are nonzero for a given value of 7. If this is the case, the equation is stored.
After checking all 7, if a set of k or more equations has been found, EQCHEQ.F is
called. For k > 1 (only one equation is required for k£ = 1), EQCHEQ can generate all
possible combinations of the set of equations taken k at a time. Each new combination
is sent to DGEFS.F, a double-precision linear solving routine to solve for the a;. If
the system is singular (as can happen, for example, if two of the equations are ratios
of each other), the subroutine sets IND = —4, or, if the answer has potentially low
significance, then DGEFS.F sets IND = —10. This particular system is rejected and
the next combination is tried.

If some a’s have been solved for, the next subroutine called is PNTSSOL.F. The
program starts at the level of equations which has £ = 1 the “ratio” equations. If the
required «’s are known for a given corner in a given direction, PNTSSOL.F' checks
to see if all but one A\ appearing in the relevant equation from (1) are known. If
this is the case, the unknown element is solved for and put into the reconstructed A.
The program tries all ratio (k = 1) equations. If new elements are found, the code
returns to the ALPHSOL routine to see if new a’s can be found on the £ = 1 level
and PNTSSOL is called again. When no new \’s are found by PNTSSOL, the code
advances to k = 2. At this level, the same procedure of solving for a’s then solving

for new \’s is followed. If any new \’s are found, the program goes back to the lowest

k = 1 level and repeats the whole procedure. In this manner, the program makes use
of the smallest possible linear systems (which appear in solving for the a’s) to solve
for a given element of reconstructed A.

When the code can not solve for any new A entries, DIAGSOLL.F is called. Here,
the fact that rows should add up to zero is used to solve for diagonal entries. If all
but the diagonal entry is known in a given row, it is solved for.

The output procedure is LAMOUT.F. The order of the network, number of ele-
ments in the initial input file, and how many were reconstructed are printed at the
top of the fort.12 output file. Then, three columns of data follow. The first column
contains whatever was in the fort.10 file, the second contains the reconstructed ele-
ments (zero indicates this element was not solved for), and the final column is the
difference of the first two columns.

One other output file, fort.16, containing the order of the network followed by the

reconstructed matrix is created for use in inverse and data analysis routines.

4 Other Parameter Sets

Clearly the standard parameter set is not unique. We tried 1620 different partial A’s
with 2n(n + 1) elements for n = 3 and n = 6. To generate partial A’s, we divided A
into 16 n x n squares and permuted solid blocks, upper and lower triangles in the left
and right, and a diagonal line through the six n x n blocks above the diagonal. We
generated the parameter sets in eight runs with different types of blocks to permute.
Each run generated 180 templates (except for run eight which generated 360). The
first digit of a parameter set indicates the run number and the three remaining digits
indicated which template from that run. For n = 3 we obtained 177 parameter sets
(60 of these are listed in Appendix C), and for n = 6 we got 172. Six of the parameter
sets for n = 6 did not have corresponding sets for n = 3. Eleven of the sets for n = 3
lacked corresponding sets for n = 6. Figures 5 and 6 show example of parameter
sets with this feature, and Appendix B contains part of the reconstruction output for

these, and the corresponding paramter sets which fail.

.......... ...

Ll eeeel i

l eeeeee i 2.002
............ o - - - 000000
Ll eeeees oos %eccs
............... R I N
................
CLlllililin eeeeees SIIIIIIII
Il e LIl eee
.................... L I I Y
................... ... L I I
.................. LI L L I I I L

D Figure 6: This pattern

R R R RS has no analog for n =5
orn==~6

Figure 5: This pattern has
no analog for n = 3

5 Restoring From Faulty Data

Given a A which contained errors, we attempted to reconstruct the ’s from it by
using a minimum distance procedure. Using each of the available parameter sets, we
obtained A and calculated the distance between A and A. We used three different
and o,. From the A’s we obtained 5’s. We had
hoped that A’s which were close to A would yield 4’s close to 4. The tables below

definitions of distance: E)\, E), ...,
are based on the ten closest A and 4 for six different cases. The number on the
left of each table is the index to the parameter set we used (the parameter sets are
listed in Appendix C). The number at the bottom of each table is the obtained by
directly from A without reconstruction. The error in the sixth case was generated by
adding capacitance in parallel to the resistance. We added a constant capacitance
of iwec = .8 to each 7, but ignored the complex component of the result. The first
five cases were rounded off to two significant digits. The latter technique produces
error that is considerably more uniform than adding capacitances: the fractional
error, F/), is uniformly of magnitude 107'. The fractional error generated by the

capacitance varied from 107* to 107!,

Constant v’s

v varies from .3 to 21

O~ (B O~ O\
8.067 0.56236 | 8.067 0.0444216 || 7.009 21.432 | 4.009 0.1786953
8.241 0.56236 | 8.241 0.0444216 || 1.153 21.541 | 1.009 0.1791082
1.115 0.58121 | 8.183 0.04651382 || 4.009 21.929 | 8.183 0.1794151
3.177 0.58121 | 8.185 0.04651382 || 1.009 21.993 | 3.084 0.189903
7.115 0.58121 | 8.178 0.06244455 || 8.007 22.436 | 7.009 0.1908004
1.153 0.60483 | 8.356 0.06248883 || 6.080 22.634 | 6.084 0.1971246
3.043 0.60483 | 8.112 0.07936929 || 8.183 24.744 | 6.168 0.2233695
8.178 0.62694 | 8.164 0.07936929 || 3.084 25.413 | 2.169 0.2315341
8.356 0.62694 | 6.034 0.1000759 || 3.086 26.359 | 8.265 0.3097188
8.112 0.65986 | 6.121 0.1000759 || 6.130 27.825 | 6.121 0.3418671
0.8488 54.774
~ varies from 1 to 9 v varies from 1 to 49
O~ O\ O~ (OB
7.131 2.0453 | 8.183 0.1544017 || 3.162 8.8655 | 6.034 0.3458198
7.128 2.4048 | 1.102 0.1628735 || 3.043 9.6078 | 6.045 0.37631
1.115 2.4563 | 8.164 0.1744031 || 4.179 9.9606 | 6.121 0.5260968
7115 2.4575 | 1.115 0.1784148 || 1.167 10.095 | 3.043 0.5925738
1.131 24771 | 7.115 0.185613 6.034 10.354 | 3.162 0.6009474
8.331 2.4869 | 8.178 0.1918926 || 8.260 10.412 | 6.138 0.6748162
1.128 2.6486 | 3.018 0.1923341 || 6.121 10.801 | 6.153 0.7278545
6.104 2.7259 | 6.104 0.2156397 || 2.045 10.843 | 1.045 0.7698654
2.115 2.7816 | 6.084 0.2381893 || 1.078 11.145 | 2.045 0.7754161
8.178 2.8339 | 2.102 0.2443825 || 8.067 11.237 | 8.067 0.798963
2.0299 16.248

~ varies from .2 to 2

~ varies from .2 to 2

O~ O\ O~ O\
1.092 0.097724 | 1.092 0.02103216 || 8.158 3.081 | 6.029 0.3738372
3.129 0.097724 | 3.129 0.02103216 || 8.265 3.081 | 6.045 0.3738372
7.092 0.097724 | 7.092 0.02103216 || 2.108 4.3631 | 1.102 0.4243205
5.000 0.17907 | 8.112 0.02726289 || 1.102 4.3632 | 3.151 0.4243205
5.179 0.17907 | 8.185 0.02726289 || 3.151 4.3632 | 8.164 0.4243212
8.018 0.1996 | 8.183 0.02778118 || 8.164 4.3632 | 8.241 0.4243212
8.309 0.1996 | 1.009 0.03044748 || 8.241 4.3632 | 2.108 0.4243217
1.009 0.21731 | 3.177 0.03044748 || 1.115 4.755 | 6.104 0.4400162
1.011 0.21731 | 4.009 0.03044748 || 3.043 4.755 | 6.121 0.4400162
3.056 0.21731 | 7.009 0.03044748 || 7.115 4.755 | 6.084 0.4446607
0.30146 0.38599

In all of the cases we examined, we found that choosing a A close to the original A
was likely to yield a good 4 compared to the other reconstructions. We were not able
to pick out the A which produced the best tildey. Some of the “good” A’s produced
average tildey’s (Halfway down the list sorted by distance). Furthermore, in some
cases better results were obtained by directly calculating + from the inaccurate A that

could be obtained through any reconstruction. The third table (above) demonstrates

this phenomena. We were unable to characterize the cases for which this occurs.

References

[1] E. B. Curtis and J. A. Morrow, The Dirichlet to Neumann Map for a

Resistor Network

10

Appendices

A The FORTRAN Code LAMFILL
A.1 LAMFILL.F

C
C

20

5

C

40

C

C

C

50

C

This is the main section of the lambda reconstruction program
LAMFILL.F written by M. A. Myjak, 8-10-90 for the REU program.
double precision ALPHA(2,10,36),LAMBDA(36,36),POINTS(36,36)
implicit double precision (a-h, o-z)
LOGICAL CHGPNTS
NMAX=9
Call subroutine LAMIN.F to read in initial points in the lambda
matrix from which the reconstruction will proceed.
CALL LAMIN(N,LAMBDA,POINTS,NFILLED,NDFILL)
WRITE(12,*) ’This is an order’,N,’system.’
WRITE(12,*)
WRITE(12,*) ’Number of entries filled from input:’
WRITE(12,%) ° DIAGONAL: ’,NDFILL
WRITE(12,%*) ~’ OFF-DIAGONAL: ’,NFILLED
WRITE(12,%)
Initialize various variables.
NPNTSMD = (4*N)**2-4xN
KMIN = 2
KMAX = N+1
K=KMIN
Initialize ALPHA
DO 5 M=1,2
DO 10 I=1,NMAX+1
DO 20 J=1,4*NMAX
ALPHA(M,I,J) = 0.0
CONTINUE
CONTINUE
CONTINUE
Here begins the bulk of the main program.
CONTINUE
Call solving-for-alphas routine
CALL ALPHSOL(K,POINTS,ALPHA,N,NMAX)
Call solving-for-lambdas routine
CALL PNTSSOL(K,POINTS,CHGPNTS,ALPHA,N,NFILLED)
IF(NFILLED.GE.NPNTSMD) GOTO 50
IF (CHGPNTS) THEN
K=KMIN
GOTO 40
ELSE
IF(K.LT.KMAX) THEN
K=K+1
GOTO 40
ELSEIF (K.EQ.KMAX) THEN
WRITE(12,*) ’Algorithm went as far as possible and’
WRITE(12,*) °LAMBDA NOT COMPLETE !’
CALL DIAGSOL(POINTS,N,NDFILL)
GOTO 100
ENDIF
ENDIF
Call solving for lambdas on the diagonal routine
CALL DIAGSOL(POINTS,N,NDFILL)
WRITE(12,%) ’EUREKA! The LAMBDA is COMPLETE!’
Call output routine

100 WRITE(12,%*)

WRITE(12,*) ’Elements known after reconstruction:’

WRITE(12,%) ° DIAGONAL: ’,NDFILL
WRITE(12,%*) ° OFF-DIAGONAL: ’ ,NFILLED
WRITE(12,*) ° Total elements known: ’, NDFILL+NFILLED

WRITE(12,%)
CALL LAMOUT(N,LAMBDA,POINTS)
END

11

A.2 LAMIN.F

C This is SUBROUTINE LAMIN.F, the input subroutine for the main
C program LAMFILL.F
SUBROUTINE LAMIN(N,LAMBDA,POINTS,NFILLED,NDFILL)
double precision LAMBDA(36,36) ,POINTS(36,36)
implicit double precision (a-h, o0-z)
NFILLED = 0
NDFILL = O
READ(11,*) N
C Read initial POINTS values.
DO 10 K = 1,4x*N
DO 12 L = 1,4xN
READ(11,*) POINTS(K,L)
IF(POINTS(K,L) .NE.0.0) THEN
IF(K.NE.L) THEN
NFILLED = NFILLED + 1
ELSE
NDFILL = NDFILL + 1
ENDIF
ENDIF
12 CONTINUE
READ(11,%)
10 CONTINUE
DO 20 K = 1,4%*N
DO 30 L = 1,4x*N
IF(K.NE.L) THEN
IF(POINTS(K,L) .NE.0.0) THEN
IF(POINTS(L,K) .EQ.0.0) THEN
POINTS(L,K) = POINTS(K,L)
NFILLED = NFILLED + 1
ENDIF
ENDIF
ENDIF
30 CONTINUE
20 CONTINUE
C Read complete lambda matrix, for comparison at the end.
read (10, *)
do 13 k=1,4%*n
do 14 1=1,4xn
read(10,*) lambda(k,1)

14 continue
read(10,%*)
13 continue
RETURN
END

A.3 ALPHSOL.F

C This is SUBROUTINE ALPHSOL.F; part of the LAMFILL.F code.
SUBROUTINE ALPHSOL(X,POINTS,ALPHA,N,NMAX)
double precision POINTS(36,36),ALPHA(2,10,36)
double precision A(36,36),B(36)
implicit double precision (a-h, o-z)

LOGICAL CHGALPH
NEQREQ = K-1
DO 5 M=1,2
IF((M.EQ.2) .AND. (K.EQ.2)) GOTO 5
DO 10 J=1,4
C If the ALPHAs are known, the loop advances...
JO=MOD ((1+(J-1) *#N+(M-1) * (4*N-K+1)) , (4*N))
IF(JO.EQ.0) JO=4*N
IF (ALPHA(M,K,JO) .NE.0.0) GOTO 10
Ends loop advancing check.

Now the code looks for at least K-1 equations to solve for the
ALPHAs. Since the coefficients of the ALPHAs and also the B-vector
itself are lambda values, the corresponding entries in the POINTS
array must be nonzero in order for the equation to be useful.

IROW = 1

DO 20 I=1,4xN-2x(K-1)

aaaoaaoaaaQ

12

[eXoKe]

aaoaaQ

C

T0=MOD ((I+(K-1)+(J-1)*N), (4*N))
IF(I0.EQ.0) IO=4*N
I1=I0
J1=MOD (((J-1) *N+K+4*N-2% (K-1) + (M-1) * (2¥K-3)) , (4*N))
IF(J1.EQ.0) J1=4xN
IF(POINTS(I1,J1).EQ.0.0) GOTO 20
DO 30 L=1,K-1
JO=MOD ((L+(J-1) #N+(M-1) * (4*N-K+1)) , (4*N))
IF(JO.EQ.0) JO=4xN
IF (POINTS(I0,J0).EQ.0.0) GOTO 20
A(IROW,L) = POINTS(IO,JO)
30 CONTINUE
B(IROW)=-POINTS(I1,J1)
IROW=IROW+1
20 CONTINUE
IROW=IROW-1
If there are not enough equations, the loop advances.
IF(IROW.LT.NEQREQ) GOTO 10

EQCHEQ generates combinations of the IROW possible equations
found above and sends them to a linear solving routine.
CALL EQCHEQ(A,NMAX,K,B,IROW,CHGALPH)
IF(.NOT.CHGALPH) GOTO 10
If any of the "alphas-to-be" are zero (as can happen if error is
introduced into the original reconstruction parameters) then the
alphas are not stored. Otherwise, a division by zero error
occurs.
DO 60 L=1,K-1
IF(B(L) .EQ.0.0) GOTO 10
60 CONTINUE
Store newly found alphas.
DO 50 L=1,K-1
JO=MOD ((L+(J-1) *#N+(M-1) * (4*xN-K+1)) , (4%N))
IF(JO.EQ.0) JO=4*N
ALPHA(M,K,JO)=B(L)
50 CONTINUE
10 CONTINUE
5 CONTINUE
RETURN
END

A.4 EQCHEQ.F

aaoaaaaQ

C

This is SUBROUTINE EQCHEQ, part of LAMFILL.F
This was originally a routine to generate all possible comb.
of MXTOT things taken N at a time. Here is it used to try
to find a set of equations which can be solved for the
ALPHAs. The old code, excluding declarations, appears
in sections I and II.
SUBROUTINE EQCHEQ(A,NMAX,K2,B,IROW,CHGALPH)
implicit double precision (a-h, o-z)
LOGICAL L, CHGALPH
INTEGER V(20),X(20),MXNUM(252,10)
INTEGER Y,Z,CNT,CNT2,IWORK(36)
double precision work(36)
double precision A(36,36), B(36), TEMPA(36,36), TEMPB(36)
chgalph = .false.
IF(K2.EQ.2) GOTO 470
MXTOT=IROW
N=K2-1
DO 400 II=1,MXTOT
DO 410 JJ=1,N
TEMPA(II,JJ)=A(II,JJ)
410 CONTINUE
TEMPB(II)=B(II)
400 CONTINUE
Here begins section I of the original combinations code.
I=N-1
M=FACT (MXTOT) /FACT (MXTOT-N) /FACT (N)
v(1)=1

13

42
43

30

9

10

32
C

44

43
47

aaoaoaaaan

C
C
10

40

20
20

30

J=N-2
IF(J.LT.1) GOTO 43
Ji=-1
DO 42 K1=1,J
V(K1+1)=J1
J1=J1-1
Y=1
zZ=1
DO 30 L1=1,N
X(L1)=L1
CONTINUE
GOTO 10
Y=Y+1
z=1
continue
DO 32 L2=1,N
MXNUM(Y,L2)=X(L2)
CONTINUE
Ends section I.
DO 430 II=1,N
DO 440 JJ=1,N
A(II,JJ)=TEMPA(MXNUM(Y,II),JJ)
0 CONTINUE
B(II)=TEMPB(MXNUM(Y,II))
0 CONTINUE
0 CALL DGEFS(A,NMAX*4, (K2-1),B,1,IND,WORK, IWORK)
IND=-4 is assumed to imply that for the given combination of
equations, some subset contains equations which are linear
comb. of the other - like you can’t have 2 eq. from a cormer.
Also, if IND=-10, another system is looked for. If
either IND=-4 or IND=-10, the next combination in the set
of possible equations is generated.
IF((IND.EQ.-4) .0R. (IND.EQ.-10)) THEN
GOTO 100
ELSE
CHGALPH=.TRUE.
GOTO 20
ENDIF
The remaining code, section II, is original combinations
code.
0 CONTINUE
X(N)=X(N)+1
IF(Y.EQ.M) GOTO 20
CNT=0
N1=N
DO 40 K=1,I
L=X(N1) .EQ. (MXTOT+V(K))
IF(.NOT.L) GOTO 50
CNT=K
IF(CNT.EQ.I.AND.L) GOTO 50
Ni=N1-1
CONTINUE
IF(CNT.EQ.0) GOTO 9
CNT2=CNT
X(N-CNT)=X(N-CNT) +1
DO 200 J2=1,CNT2
X(N-CNT+1)=X(N-CNT)+1
CNT=CNT-1
IF(CNT.EQ.O0) GOTO 9
0 CONTINUE
CONTINUE
RETURN
END
FUNCTION FACT(N)
NPROD=1
DO 300 J3=1,N
NPROD=NPROD*J3
0 CONTINUE
FACT=NPROD
RETURN
END

14

A.5 PNTSSOL.F

C This is SUBROUTINE PNTSSOL.F; it is part of LAMFILL.F.
SUBROUTINE PNTSSOL(K,POINTS,CHGPNTS,ALPHA,N,NFILLED)
double precision POINTS(36,36),ALPHA(2,10,36)
implicit double precision (a-h, o-z)

LOGICAL CHGPNTS
CHGPNTS = .FALSE.
C Solve for new lambdas using the ALPHA array.

DO 5 M=1,2
if((m.eq.2).and. (k.eq.2)) goto 5
DO 50 J=1,4

DO 60 I=1,4%N-2x(K-1)
JO=MOD ((1+(J-1) *N+(M-1) * (4*N-K+1)) , (4%N))
IF(JO.EQ.0) JO=4xN
IF (ALPHA(M,K,JO) .EQ.0.0) GOTO 50
T0=MOD ((I+(K-1)+(J-1)*N), (4*N))
IF(I0.EQ.0) I0=4*N
I1=I0
J1=MOD (((J-1) *N+K+4*N-2* (K-1) +(M-1) * (2¥K-3)) , (4*N))
IF(J1.EQ.0) J1=4%N
IF (POINTS(I1,J1).EQ.0.0) THEN
NZ1=1
ELSE
NZ1=0
ENDIF
NZ0=0
DO 70 L=1,K-1
JO=MOD ((L+(J-1) *N+(M-1) * (4*xN-K+1)), (4*N))
IF(JO.EQ.0) JO=4xN
IF (POINTS(I0,J0).EQ.0.0) NZO=NZO+1
70 CONTINUE
NZSUM = NZO + NZ1
IF((NZSUM.EQ.K) .OR. (NZSUM.EQ.0)) GOTO 60
IF((NZ1.EQ.1) .AND. (NZ0.EQ.0)) THEN
DO 80 L=1,K-1
JO=MOD ((L+(J-1) *N+(M-1) * (4*N-K+1)), (4%N))
IF(JO.EQ.0) JO=4%N
POINTS(I1,J1) = POINTS(I1,J1)-POINTS(IO,JO)*ALPHA(M,K,JO)
POINTS(J1,I1) = POINTS(I1,J1)

80 CONTINUE
NFILLED = NFILLED + 2
CHGPNTS = .TRUE.
ENDIF

IF((NZ1.EQ.0) .AND. (NZO.EQ.1)) THEN
SUM = -POINTS(I1,J1)
DO 90 L=1,K-1
JO=MOD ((L+(J-1) *N+ (M-1) * (4*N-K+1)) , (4%N))
IF(JO.EQ.0) JO=4*N
IF (POINTS(IO0,JO).EQ.0.0) THEN
IFLAG = I0
JFLAG = JO
GOTO 90
ENDIF
SUM = SUM - POINTS(IO,JO)*ALPHA(M,K,JO)
90 CONTINUE
POINTS (IFLAG, JFLAG)
POINTS (JFLAG, IFLAG)

SUM/ALPHA (M, K, JFLAG)
POINTS (IFLAG, JFLAG)

Nl

NFILLED = NFILLED +
CHGPNTS = .TRUE.
ENDIF

60 CONTINUE

50 CONTINUE

5 CONTINUE

100 RETURN

END

A.6 DIAGSOL.F

C This is SUBROUTINE DIAGSOL.F, the code which finds diagonal
C entries of the lambda matrix for the main program LAMFILL.F

15

SUBROUTINE DIAGSOL(POINTS,N,NDFILL)
double precision POINTS(36,36)
implicit double precision (a-h, o-z)
DO 10 I=1,4*N
IF(POINTS(I,I).NE.0.0) GOTO 10
SUM = 0.0
DO 20 J=1,4x*N
IF(I.NE.J) THEN
IF(POINTS(I,J).EQ.0.0) GOTO 10
SUM = SUM - POINTS(I,J)
ENDIF
20 CONTINUE
POINTS(I,I) = SUM
NDFILL = NDFILL + 1
10 CONTINUE
RETURN
END

A.7 LAMOUT.F

C This is SUBROUTINE LAMOUT.F; it is part of the LAMFILL.F code.
C LAMOUT.F is the output subroutine for LAMFILL.F.
SUBROUTINE LAMOUT(N,LAMBDA,POINTS)
double precision LAMBDA(36,36) ,POINTS(36,36),DIFF(36,36)
implicit double precision (a-h, o-z)
WRITE(12,*) ’Original Lambda: Reconstructed Lambda: Differ
lence’
WRITE(16,%) N
DO 10 I=1,4x*N
DO 20 J=1,4%N
DIFF(I,J) = ABS(LAMBDA(I,J)-POINTS(I,J))
100 FORMAT (3(1PD20.13,2X))
WRITE(12,100) LAMBDA(I,J),POINTS(I,J),DIFF(I,J)
WRITE(16,*) POINTS(I,J)
20 CONTINUE
write(12,*)
write(16,*)
10 CONTINUE
RETURN
END

16

B Sample Input and Output Files for LAMFILL.F
B.1 Part of a Sample fort.10 Input File

3
0.70089285714286
-9.8214285714286d-02
-3.12500000000004-02
-3.1250000000000d4-02
-2.6785714285714d-02
-1.3392857142857d-02
-1.3392857142857d-02
-2.6785714285714d-02
-3.1250000000000d4-02
-3.1250000000000d4-02
-9.8214285714286d-02
-0.29910714285714

-9.8214285714286d-02
0.66964285714286

-9.8214285714286d-02
-9.8214285714286d-02
-6.2500000000000d4-02
-2.6785714285714d-02
-2.6785714285714d-02
-4.4642857142857d-02
-2.6785714285714d-02
-2.6785714285714d-02
-6.2500000000000d4-02
-9.8214285714286d-02

-3.12500000000004-02

B.2 Part of a Sample fort.11 Input File

w

[eNeNoNoNeNol NeoNeNoNoNeo)

.3392857142857d-02

.2500000000000d4-02
.6785714285714d-02

QOO OOONOIOOOO

o

B.3 Part of a Sample fort.12 Output File — 3 x 3 analog of
template 2.116 shown in figure 5

This is an order 3 system.

17

Number of entries filled from input:

OFF-DIAGONAL:

DIAGONAL: 0
48

Algorithm went as far as possible and

LAMBDA NOT COMPLETE!

Elements known after reconstruction:

Original Lambda:
7.0089285714286d-01
-9.8214285714286d-02
-3.1250000000000d-02
-3.1250000000000d-02
-2.6785714285714d-02
-1.3392857142857d-02
-1.3392857142857d-02
-2.6785714285714d-02
-3.1250000000000d-02
-3.1250000000000d-02
-9.8214285714286d-02
-2.9910714285714d-01

B.4 Part of a Sample fort.12 Output File — template 2.116

OFF-DIAGONAL:
Total elements known:

DIAGONAL: 8
128
136

Reconstructed Lambda:

0. d+00
-9.8214285714185d-02
-3.12500000000004-02
-3.12500000000004-02
-2.6785714285714d-02
-1.3392857142857d-02
-1.3392857142857d-02
-2.6785714285714d-02
-3.12500000000004-02
-3.12500000000004-02
-9.82142857142414-02

0. d+00

shown in figure 5

This is an order

6

system.

Number of entries filled from input:

EUREKA!

OFF-DIAGONAL:

DIAGONAL: 0
168

The LAMBDA is COMPLETE!

Elements known after reconstruction:

DIAGONAL: 24
OFF-DIAGONAL: 552
Total elements known: 576

Original Lambda:
6.9797734342642d-01
-1.0404531314716d-01
-4.1079910466438d-02
-1.8162270768526d-02
-8.4246146796267d-03
-3.4103827207275d-03
-3.4103827207275d-03
-5.2169162032835d-03
-5.3314768631529d-03
-4.3918591432625d-03
-3.0028111423460d-03
-1.5014055711730d-03
-1.5014055711730d4-03
-3.0028111423460d-03

B.5 Part of a Sample fort.12 Output File — template 2.002

Reconstructed Lambda:

3.4311888580228d-01
-4.7217140590301d-02
-3.0256410250892d-02
-1.8162289460835d-02
-8.42461461112344-03
-3.4103827207275d-03
-3.4103827207275d-03
-5.2169162032835d-03
-5.3314768631529d-03
-4.3918591432625d-03
-3.0028111423460d-03
-1.5014055711730d-03
-1.5014055711730d4-03
-3.0028111423460d-03

shown in figure 6

This is an order

3

system.

Number of entries filled from input:

DIAGONAL: 0

Difference
7.0089285714286d-01
1.0126621763362d-13
0 d+00
0 d+00
0 d+00
0. d+00
0. d+00
0 d+00
0 d+00
0. d+00
4.5324854980322d-14
2.99107142857144-01

Difference
3.5485845762414d-01
5.6828172556859d-02
1.0823500215546d-02
1.8692309384366d-08
6.85033297448404-11
d+00
d+00
d+00
d+00
d+00
d+00
d+00
d+00
d+00

[eNeNeoNoNoNeoRoNoNo)

18

7.
-9.
-3.
-3.
-2.
-1.
-1.
-2.
-3.
-3.
-9.
-2.

-9.

EUREKA!

OFF-

DIAGONAL: 48

The LAMBDA is COMPLETE!

Elements known after reconstruction:

Total elements known:

Original Lambda:

0089285714286d-01
8214285714286d-02
12500000000004-02
1250000000000d-02
6785714285714d-02
3392857142857d-02
3392857142857d-02
6785714285714d-02
1250000000000d-02
1250000000000d-02
8214285714286d-02
9910714285714d-01

8214285714286d-02

OFF-

Re

-9.

DIAGONAL: 12
DIAGONAL: 132
144

constructed Lambda:
7.
-9.
-3.
-3.
-2.
-1.
-1.
-2.
-3.
-3.
-9.
-2.

0089285714281d-01
8214285714286d-02
1250000000000d-02
1250000000000d-02
6785714285714d-02
3392857142857d-02
3392857142857d-02
6785714285714d-02
1250000000000d-02
1250000000000d-02
8214285714239d-02
9910714285714d-01

8214285714286d-02

o

OPhOOOOOOCOOOWM

Difference
.3179682879545d-14
d+00
d+00
d+00
d+00
d+00
d+00
d+00
d+00
. d+00
.7337134212455d-14
d+00

d+00

B.6 Part of a Sample fort.12 Output
template 2.002 shown in figure 6

6.
-1.
-4.
-1.
-8.
-3.
-3.
-5.
-5.
-4.
-3.
-1.
-1.

This is an order

Number of entries filled from input:

6 system.
DIAGONAL: 0
OFF-DIAGONAL: 168

Algorithm went as far as possible and

LAMBDA NOT COMPLET

E!

Elements known after reconstruction:

Total elements known:

Original Lambda:

9797734342642d-01
0404531314716d-01
1079910466438d-02
8162270768526d-02
4246146796267d-03
4103827207275d-03
4103827207275d-03
2169162032835d-03
3314768631529d-03
3918591432625d-03
0028111423460d-03
5014055711730d-03
5014055711730d4-03

OFF-

Re

-1
-1

DIAGONAL: 2
DIAGONAL: 396
398

constructed Lambda:
0.
-1.
-4.
-1.
-8.
-3.
-3.
-5.
-5.
-4.
-3.

d+00
0404531314716d-01
1079910466438d-02
8162270768526d-02
4246146796267d-03
4103827207275d-03
4103827207275d-03
2169162032835d-03
3314768631529d-03
3918591432625d-03
0028111423460d-03
.5014055711730d-03
.5014055711730d-03

6
0
0
0
0
0.
0.
0
0
0
0
0
0

Difference
.9797734342642d-01
d+00
d+00
d+00
d+00
d+00
d+00
d+00
d+00
d+00
d+00
d+00
d+00

19

File — 6 x 6 analog of

C Some Successful Parameter Sets

1.009 1.011

‘000 -0 - ® 900 -0 - ©®

- 00 - - 000 00 00
eoccc0000 - 00000000
....... . e e e e e e e e e e
...... .-.... e e e e e e e e e e
....................... .
...................... ..
..................... ...
° L0900 0
......
............:

21

