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~ Abstract

T'his paper begins with'a discussion of elementary percolation the-

" ory. especially ‘the "critical phenomenon.” This theory is used to study

the behavior of current flowing across two and three dimensional dis-
ordered electrical networks composed of random resistors. Resistors
are assigned resistance values according to a given probability. and the
map taking probabilities to expected values of the effective conduc-
tance of the network is studied. Given a probability p , the forward
problenr is to estimate the value of this: map. Given an object com-
posed of a random: mixture of two materials each having constant
condnctance, the inverse probleni’is to estimate the proportion p of
materials from boundary measurements of the effective conductance
ol the object. -Algorithms are presented which solve the forward and
inverse problems and estimate the critical probability in two and three
dimensions.. -
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1 Introduction to Percolation Theory

suppose that a large cubic chunk of turf is immersed in water. What is
the probability that a grain of dirt near the center of the chunk of turl is
wetted? Percolation theory is concerned with questions like this. In the
standard “percolation model,” let Z* he the d dimensional lattice. Let p
be a number satisfying 0 < p < 1 . Declare each edge of the lattice to
be open with probability p and closed with probability 1 — p . Water can
(low through an open edge and not through a closed edge; henee pois the
proportion of passages which are broad enough to allow water to flow along
them. Objects such as the chunk of turf have large networks of fissures which
can be approximated by the infinite lattice Z? . Approximate the chunk of
turf by Z° | and let @ be a vertex of Z3 near the center of the chunk of turf.
Then the vertex r is wetted if and only if there is a path from x to a veriex
un the boundary of the chunk of turl. using open edges only (see Figure 1).
Percolation theory is concerned with the existence of such open paths.

1.1 The Critical Phenomenon

Oune of the most interesting aspects of percolation theory is the occurence of
a "critical phenomenon.” On the infinite lattice Z7 . define an open cluster to
he a set of open edges in which for any two edges in the cluster, there exists
a path of open edges connecting them. Define the percolation probability
0%(p) to be the probability that the origin of the lattice Z¢ belougs to an
infinite open cluster. A fundamental theorem of percolation theory is that
for dimension d > 1, there exists a critical probability p? such that

= 0ifp<p,
> Qifp>p.
Formally the critical probability p! is defined by

pl = sup{p: 6'(p) = 0}

For a proof that the cvitical probabilits exists for o/ | . sec Grim-
mett (pl). Grimmett asserts that the percolation probalihity ) behaves
roughly as wn Figure 2.
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The critical probability p! is clearly onc. and it has heen proved that.
p: = 1/2 (Grimmett, Kesten). For d > 2, the value of the critical proba-
bility ts unknown. lun this paper 1 develop a method to estimate the critical
probability in two aud three dimensions. The method involves studying the
percolation of electrical current across square and cubic lattice resistor net-
works.

2  Setup of the Square and Cubic Resistor
Networks

For d =2, let G2 = {1.2.....,n} x {1.2,....n} be the interior nodes defining
the square network. and let G2, = { (0m): 1 < m < n} and %, = |
(n+lm): L <m < n} be the left and right side nodes of (2 | respectively.
Assign a potential of zero to each ol the nodes on G2, and a potential of
one Lo each of the nodes on G2, . Insulate the top and bottom sides of the
network. Place silver bars along the left and right sides of the network and
connect a battery, creating a potential difference of one across the resistor
network. The two-dimesional network G2 connected to a battery is shown in
Figure 3.

L |
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Figure 3: G? connected to a battery

For d = 3 the situation is similar. Here % = {1,2,...n} x {1.2.....n} x
{1.2,...n} are the interior nodes of the cubic network. and the nodes on
the left and right faces are Gy = { (0.lm): 1 < I,m < n} and G¥, = {
{(nd.m): | <1m < n} . Assign zero potentials to the nodes on the left face
of the eubic network and one potentials to the nodes on the right face of
the network. lusulate the top. bottom. [ront. and back laces of the network.
Place silver plates along the left and right faces of the cubic network and
connect a hattery. creating a potential difference of one across the resistor
network.

Given a square or cubic network (7 and a probability p satislvine 0
21 assign each edge. independemtly of all other edges. a resistance ol o
with probability p and a resistance of 3 with probability | —p . What is (he



cffective resistance of the network? Given an object composed of a random
miixture of two aterials each having constant resistance, this prohlem is
uselul for determining the constitution of the mixture from measurements of
effective resistance.

Suppose that o = 1 and 3 = ~ . This characterizes edges as being either
open or closed; open if current can flow along it (corresponding to linite
resistance 1) and closed if current cannot flow along it {corresponding to
mfnite resistance). This specialized problem lies in the domain of percolation
theory, and is the object of this paper. [ study the behavior of E,,(R’,f } . the
expected value of the resistance of the network G?¢ . as a function of the
probability p . Of primary interest is determining for which values of p the
expected vahie of the resistance E,(R%) is infinite. It is diffienlt to make
accurate measurements of verv Jarge resistances. so the recipricol expected
conductance values E,(CY) = E,'(lTa,ﬁ are studied.

3 The Map of Probabilities to Expected
Conductance Values

Let Vo= 1 be the voltage drop across the resistor network G4 . and let 7, be
the total current between the left and right sides or faces of the network ¢ .
By Ohm'’s Law. C, = I, . so that (', = 0 is equivalent to no current passing
from the right to the left side or face of the network. Let &% : P r—s E.(C7)
e the map of probabilities p € [0. I] to expected values of conductance across
the network. It is very difficult to explicitly describe the map h: | could only
manage to express A (p) as a linear combination of edge conductance valies
andl expected valnes of Kirchoff matrices. One cvident property of & is that it
ts monotonic increasing. since p; < p, implies that there is a greater chance
that the network G7(py) has more internal resistance than the network ¢ s
. which implies that more current is expected to cross G4(p,) than G¥(p,) .

Another property of the function £ is that it can be explicitly calenlated
for p = 1. When p = | . of course each edge of the resistor network has
conductance vne. Since the nodes of 77 lave zero potential and the nodes of
(!, have onc potential. there is a voltage drop of 7};7 across cach horizontal

-1
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edge. Kirchoff's Law gives. for each interior node « € G4\ G4, U G, |

> | Potential(x) — Potential(y) |=0

weGE .y adjacent to »

By this law, since there are n + 1 horizontal edges between the left and right
sides or faces of the network. the following is deduced: the nodes directly to
the left of the nodes on G%, have potential 2= . the nodes two horizontal

edges away from G2, have potential f:—_ﬁ- . and finally the nodes adjacent
to (., have potential n—j_—l— . Now notice that there are n9-1
vertical cross-section (a vertical line if d=2. a vertical plane into the page for
(I=3) of the network. By Ohm’s Law. the total current leaving the side or

pei=1 N
m v that

nodes on cach

face () is

4 The Forward Problem

Ciiven a probability p € [0. 1] and a resistor network G2 or 2 | assign to each
edge of the network a conductance g with probability p and conductance 4
with probability 1 —p . In two dimensions connect a battery and set up the
network as shown in Figure 3. and in three dimensions set up the network
in the anologous way. The forward problem is to estimate the vatue of /(p)

In section 3 1 describe an algorithim which calculates the sample mean
conductance ('4(p) corresponding to the probability p . I wrote a simple
function wn Splus titled forward, which takes the sample mean, the sample
size. anc the sample standard deviation as parameters and returns a 95%
confidence interval about the true mean conductance h%(p) . For given p.
the confidence interval is calculated as

ACHP) + 1,96 % —— ).

Tl Y a6 —
((- n{p) 1“’6 * Rq?'f{ﬂ} .qqr‘f(n.)

where o is the sample standard deviation and 1.96 is the Z statistic corre-
sponding to o = 03 in the stapdard nermal disteibution. Iy Table | there
is a bist of confidence intervals [or several probabilities calesdated on (he two
dimensional network with 20 nodes on a side (/3

8



£

Probability  Lower Limit for Confidence Bar Upper Lanit for Confidenee Bar

0.00 9.52 ¢~ 0.52 1
0.10 119 11 .21 ¢
0.20 1.60 e~ 1.G4 1
0.30 2.56 ¢! 2,71 1t
0.40 5.66 ¢—11 .89 ¢ 1!
.45 0.0023 0.0075
0.16 0.0058 0.013
047 0.0059 0.014
0.43 0.0848 .0
0.9 0.015 0.026
0.50 0.022 0.035
0.51 0.027 0.011
.52 0.043 05N
0.53 0.049 0.065
0.54 0.060 0.078
(.hh £1.066 (.ORH
.60 0.162 0.182
0.70 0.349 0.369
0.80 0.518 0.561
.90 0.752 0.764
1.00 0.952 0.952
Talle 1: Confidence Intervals about values of ki, (p)

5 The Inverse Problem

Let O be an object which is known to he a random mixture of two materials
having constant conductance g and 4 respectively. Approximate the ohject
O by the appropriate square or cubic resistor network G2 or % . Clonnect
a batlery and set up the network as described in section 2. Measure the
effective conductance of the network i times. and compute the sainple mean
("(p) . The inverse problem is to recover the constitution of the uhiject O by
extimating the probability p . which i the proportion of materials composing
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w. the corresponding sample
standard deviations. the sample size m and the dimension d as parameters
and retnros a 95% confidence interval alout the true probability p.  See
the Appendix for information on how the function calculates the confidence
wlerval. In Table 2 there is a list ol confidence iutervals about the true mean
p corresponding to 100 effective conductance measurements taken on the two
dimenstonal network with 20 nodes on a side (7, .

probabilities, the corresponding sample means ¥

Semple Mean Lower Limit for Confidence Bar Upper Limit for Confidenee 3.
0.001 0.0090 01710
0.01 0.0090 . 1900

0.0239 0.1510 0.5100
0.05 .4910 0.13130
0.10 0.5530 (.53790
0.20 06140 16210
.30 0.0610 6720
.40 _ 0.7110 210
0.50 0.7630 0.7710
(.60 0.8130 {18260
.70 0.862¢ {).8760
.80 0.9100 0.49250
.90 0.9750 0.9730

Table 2 Confidence bars about truc probabilities  on %, with m=100

5.1 The Critical Phenomenon of the Function h

Intuitively. for large n the lunction A is similar to the percolation probability
function # . Given p . #(p) is the probability that the origin of the infinite
lattice Z¢ is a member of an infinite open ciuster. For a large finite lattice.
the existence of an infinite open cluster is intuitively a similar condition to
the existence of an open path {rom one side or face of the network to the
other. Hence #4(p) = 0 corresponds to no open path existing from one side or
lace of the network to the other. Since it is known that a critical probabitity
pr exists for the function @7(p) - it is reasouable to guess that the probability
ol an open path existing from one side or face of the network to the other

10
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exhibits critical behavior. Moreover. I claim that the probability function
describing for which probabilities there exists an open path from oue side
or [ace of the network to the other is equivalent to the probability [unctiou
describing for which probabilities positive current flows., To see this, recall
that by Ohm's Law C, = I, . The total current I, is calculated hyv first
rolving for all of the interior potentials of the network. Then

(",': = I,’f = Z Violtagetv)Conductance(edge to le fl of v).

¢ a node adjucent (o G;:O

I'rom this expression it is clear that ', = 0 if and only il there is an
open path from G2, to G4, . Hence studying the probability of an open path
existing from one side or face of the network to the other is equivalent to
studying the probability of positive effective conductance.

Suppose that there is a critical probability &7 for which no current Hows
across the network for probabilities less than # and current flows across the
network for probahilities greater than #7 . Then. if &4 exists. for large » the
function h? is of the form:

Kyp)=0if p<#’

>0if p> s’

For ¢ = 2 1 prove that #? exists. and is equal to p? = % . Ford =131
argue that & exists. For d = 2 and d = 3 I describe an algorithm whicl
maps probabilities to sample mean conductances of the network ;¢ . With
this algorithm I approximate hZ . and use the approximation to empirically
validate the theoretical result that x* = £ . I then approximate #* and
use the approximation to estimate «? . I conjecture that #> = p? . so that
throngh this algorithm the unknown critical probability p? is estimated.

6 Proof That «* Exists and Equals

- f—

U

Theorem:

Let (-7 be a square resistor network, where each edge has con-
ductance 1 with probability » and conductance 0 with probability



I —p . Let E,(C?) be the expected value of the conductance be-
tween (7, and G?, . Then there exists a positive integer .\ such
that n > N =

PIE(C?) =0} = Lif p<x, ()
PLE(CH >0} =1if p> 1. (2)

Equation (1) shows that for large enough square networks, no

current will flow across the network if p < 1 , and equation (2)

shows that positive current will flow if p > 1 . Hence «? exists
and equals : . I prove this Theorem, leaving out some in-depth

percolation theory arguments which digress from the focus of this
paper.

6.1 Proof of (1)

Let p £ [0.1) . To begin the proof of (1), recall that in section 5.1 I
showed that the effective conductance ("? of the network is zero if
and only if there is no conducting path from %, to (3, . Hence

P{E(C}) =0} = P{There does not exist an open path from Gy to (iy ).

Select an interior node near the center of the resistor network
(72 to be the origin. Let 11" be the open cluster centered at the
origin, and let #11” denote the number of edges in ' . Finally let
L, (#W') be the expected value of #11” on the network G .

Next, define a network /I? by stacking three networks (. on top

of each other. Then 1} is described by its interior nodes {1.2.....»} ~
t1.2.....3n} and its left and right side nodes H, = {(0.m): | < <
An) and Hi = {in+1.m): 1< m 30l (see Figure 4).

12
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Figure 4: [I?

Let V¥(p) be the probability that there exists a con-
ducting path from H? to H? . Harry KXesten, in
Percolation Theory for Mathematicians (p 83), proved that if p
[U.%) s and E,(#W) < o0, then ¥(p) — 0 ¢s — oo . The proof is long
and digresses from this papers focus, so it is not included. Call
Kesten’s result Lemmma 1:

Lemma 1:
If pc[0.2) and E(#W) <, then ¥(p) > 0asn — x .

An important result of percolation theory is that if the conclu-
sion of Lemma 1 holds, then as » increases, the probahility that.
#11" is greater than or equal to » decavs exponentially. Call this
result Lemma 2 (see Kesten, p 83):



Lemma 2:

If ¥(p) = 0asn — oo, then there exist constants 0 < .} < x
such that
PA#N 2 n} < cem.
By the definition of the percolation probability function #*(p)
given in section 1.1, evidently F,(#W) =#6%p). Forp e [0.1), p < p?
, 80 E(#11') = #*(p) < oc . Hence the hypothesis of Lemma 1 holds,

and its conclusion is that ¥(p) — 0 ¢s n — o< . Then by Lemma 2,
for constants 0 < ¢. k < o¢ ,

PA#W > n} < et (3)

Since current has to travel through at least n + 2 horizontal edges
to flow from G%, to G?, , clearly

PAE(CT) =0} 2 P{#W <n}, (1)
Since P {#1V <n} =1~ P{#W >n}, (3) and (4) imply that

1 — P{E(CY) =0} < P{#W > n}. (!

-t
e

Then by (3), 1 — P,{E(C?) =0} < ce~* | which implies that
PAEWC) =0} > 1 — ¢, (6)

Clearly 1 — ce™** — 1asn — oc . Since (6) holds for p < 1, (1) is
proved.

6.2 Proof of (2)

Let p > 1 . Some definitions are required to prove (2). Define
d(p.hor) to be the probability that there exists an open path from
(%, to 2, and ®*(p. hor) the probability that there exists a closed
path (all edges have zero conductance) from (.7, to (.-, . In addition
define ®(p.rer) to be the probability that there exists an open path

from the top to the bottom of the square network, and ®*(p. ¢+t to



be the probability that there exists a closed path from the top to
the bottom of the square network. Notice that since there are the
same number of horizontal edges as vertical edges in the network
(%, ®(p, hor) = B(p.ver) and &*(p. hor} = ©*(p. ver) . Kesten (p 172)
proves that

S(p. hor)y+ @™ (p.ver) > L. {(7)

The proof requires detailed manipulation of many results of per-
colation theory, so I will not explain it. Recall that in section 5.1
I showed that F,(C2?) > 0 as soon as p is large enough so that the
existence of an open path from (?, to (-?, is assured. Hence

PAE(CE) > 0} = ®(p. hor) (8)

From (7),
P(p.hor) > 1 — ®*(p. ver) (1)

Now, of course F, { a given edge has conductance one} = p and
P, { a given edge has conductance zero} = | — p , so evidently P,
{ a given edge has conductance zero} = P,_, { a given edge has
conductance one} . Extending this to sequences of edges,

O (p. ver) = O{1 — pover). ' {(10)

For p > 2 , obviously | — p < -ﬁ- . Hence E;_,(#11') < > and
Lemma 1 holds, so that ¥(i — p) — 0 es n — oc.. Then by Lemma

2, for constants 0 < c.k < ¢,

Pip{#W > n} <ee™, (1)

Now, since an open vertical path must consist of at least n + |
edges (since the network is n + | edges high),

P {E(CH =0} > P (#1 <n). (12)
Since P_ {F(CH =0} = | = P _ 03 0y = 1 — Bl — p hory =
| — Dt —pover)
L= Db —porer) > P {#W < n}. (13
15



Evidently F_(#W < n)=1— F_,(#W >n), so that (11) becomes

L — P (#W <n) <ece ™ or (11}
Piop(#W <ny =1 — ™, (15)

Then by (13} and (15),
=@ —pover) > | —ee™Fn, (16}

From (9) and (10),
S(p.hor) 2 |~ S — pover). (17)

Then by (16) and (17), ®(p.hor) > | —ce~*" , and by the character-
1zation (8),

PE(C?) >0} > 1 —ce™, (18)
Clearly | —ce™ — 1 asn — oo . Since (18) holds for p > 1 , (2) is
proved.

7 Argument for the Existence of «?

At the end of section 5.1 I conjectured that there exists a critical
probability »* such that for p < «* the expected conductance value
of the network G? is zero and for p > »° the expected conductance
value is positive. Define H? to be the network resulting from stack-
ing three cubic networks % on top of each other; H? is the exact
analog of H? . Define I'? as:

T2 = sup{p: imP,{T(p) = 0}}. (19}

where T{(p) = P, { There exists an open path between the left and
right faces of the network H? } .

Kesten (p333) proved that for p <I? | T(p) = 0, and for p > "
» T{p) is uniformly bounded from zero for all n , at least for a
subsequence of n's . Hence there is a critical probability describing
the probability of an open path stretching across the network H* .
Since the probability of nonzero expected current flow is equivalent
to the probability of the existence of an open path from the left to
the right face of the network, the existence of +* is implied.

it



8 The Approximating Graphs of the Func-
tions A’

I wrote two Fortran programs titled SquareConductances.exe and
CubicConductances.exe which create values approximating the
functions »2 and 2 respectively. For each probability value p =
0.00,0.01,0.02.0.03....0.93,0.99.1.00 , SquareConductances.exe calcu-
lates a sample mean C?(p) , where m is the sample size. For given p
, the following algorithm is performed m times to calculate a sample
effective conductance: Using a random number generator, assign
to each edge, independently of all other edges, a conductance of
1 with probability p and a conductance of zero with probability
| —p . By Ohmt’s Law, since the potential difference between ?,
and (%, is one, the effective conductance is equal to the total cur-
rent flowing from G2, to (+?, . The total current is calculated by
first computing the potentials of the interior nodes of the network.
These interior potentials are computed from the boundary infor-
mation of zero potentials on left side nodes, one potentials on right
side nodes, and zero current on top and bottom side nodes.

To solve for the intertor potentials, Kirchoff’s Law is used to set
up a system of equations .4x = b , where r is the vector of interior
potentials to be solved for, A is the n? by n? Kirchoff matrix con-
taining information supplied by Kirchoff’s Law, and b is a vector of
length n* containing boundary information supplied by Kirchoff’s
Law. There are two techniques that I used to solve the linear sys-
tem Axr = b . The first is a Linpackd routine which directly solves
the linear system 4r = b . This method produces an accurate so-
lution, but computation time is long and storage space must be
allocated to declare the n? by »n? Kirchoff matrix 4 . In the two
dimensional case, these problems can be handled, but in the three
dimensional case they are intolerable. The Kirchoff matrix in three
dimensions is »? by »® , and for n > 6 it becomes impossible to de-
clare the Kirchoff matrix. Hence in addition to writing programs
that utilize Linpackd routines to explicitly solve the system 1» =4
, I wrote programs using the Gauss-Seidel iteration scheme. This

I



method only requires enough storage space to hold the solution
vector », and runs faster.

8.1 The Gauss-Seidel Iteration Scheme

Let [ be the lower diagonal matrix consisting of the lower diagonal
elements of 4 , and {' the upper diagonal matrix consisting of the
upper diagonal elements of 4 . Then clearly 4 = [ + 1" , and
the linear system Ax = b becomes (L + {")x = b . To construct an
iteration scheme, suppose that ; indicates the jih iteration. The
goal is to find a convergent sequence of vectors 1/ to the solution
vector ¥ . The idea behind Gauss-Seidel iteration is to estimate
+i*1 and o+ for each iteration and stop the iterations when +++! and
r' are sufficiently close to each other, i.e. || 2! — 4/ ||[< ¢ for a
prescribed ¢ > 0 . This of course does not guarantee convergence,
but if the terms »/*! and +/ are near enough, it is very likely that
the final term x/*! closely approximates the solution.

Now I motivate why Gauss-Seidel should work. If +/*' and ./
are very near, then (La'*!+17¢/) = b approximates the linear system
Aw =5 . Under the hypothesis that L is invertible, this approxima-
tion becomes

e = LY — Uty = F(a?)  (say). (20)

So for each j > 1, +/*! is expressed as a function of &/ , and .7+
converges to a solution x if F(¢) = v , for in this case Lo = b — '
by (20), so that (L +[")r = b and hence 4dr = b . Thus it is enough
to show that F has a fixed point, which is true if ' is a contraction
mapping. Now, F' is a contraction mapping if

(| 2 — 2| < CJl & =l || for some C < 1and for all j > 1. (21)

From (20), «/*? = [="(h — "0+, Hence || +*2 — 4" =
],._IHJ—I"J'-"H) — [,"l(’r-r.r"’\ “:l' f-th— =Vt F=Yha [, ||:H
— LM — ey 1) LYl ot = »7 | . Hence F is a contraction

mapping if || L= [|< 1 . It is very difficult to show this for a given
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matrix 4, but since the Kirchoff matrix 4 is symmetric positive
definate, this holds. In addition, the necessary hypothesis that the
lower diagonal matrix L of the Kirchoff matrix 4 be invertible is
satisfied. Hence the Gauss-Seidel method should produce a reliable
solution vector r of interior potentials.

Now that the interior potentials are known, the total current /*
can be calculated using Ohm’s Law:

I’'= > Potential(r)Conductancel(edge to le ft of v).
v u node adjecent to G2,

(22)
In addition to calculating sample mean conductances, the pro-
gram SquareConductances.exe also computes sample standard de-
viations. For each p these sample standard deviations are used to
calculate 95% confidence intervals about the true mean conduc-
tance. Figures 5, 6, and 7 are plots of ("*(p) versus p for square
networks with 10, 15, and 20 nodes on a side respectively. In the
plots, d is the dimension of the network G? | n is the number of
nodes on a side of the network and m is the sample size of com-
puted conductances used to calculate the sample mean for each
p - The value fest is the small positive number which is used as
a stopping criteria for the Gauss- Seidel iteration scheme- when
| #/*' — 2/ ||< testx || a7 || the iteration scheme halts. In general,
if test = 107* , where : is a positive integer, then ('? is computed
with an accuracy of about : significant digits. Finally, seed is a
negative integer which is used to initiate the sequence of random
numbers produced by the random number generator. For a given
negative integer, the sequence of random numbers will always be
the same. This is convenient because a given experiment can be
exactly replicated. For each graph, 95% confidence intervals about
the true mean conductances are included, which are calculated by

the Splus function forward , which I described in section 4.
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8.2 Analysis of the Approximating Graphs of the
Functions h?

The most striking feature of the graphs in Figures 5, 6 and 7 is
that the average conductances are all zero or very near zero un-
til a region where suddenly nonzero average conductances appear.
The critical probability «? must lie somewhere in this region. A
comparison of Figures 5, 6 and 7 reveals that as n increases, the
region of change from zero to nonzero average conductances nar-
rows. This suggests that the program SquareConductances.exe can
be used to approximate »? to an accuracy as great as desired by
studying larger networks. The problem of course is its enormous
running time (on the MSCC computers SquareConductances.exe
took about 10,000 minutes to complete for a network with » = 20

).

Note that as 1 increases from 10 to 15 to 20, the region of change
from zero to nonzero average conductances moves to the right.
Nonzero average conductances begin to appear at about p = .4 for
the case n = 10, at about p = .44 for the case »n = |5 and at about
p = 47 for the case » = 20 . This suggests that as n gets large,
nonzero average conductances will begin to appear at probabilities
closer and closer to 1 . Hence this empirical approximation of the
critical probability «? agrees with its theoretical value of 3 - Since
#? is equal to the critical probability p? , p? is estimated by this

algorithm.

Another feature of the graphs in Figures 5, 6 and 7 is that they
are approximately linear for values of p greater than the approxi-
mated critical probability. Comparing Figures 5 and 6 with Figure
7 shows that as » increases, the graph gets more linear. Moreover,
in section 3 I showed that for given n, 11y = 1 » so that this
linear portion has slope approximately equal to -2 . This leads to

my conjecture that as n — o , /% is of the following form:



| —

BR.o= 0 if p<s?=

'

[§

-1 ifpz

Lo | —

The conjectured graph of the function %2 is depicted in Figure
8.

9 The Approximating Graphs of the Func-
tions h’

I wrote a Fortran program titled CubicConductances.exe which
creates values of the function /42 . The program is exactly anal-
ogous to SquareConductances.exe except that sample mean con-
ductances across the network 2 are calculated for the 3| probabil-
itles p = 0.01,0.04,0.07.0.10.0.13.0.16. ....0.91.0.97. 1.00 instead of the
101 probabilities p = 0.00.0.01.0.02.0.03, ....1.93.0.99. 100 as in Square-
Conductances.exe. The reason for this is that the Gauss-Seidel
algorithm used to solve for the interior potentials of a cubic net-
work takes n times as long as the Gauss-Seidel algorithm used to
solve for the interior potentials of a square network. Ohm’s Law,
Kirchoff’s Law, and the Gauss-Seidel iteration scheme are essen-
tially unchanged. The only difference is that each interior node
of a three dimensional lattice network has six neighboring edges
whereas eacl interior node of a two dimensional lattice network
has four neighboring edges. Figures 9 and 10 depict plots of (*3(p)
versus p for three dimensional networks with 3 and 5 nodes on a
side, respectively.
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9.1 Analysis of the Approximating Graphs of the
Functions A’

Notice that in Figure 9 nonzero average conductances begin to
appear approximately at about p = .20, and in Figure 10 nonzero
average conductances begin to appear at about p = .25. I conjec-
ture that just as in the two dimensional case, as n increases nonzero
average conductances begin to appear at larger and larger proba-
bilities. Grimmett (p13) proved that for d > 1, pi*! < p/ . Hence
w1t < &7 for d > 1, and thus p? = #* < p? = L . This gives the
modest estimate that «* € (§.3). To obtain better estimates for
the critical probability «? , the algorithm CubicConductances.exe
needs to be optimized.

10 Improving the Algorithms

One simple way of quickening the programs SquareConduc-
tances.exe and CubicConductances.exe is to use a relaxation pa-
rameter in the Gauss-Seidel iteration scheme. The Gauss-Seidel
iteration scheme could also be made faster by lowering the value
of /est . T used the value of .0001 for the algorithms. Lowering this
value would drastically reduce the run time, but would sacrifice
much accuracy. For example, on a three dimensional network with
5 nodes on a side, it is known that A}(!) = %ﬁLJGT . When Cubic-
Conductances.exe is run on the network G? and (est = .0001 , the
sample mean computed for p = 1 is 4.158, .10 away from the true
mean 4.167 . On the other hand, when fesf = .001 the sample mean
computed for p = 1 is 4.080, .17 away from the true mean 4.167 .
Another way to decrease computer run time would be to modify
SquareConductances.exe and CubicConductances.exe to calculate
sample means for a small range of probabilities. For example, if
the goal is to approximate ~? , running SquareConductances.exe
for probabilities p = 17N B L0052 53 would be sufficient.
Another way of speeding up the routines is to use smaller sample
sizes to compute the sample means. The 93% confidence intervals

23



are fairly narrow in all of the graphs, so it appears the sample
size could be substantially lowered before a substantial amount of
accuracy is lost.

11 Conclusion

In this paper, I studied the behavior of electrical current flowing
across disordered square and cubic resistor networks composed of
random resistors. With the construction of forward and inverse
problems, I emperically studied the map h: P — E,((") and its
inverse. Considering that the 95% confidence intervals in Figures 5,
6, 7 are fairly narrow, I conclude that the algorithm SquareConduc-
tances.exe accurately solves the forward and inverse problems in
two dimensions. In addition, the graphs created by the algorithm
SquareConductances.exe clearly validate that the critical probabil-
ity «* exists. Figure 7 shows that with 95% confidence, the critical
probability «* lies somewhere between .17 and .53 . Since I proved
in section 6 that x* = 1, this is an accurate approximation.

Since I could not run the algorithm CubicConductances.exe on
large networks due to computer time restraints, CubicConduc-
tances.exe only modestly solves the forward and inverse problems.
As well, it only modestly estimates the unknown critical proba-
bility «* . At best, Figure 10 shows that with 95% confidence "
is greater than .25 . In conclusion, the algorithm SquareConduc-
tances.exe accurately solves the forward and inverse problems and
estimates »% , but the algorithm CubicConductances.exe must be
optimized and run on larger networks if it is to produce accurate
solutions to the forward and inverse problems and accurately esti-
mate ~* .
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13 Appendices

¥ O F X ¥ F X K ¥ F ¥ X * ¥ W * F F N kX ¥ ¥ ¥ F *

PROGRAM SquareConductances.exe

This program deals with square resistor networks. Potentials of
zero are assigned to the boundary nodes on the left side of the square
network and potentials of one are assigned to the boundary nodes on
the right side of the square network. The boundary nodes on the
top and bottom sides of the network are insulated.

This program has a controlling loop over probabilities valued 0,.01
.02,.03 . . . .98,.99,1.00. For each probability p, a random
generator (the function RANDOM, in the file RANDOM.F) assigns each edge
of the network a conductance value MU with probability p and a conductance
value GAMMA with probability 1 - p. MU and GAMMA are prompted for, and can
be given nonnegative values. Then the program calculates the effective
conductance between the left and right sides of the square. This procedure
is repeated M times for each probability p, and the average of the
effective conductances is computed. As well, for each p the sample
standard deviation of the conductances is calculated. The probabilities,
the corresponding average conductances, and the sample standard deviations
are written to a file called 2Dexps.dat. This program utilizes the
Gauss-Seidel iteration scheme to calculate the interior potentials
of the network. A value TEST is prompted for; the smaller the value
of TEST the more accurate the interior potentials will be. In general
if TEST is of order 10°-z, where z is a positive integer. then the
effective conductance computed will have z significant digits.
The Gauss-Seidel iteration scheme is faster than the alternative
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method of calculating interior potentials, via setting up the

matrix equation Ax=b and using Lipackd routines. However, the
Gauss-Seidel scheme used in this program does not include a relaxation
parameter, which would speed the program up much more.

INDEXING

The indexing that I used was the following: the leftmost boundary
node on on the top face is the first node, and from there proceed from
left to right and then top to bottom. Hence for a network with N nodes
on a side there are 4N*N**2 total nodes in the network, and the last node
is the rightmost node on the bottom face.

The interior nodes have there own indexing: the leftmost interior node
adjacent to the top side of the network is the first node, and from
there proceed from left to right then top to bottom.

Edges are indexed in the following manner: Horizontal edges are
numbered from top to bottom, left to right, and vertical edges are
numbered from left to right, top to bottom.

VARIABLES
N The number of nodes on a side
M The number of iterations of the random generator

NUMEGS The number of edges of the network

LIMIT The maximum number of edges for a network

MAXDIM The maximum number of nodes on a side

HORCDS Stores the conductances of the horizontal edges
moving left to right then top to bottom

VERCDS Stores the conductances of the vertical edges
moving top to bottom then left to right

CURNTS Stores the currents of the edges adjacent to West face
boundary nodes

A The solution vector of interior node potentials

ALAST Used to tell when the solution vector A has converged to
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within TEST of the true potentials

IXINTS An array containing the indices of the network corresponding
to the interior nodes

INVIXS The inverse of IXINTS- an array containing the indices of the
interior nodes corresponding to the network indices

IPVT Used for the DGEFA and DGESL routines

()BNDS Stores the indices of the (N)orth, (E)ast
(S)outh, and (W)est boundary nodes

LIXHOR LIXHOR and RIXHOR store the indices of the nodes straddling

RIXHOR the horizontal edges

TIXVER TIXVER and BIXVER store the indices of the nodes straddling

BIXVER the vertical edges

RE The resistance from the left to right face

CT The total current flowing from left to right

CDTS  An array of conductances from the left to right face. Each
element holds one conductance corresponding to one set of
edge conductances

STDEVS Vector of length 101, which will be filled with the sample
standard deviations

P Vector of probabilities

ECD The answer, which is the average of the elements of CD

EXPS  Store all the expectations

MU One of the possible values for the conductance of an edge

GAMMA The other possible conductance value

SEED The value used as a paramater to RANDOM

TEST The small value which determines how many Gauss-Seidel iterations
take place. ‘

ANORM The infinity norm of the vector of interior potentials, ALAST

UNGRM The infinity norm of the difference between the most recently
calculated vecter of interior potentials A and the previously
calculated vector of interior'potentials ALAST

INTEGER N, M, NUMEGS, LIMIT, MAXDIM, SEED,S,
$ NBHORS(1:4),IXEGS(1:4)
PARAMETER (LIMIT = 420)
PARAMETER (MAXDIM=20)
REAL A(MAXDIM**2) ,ALAST(MAXDIM#**2),CDS(1:4) ,ECD,CT,
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$ P(101) ,MU,GAMMA, EXPS(101), TEST, STDEVS(1:101),CDTS(1:101)
REAL HORCDS(1:LIMIT), VERCDS(1:LIMIT), ANORM,UNORM
INTEGER IXINTS (1:LIMIT), INVIXS(1:LIMIT)
INTEGER NBNDS(1:MAXDIM) ,EBNDS(1:MAXDIM)
INTEGER SBNDS(1:MAXDIM),WBNDS(1:MAXDIM)
INTEGER LIXHOR(1:LIMIT),RIXHOR(1:LIMIT)
INTEGER TIXVER(1:LIMIT),BIXVER(1:LIMIT)

SUBROUTINES CALLED

SUBROUTINES USED FOR INDEXING

INDINTNODES Fills IXINTS with the indices of the interior nodes

INVINDINTNODES Fills INVIXS with the indices of the network
corresponding to the indices of the interior nodes
INDBNDNODES Fills NBND, EBND, WBND, and SBND with the indices

of the network. Boundary nodes are ordered starting

in the leftmost position in the South face moving
counterclockwise about the network.

HORMAP Fills LIXHOR and RIXHOR

VERMAP Fills TIXVER and BIXVER

OTHER SUBROUTINES

FILLCDS Gets the neighboring conductances for any interior node
The code
was found in NUMERICAL RECIPES. A value SEED is required
to start RANDOM, and the same sequence of random numbers

RANDOM A random number generator, called from external.

is always produced for a given SEED.

ok ok ok ok ok
*%% BEGIN

*

INTRINSIC SQRT,ABS,REAL,MOD
PRINT *, ’Enter the size of the square resistor (1-20)'
READ *, N
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NUMEGS = 2%N*(N+1)

PRINT *
PRINT *, ’Enter the number of conductances to compute’
READ *, M

PRINT =*
PRINT *,’Enter MU(>=0), the conductance value with probability p’
READ =, MU

PRINT *
PRINT *, ’Enter GAMMA(>=0), the conductance value with prob. 1-p’
READ *, GAMMA

PRINT #*
PRINT *, ’Enter TEST, the approximation level for Gauss-Seidel’
READ *,TEST

DO 100 I = 0,100 _
P(I+1) = REAL(I)/REAL(100)
100  CONTINUE '
* Fill P with probabilities .00 to 1.00

CALL INDINTNODES (IXINTS, N)
* Fill IXINTS with the indices of the interior nodes

CALL INVINDINTNODES (INVIXS, N)

CALL INDBNDNODES (NBNDS, EBNDS, SBNDS, WBNDS, NMAXDIM)
* Fill NBNDS, EBNDS, SBNDS, and WBNDS with the indices of the boundary nodes

CALL HORMAP (LIXHOR, RIXHOR, N)
* Fill LIXHOR and RIXHOR with the indices of nodes straddling horizontal edges

CALL VERMAP (TIXVER,. BIXVER, I
* Fill TIXVER and BIXVER with the indices of nodes straddling vertical edges

H



* We now have the indices of the boundary and interior nodes

DO 110 I = 1,101
STDEVS(I) = 0
110  CONTINVE

* Initialize STDEVS to zero

*
*

k&% CONTROLLING DOUBLE LOOP

PRINT =*

PRINT *, 'Please enter a negative integer for a SEED’

READ *, SEED
* Get a value for SEED to use in the random number generating function
* RANDOM

DC 120 PP = 1,101
ECD = 0O
* Initialize the expected conductance to zero

DO 130 J =1, M

*

Use the random number generator, found in NUMERICAL RECIPES,
to determine the conductance of each edge.
DO 6000 I = 1, NUMEGS/2
IF (RANDOM(SEED) .LE. P(PP)) THEN
HORCDS(I) = MU
ELSE
HORCDS(I) = GAMMA
ENDIF _
IF (RANDOM(SEED) .LE. P(PP)) THEN
VERCDS(I) = MU
ELSE
VERCDS(I) = GAMMA
ENDIF

*



6000  CONTINUE

DO 140 I = 1, N#=*2
A(I) = 0
140 CONTINUE
* Initialize A with zeros

150 DO 160 I = 1,N#*2
ALAST(I) = A(I)
160 CONTINUE

DO 170 5 = 1, N**2

CALL FILLCDS (CDS,HORCDS,VERCDS,IXINTS,LIXHOR,RIXHOR,TIXVER,
$ BIXVER,NBHORS,IXEGS,N,NUMEGS, S, MAXDIM)
Get the neighboring conductances surrounding the Sth interior node.
CDS(1) is the left neighbor’s conductance, CDS(2) is the right
neighbor’s conductance, CDS(3) is the above neighbor’s conductance,
and CDS(4) is the bottom neighbor’s conductance.

* ¥ X *

* Take care of top, left corner
IF (S .EQ. 1) THEN
IF (CDS(1)+CDS(2)+CDS(4) .GT. .5) THEN
A(S) = (A(S+1)+CDS(2)+A(S+N)*CDS(4))/
$ (CDS(1)+CDS(2)+CDS(4) )
ENDIF

* Take care of top, right corner
ELSEIF (S .EQ. N) THEN
IF (CDS(1)+CDS(2)+CDS(4) .GT. .5) THEN
A(S) = (A(S-1)*CDS(1)+CDS(2)+A(S+N)*CDS(4))/
$ (CDS(1)+CDS(2)+CD3(4))
ENDIF

* Take care of bottom, left corner
ELSEIF (S .EQ. N**2 - N + 1) THEN
IF (CDS(1)+CDS(2)+CDS(3) .GT. .5) THEN
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* Take

* Take

* Take

* Take

A(S) = (A(S+1)*CDS(2)+A(S-N)*CDS(3))/
(CDS(1)+CDS(2)+CDS(3))
ENDIF

care of bottom, right corner
ELSEIF (S .EQ. N**2) THEN
IF (CDS(1)+CDS(2)+CDS(3) .GT. .5) THEN
A(S) = (A(S-1)*CDS(1)+CDS(2)+A(S-N)*CDS(3))/
(CDS(1)+CDS(2)+CDS(3))
ENDIF

care of left edge, excluding corners
ELSEIF ((MOD(S-1,N) .EQ. 0) .AND.
(8 .NE. 1) .AND. (S8 .NE. N**2 - N + 1)) THEN
IF (CDS(1)+CDS(2)+CDS(3)+CDS(4) .GT. .5) THEN
A(S) = (A(S+1)*CDS(2)+A(S-N)*CDS(3)+A(S+N)*CDS(4))/
(CDS(1)+CDS(2)+CDS(3)+CDS(4))
ENDIF

care of right edge, excluding corners
ELSEIF ((MOD(S,N) .EQ. 0) .AND.
(S .NE. N) .AND. (5 .NE. N**2)) THEN
IF (CDS(1)+CDS(2)+CDS(3)+CDS(4) .GT. .5) THEN
A(S) = (A(S-1)*CDS(1)+CDS(2)+A(S-N)*CDS(3)+A(S+N)*
CDS(4)}/(CDS(1)+CDS(2)+CDS(3)+CDS(4))
ENDIF

care of top edge, excluding corners
ELSEIF ((S .GT. 1) .AND. (S .LT. N)) THEN
IF (CDS(1)+CDS(2)+CDS{4) .GT. .5) THEN
A(S) = (A(S-1)*CDS(1)+A(S+1)*CDS(2)+A(S+N)*CDS(4))/
(CDS(1)+CDS(2)+CDS(4))
ENDIF

care of bottom edge. excluding cormers
ELSEIF ((S .GT. N*x2-N+1) .AND. (S .LT. N#x2)) THEN
IF (CDS(1)+CDS(2)+CDS(3) .GT. .5) THEN
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A(S) = (A(S-1)*CDS(1)+A(S+1)*CDS(2)+A(S-N)*CDS(3))/
$ (CDS(1)+CDS(2)+CDS(3))
ENDIF
ELSE
IF (CDS(1)+CDS(2)+CDS(3)+CDS(4) .GT. .5) THEN
A(S) = (A(S-1)*CDS(1)+A(S+1)*CDS(2)+A(S-N)*CDS(3)+
$ A(S+N)*CDS(4) )/ (CDS(1)+CDS(2)+CDS(3)+CDS(4))
ENDIF

ENDIF
170 CONTINUE

ANORM = 0
UNORM = ©
DO 500 I = 1,N#x2
IF (ABS(A(I)-ALAST(I)) .GT. UNORM) THEN
UNORM = ABS(A(I)-ALAST(I))
ENDIF :
* Fill UNORM with the maximum component value of ABS(A(I)-ALAST(I))

IF (ABS(ALAST(I)) .GT. ANORM) THEN
ANORM = ABS(ALAST(I))
ENDIF
* Fill ANORM with the maximum component value of ABS(ALAST(I))

500 CONTINUE

IF (UNORM .GT. TEST*ANORM) GOTO 150
* Test if another iteration is necessary

*
* Now calculate the current across the network CT

CT =0
Initialize the value of the CT to zero.

*



DO 180 K =1, N
CT = CT + HORCDS(1 + (N+1)*(K-1))#A(1 + N*(K-1))
180 CONTINUE

CDTS(J) = CT
ECD = ECD + CT
130 CONTINVE

ECD = ECD/M
DO 190 I = 1,M
STDEVS(PP) = STDEVS(PP) + (CDTS(I)-ECD)*%*2
190 CONTINUE

]

STDEVS (PP)
STDEVS (PP)

STDEVS(PP)/ (M-1)
SQRT(STDEVS(PP))

EXPS(PP) = ECD
120 CONTINUE

CALL OUTPUT(N,P,EXPS,M,MU,GAMMA,STDEVS)
e e e e e e sk o2k e ok
END
* PROGRAM FORWARDGS.F completed
SUBROUTINE FILLCDS(CDS,HORCDS,VERCDS,IXINTS,LIXHOR,RIXHOR, TIXVER,
$ BIXVER,NBHORS,IXEGS,N,NUMEGS, Q, MAXDIM)
INTEGER NBHORS(1:4), IXEGS(1:4), MAXDIM,
$ N, Q, NUMEGS, IPTQ
REAL HORCDS(NUMEGS), VERCDS(NUMEGS),CDS(1:4)

INTEGER IXINTS(NUMEGS), LIXHOR(NUMEGS), RIXHOR(NUMEGS)
INTEGER TIXVER(NUMEGS), BIXVER(NUMEGS) ,NBHORS(1:4)
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IPTQ = IXINTS (Q)
IPTQ contains the node index of the {Jth interior node.
The IXINTS (Q)th node has neighboring nodes with indices
IPTQ - 1 to the left, IPTQ + 1 to the right,
IPTQ - (N+2) above, and IPTR + (N+2) below.
Now the subroutine builds the array NBHORS, containing the indice
numbers of the nodes surrounding the Qth interior node.

The first two positions in the array are occupied by the
indices of the nodes forming horizontal edges, and the second
two positions are occupied by the indices of the nodes forming
vertical edges.

NBHORS (1) = IPTQ - 1
NBHORS (2) = IPTQ + 1
IF (IPTQ .LE. 2%N + 1) THEN
NBHORS (3) = IPTQ - N - 1
ELSE
NBHORS (3) = IPTQ - N - 2
ENDIF

IF (IPTQ .GE. N**2 + 2%N - 1) THEN
NBHORS (4) = IPTQ + N + 1

ELSE
NBHORS (4) = IPTQ + N + 2

ENDIF

Now the subroutine will fill the CDS array with the conductances.

* CDS(1) contains the conductance of the left edge, CDS(2) the

right, CDS(3) the above, and CDS(4) the below.

* This loop locates the indices of the edges which are straddled
* by two nodes with known indices.

DO 200 J = 1, NUMEGS
IF (LIXHOR(J) .EQ. NBHORS(1}) THEN
IF (RIXHOR(J) .EQ. IPTQ) THEN
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IXEGS(1) = J
IXEGS(2) = J + 1
ENDIF
ENDIF

IF (TIXVER(J) .EQ. NBHORS(3)) THEN
IF (BIXVER(J) .EQ. IPTQ) THEN

IXEGS(3) = J
IXEGS(4) = J + 1
ENDIF
ENDIF

200 CONTINUE

* X X ¥ ¥ X ¥ * H ¥

CDS(1) = HORCDS(IXEGS(1))
CDS(2) = HORCDS{IXEGS(2))
CDS(3) = VERCDS(IXEGS(3))
CDS(4) = VERCDS(IXEGS(4))
END

SUBROUTINES FOR INDEXING

HORMAP This subroutine fills the inputed array Bl with the node indices
which are to the left of each edge, i.e. the ith element of Bl contains
the index of the left node which is straddled by the ith horizontal
edge. Similarly the array C1 is filled with the node indices which are
to the right of each edge, i.e. the ith element of C1 contains the index
of the right node which is straddled by the ith horizontal edge.

SUBROUTINE HORMAP (B1, Ci, N)
INTEGER COUNTB, COUNTC, N
INTEGER B1(2#N*(N+1)) C1(2#N*(N+1))

COUNTB =-1
COUNTC = -2
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DO 210 I i, N
COUNTB = COUNTB + 1
COUNTC = COUNTC + 2
DO 220 J = 1, N+1

B1(N*(I-1) + COUNTB + J) = I*N + J + COUNTC
C1(N*(I-1) + COUNTB + J)} = I*N + J + COUNTC + 1

220 CONTINUE
210 CONTINUE

END
VERMAP This function is similar to HORMAP, it fills Bl and C1 with the

indices of nodes which straddle vertical edges to the left and right
respectively.

* % ¥ *

SUBROUTINE VERMAP (Bi, Ci, N)
INTEGER N, Bi(2*N*(N+1)),C1{(2*N*(N+1))

DD 230 I

=1, N
DD 240 J =

1, N+1

IF (J .EQ. 1) THEN

BI((N+1)*(I-1) + J) = I
ELSE IF (J . EQ. N+1) THEN

BI((N+1)*(I-1) + J) = 2*N 4 N#*2 - 1 + I
ELSE IF (J .EQ. 2) THEN

BI((N+1)*(I-1) + J) =TI + N + 1

ELSE ,
B1((N+1)*(I-1) + J) = B1((N+1)*(I-1)
$ +J-1) +N+2
END IF

IF ((B1((N+1)#(I-1)+]) .GT. N**2 + 2%N -1) .OR.
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$ (B1((N+1)*(I-1)+J) .LE. N)) THEN
CL((N+1)*(I-1) + J) = B1((N+1)*(I-1)+1)

$ + N+1
ELSE
CL((N+1)*(I-1) + J) = N+2 + B1((N+1)*
$ (I-1) + 1)
ENDIF
240 CONTINUE
230 CONTINUE
.END

* INDINTNODES takes an array of integers and an integer N as paramaters
* The subroutine inputs the index of the ith interior node in the ith position
* of the array.

SUBROUTINE INDINTNODES (ARRAY, N)
INTEGER N, ARRAY(N**2)
DO 250 I =1, N

DO 260 J =1, N

ARRAY (N*(I-1) + J) = I«N + 241 + J - 1

260 CONTINUE
250 CONTINUE

END
*
* INVINDINTNODES This subroutine fills the ith position of the
* inputed ARRAY with the index of the node corresponding to the
* ith interior node. It is the inverse routine to INDINTNODES.

SUBROUTINE INVINDINTNODES(ARRAY, N)
INTEGER N, ARRAY(N*+2 + 4xN)
DO 270 I = 1,N
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Do 280 J = 1,N
ARRAY(I*N + 24T + J = 1) = N*(I-1)+J

280 CONTINUE
270 CONTINVE
END

*

INDBNDNODES takes four arrays of integers and an integer N as paramaters.

* The four arrays correspond to the North, East, South, and West boundary node
* The subroutine inputs the index of the ith boundary node in the ith position
* of the appropriate array.

SUBROUTINE INDBNDNODES (AN,AE,AS,AW,N,MAXDIM)

INTEGER N, MAXDIM
INTEGER AN(MAXDIM) ,AE(MAXDIM),AS(MAXDIM) ,AW(MAXDIM)

DO 290 I =1, N
AN (N +1-1I)=1
AE (N + 1 - I) = N + I*N + 2+I
AS (I) = N#%2 + 3*%N + I
AW (I) = I*N + 2*I - 1
290 CONTINUE
END

SUBROUTINE OUTPUT(N,P,EXPS,M,MU,GAMMA,STDEVS)
INTEGER N, M

REAL EXPS(101),P(101),STDEVS(101),MU,GAMMA

PRINT =*

PRINT *, 'The expectations of the conductances’
PRINT #*, ’ will be written to the file

PRINT *, ’2Dexps.dat.’

PRINT *, ’in the following format:’

PRINT *, * the first row has the value of N’
PRINT *, * the second row has the value of M’
PRINT #*,’ +the third reow has the value of Ml
PRINT #*,’ +the fourth row has the value of GAMMA’
PRINT *,’ the next 101 rows contain the probabilities’
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2

300

310

320

859

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

*,?
*”
*”
*,°
*’J
*”
*

0.00-1.00’
the next 101 rows contain the corresponding’
average values of the computed conductances’
the final 101 rows contain the standard deviations’
for the calculated conductances’
There is one standard deviation for each probability’

OPEN (1,FILE=’2Dexps.dat’,ERR=999)
WRITE(1,*) N
WRITE(1,*) M
WRITE(1,’'(D16.8)’) MU
WRITE(1,’(D16.8)’) GAMMA
DO 300 I=1, 10t

WRITE (1,’(D16.8)’) P(I)

CONTINUE

DO 310 I = 1, 101

WRITE (1,

CONTIN

UE

'(D16.8)’) EXPS(I)

DO 320 I = 1, 101

WRITE (1,

CONTIN
RETURN

UE

*(D16.8) ') STDEVS(I)

STOP ’Error in writing to 2Dexps.dat’

END



inverse _ function(x,y,smean,m,sigma,d) {

# x is the vector of probabilities

# y is the vector of sample mean conductances

# smean is the sample mean calculated by making m measurements of
# effective conductances and averaging them

# m is the sample size

# sigma is the sample standard deviation

# d is the dimension of the network

=

Assuming that the data is normally distributed,
this function returns a 95% confidence interval about the proportion p
# of materials, one having conductance 1 and the other having conductance 0.

k.~

# Assign lowerlimit and upperlimit the lower and upper bounds of the 95
confidence interval about the true mean conductance.

**

lowerlimit _ smean - (1.96*sigma)/sqrt(m)
upperlimit _ smean + (1.96*sigma)/sqrt{(m) »

if (d == 2) k _ 1001
else k _ 331

hors _ rep(0,k)

vers _ rep(0,k)

1 _ length(y)

# Fill the vector hors with the probabilities .000,.001,.002,...,.998,
# .999,1.000 if d=2, and .01,.013,.016,.019,.022,...,.997,1.000 if d=3

if (d == 2) hors _ ¢(0:1000)/1000
else hors _ seq(.01:1,by=.003)

# Fill the vector vers with interpolated sample mean conductances: 1i.e.

# between any two values of y insert 9 values equidistant from each other
# Hence vers contains the values of y with added values
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for (i in-iz(l-i)) {

for (j in 1:10) { .

vers[j+(i-1)*10] _ y[i+1] - (j/10)*(y[i+1] - y[il])
}

}

vers{(1-1)*10+1] _ yl[1]

# Now find the index upperindex which indicates the element of vers closest
# to upperlimit and find the index lowerindex which indicates the element
# of vers closest to lowerlimit

upperdists _ rep(0,k)
lowerdists _ rep(0,k)
upperminimum _ 10

lowerminimum _ 10

upperindex _ 0

lowerindex _ 0
for (i in 1:k) {

upperdists[i] _ abs(upperlimit-vers[i])
lowerdistsfi] _ abs(lowerlimit-vers{i])

if (upperdists[i] < upperminimum) {
upperminimum _ upperdists[i]
upperindex _ i}

if (lowerdists[i] < lowerminimum) {
lowerminimum _ lowerdists[i]

lowerindex _ i}

¥

# Now hors[lowerindex] is the lower confidence limit for the true probability
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# and hors[upperindex] is the upper confidence limit for the true probability

return(hors[lowerindex] ,hors[upperindex])

}



