Finding Internal Transitional Probabilities
from Measurements of Exiting Probabilities

Kurt F. Krenz
14 August 1992

1 Preliminaries

Assume in our network we have a total of u nodes, m of which are boundary
nodes and n of which are interior nodes where u = m + n. Then we have a
u X u transition matrix P where p; ; is the probability of a particle moving
directly from node ¢ to node j. We will reorder P so that the rows and
columns corresponding to boundary nodes come first, with the rows and
columns corresponding to interior nodes coming last. Then P will have

canonical form:
I 0
r= ( R @)

where, I is the m x m identity matrix, 0 is the m x n matrix consisting of all
0’s, R is the n x m matrix representing the probabilities of moving from the
interior nodes to boundary nodes, and () is the n x n matrix representing
the probabilities of moving from one interior node to another.

From P, we can obtain the n x n matrix N = (I —Q)~! (In this formula T
is n x n). The probabilistic interpretation of N is n; ; is the expected number
of times that a particle will be at node j before it is absorbed by a boundary
node when it is started (input) at node i.

The final important matrix for our purposes is the n x m matrix B. The
matrix B has the probabilistic interpretation that b, ; is the probability that
a particle input at interior node ¢ will exit the network at boundary node j.



2 Forward Problem

The forward problem consists of calculating each entry of the matrix B when
we are given the matrix P. Since we have P, we implicitly have the matrix
(I — Q) and can calculate N = (I — Q)~!. Then B can be found by using
the formula:

B=NR=(I-Q) 'R

I have written a FORTRAN program that will solve the forward problem for
any legal network.

3 Inverse Problem

The inverse problem consists of using B to find the entries of P. The problem
is to show that given B, there is a unique solution for P. This is done by
showing that certain systems of equations (one system for each interior node
of the network) are solvable in terms of the unknown probabilities p; ;.

4 Casel

The first network that I considered when trying to come up with a solution
to the inverse problem was the following:

This network has three interior nodes (numbered 1, 2, and 3) and three
boundary nodes (numbered 1, 2, and 3). Thus, P will be 6 x 6, R will be
3x3, (I —Q) will be 3 x 3 (as will N), and B will be 3 x 3. I labelled the
interior probabilities for this network in the following way:



This labelling will give the following matrices:

1 —b1 —C1
(I—Q)I |:CL2 1 CQ:|

—asg —bg 1

and

B =1 b1 by ba3

b3,1 b3,2 b3,3

bii bio 51,3]

B=NR,s0 R= (I —Q)B since N' = (I — Q).

Using the formula R = (I—Q) B, we can write out the following equations:

rn = bl,l - b152,1 - 0153,1
0 = b1,2 - blb2,2 - 6153,2

= b1,3 - blb2,3 - 0153,3

0 = —agbi1 +ba1 —cabs;
Ty = —agbio + bao — cabso
0 = —agbi3+0bog—cabss

—azby — bgba 1 + b3
—agbi 2 — b3baa + b3
—azby 3 — b3baz + b33

rs

We can write these equations in the matrix form Ap = b as follows:



[ 1 b2,1 b3,1 171 r ] [ b1,1 i
0 bao b3y by bi2
0 bag bz c1 b1 3

1 51,2 b3,2 T2 52,2
0 bl,l b3,1 Ay | = b2,1
0 b1,3 b3,3 Ca bz,3
1 b1z bas T3 b33
0 big bay as b3
L 0 bi2 bop | [ b3 | L b32 |

Here, and throughout the paper, we use the convention that the blank
spaces in A represent all 0’s. We can consider Ap = b as being three systems,
each with 3 equations in 3 unknowns. They correspond to interior nodes 1,
2, and 3 respectively.

Recall that in the inverse problem, the matrix B is known and we want
to solve for the p’s (r’s, a’s, b’s, and ¢’s in this case). To show that a unique
solution to the inverse problem exists, we must show that each of the three
sub-matrices has non-zero determinant. If so, then each sub-matrix will have
rank 3 and we can solve Ap = b uniquely for the unknown p’s by separately
solving each of the three systems of 3 equations in 3 unknowns.

The three sub-determinants are:

1 b2,1 b3,1 B bg ) b3 ) T
det | O b272 b372 = det b ’ b ’ ,
I 0 b2’3 b373 ] L V2,3 3,3 ]
[ 1 b1,2 b3,2 | M bl 1 bg 1 ]
det | 0 bl,l b371 = det b ’ b ’ ,
0 big byy | D13 b33 |
and
L bug bag bi1 b2a
det | O bl,l b271 = det [ b ’ b ’ ]
0 by bas 12 D22

We need to show that each of these determinants is non-zero. Note that
because of the symmetry of the network, it will suffice to show that any one
of the three is non-zero. We will prove that the first determinant is non-zero.
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Lemma

1 by1 b3a
det 0 b272 6372 7é 0
0 bez b33

Proof
We know det B > 0. so B is invertible. Then by Cramer’s Rule

det 62,2 b273 det b2,2 b3,2
(B_l) . b3,2 b3,3 . b2,3 bS,3
L1 det B - det B

SO

det b2’2 b3’2 = (B_l)l 1det B
baz b33 '

det B > 0, so we need to show (B7');; > 0. Since B = NR, then
Bl =R IN'=R I —-Q). Ris diagonal, so R~! simply consists of the
recipricals of the corresponding entries of R along its diagonal. Fach of these
entries of R~! will be > 1 because the diagonal entries of R must be > 0,
but < 1.

Then (B71);; = (first row of R™!) - (first column of (I — Q))

1
:(I 0 0)~ —ay | =2
where z = (1) > 1.
1
Incidently, we know that the first column of (I — @) is | —ay | because

the matrix B is 3 x 3, but to take the first column of R~! as ( z 0 0 )
with x > 1, we need to know the shape of the network; in particular that
node 1 is adjacent to exactly one boundary node.

Then (B7')1,; > 0 implies (B~');; - det B > 0 which in turn implies that

, ) 1 byy bs3;
det [ b2’2 b&2 ] =det | 0 boo bgo | >0.
23 033 0 bos bss



Thus each of the three sub-matrices of A has positive determinant and
therefore rank 3, so each of the unknown probabilities can be found uniquely
by solving separately each of the three systems of 3 equations in 3 unknowns.

Now, to complete the proof we need to show det B > 0. B = NR, and
det R > 0 because R is diagonal with positive entries, so if det N > 0 then
det B > 0 will follow. Now N = (I — Q)~! so if det (I — Q) > 0, then det
N > 0 and hence det B > 0.

1 —bl —C1
I-Q)=| —a 1 -c
—das —bg 1
Let

1 —blt —Clt
F(t) = det —&Qt 1 —Cgt

—CLgt —bgt 1

for0 <t <1.

When t=0, F'(t)=1. By assumption, the a’s, b’s, and ¢’s are positive and
< 1. We can go from one (I — Q) to any other by varying ¢. F'(t) > 0 when
= 0, therefore F'(t) is always > 0.
Thus det (I — Q) >0, det N > 0, and

detB = detN - detR > 0

This completes the proof.

5 General Complete Graph Case

We will now prove the uniqueness of the inverse solution in the general case
of a complete graph network where we have n interior nodes, all mutually
adjacent, and each adjacent to exactly one boundary node and vice versa.



B=NR,and R = (I — Q)B, so in this case

will give:

the p’s (r's, a’s, b’s, - - -

1
T2

Tn

1 —bl L (3]
—a9 1 - - - —Ng
—ay, _bn ... 1

bii big
b2,1 b2,2
bn 1 bn,Z

This will produce n? equations. Writing them in the matrix form Ap = b

1 b271
0 bop

)

0 b2,n

1 bl,n T bnfl,n
O b171 o bn—l,l
0 bl,nfl bnfl,nfl i

1

by

ni

L (= 1)y |

L bnn—1 |

We can think of Ap = b as being n systems, each with n equations in n
unknowns. As before, to show that there is a unique solution, we need to
show that each of the n sub-matrices of A has non-zero determinant. If so,
then each sub-matrix will have rank n and we can solve Ap = b uniquely for

the n systems of n equations in n unknowns.
The n sub-determinants are:

, and n’s in this case) by separately solving each of



1 b2,1 . bn,l 1 [ 1 bl,n ot bn—l,n 1
0 b2,2 o bn,2 0 bl,l ot bn—l,l
det oodet | '
L 0 bQ,n oo bn,n i L 0 bl,n—l oot bn—l,n—l ]

We need to show that each of these n determinants is non-zero. It will
again suffice to show that any one of these determinants is non-zero because
of the symmetry of the network. We will show that the first determinant is

non-zero.

Lemma
I by - -+ bpa
0 bya - -+ - bnpo
det | - - #0
0 bQ,n ot bn,n
Proof

This proof will be very similar to the proof of the first case. det B > 0
(because B = NR and R has positive determinant because its only non-zero
entries are positive entries on the diagonal, and N has positive determinant
because N = (I — Q)~! and (I — Q) has positive determinant. Thus, det B
is the product of two positive determinants), and thus B is invertible.

Then

[ bao bag - - - oy, | [ Doo bsa - - - buo
b3,2 b3,3 ot bS,n b2,3 b3,3 ot bn,3
det det '
_ bn2 bnS I bnn b2n bSn I bnn
B 1 — L ) El ’ - — L ) b b .
( i det B det B

SO



det

bao b3o
bag b33

b2,n b3,n

= (B_l)Ll det B

We know det B > 0, so we need to show (B71);; > 0. Now since B =
NR, then B~! = R7Y(I - Q). R is diagonal, so R™! consists of the recipricals
- each of which is > 1 - of the corresponding entries of R along its diagonal.
We know the general form of (I — @), (namely that it has dimension n x n),
from the dimension of B.

Then (B71);; = (first row of R™!) - (first column of (I — Q))

where z = (1) > 1.
Then (B~1);; > 0 implies (B~'); 1 - det B > 0 which implies

det

b2
b3

b2,n

b3,2
b3,3

bS,n

bn,n

1

1 by
0 b272
0 bog

[0 by

_an

b3 1
b3 2
b33

b3,n

bn,n

>0

Thus each of the n sub-matrices of matrix A has positive determinant
and therefore rank n, and each of the unknown probabilities can be found
uniquely by solving separately each of the n systems of n equations in n
unknowns. This completes the proof.



6 A Different Type of Network

Now we will examine the following case:

®
1
dy N
Qq
as a2
. ! €4 ds bs €2 T2 _
c
Cy > (&)
ds by
T3
Figure 4
[ ]

Note that here we have an interior node which isn’t adjacent to a bound-
ary node. In this case, P will be 9x 9, (I — Q) will be 5 x5, N will be 5 x 5,
R will be 5 x 4, and B will be 5 x 4.

B=NR,so R= (I —Q)B. Writing out R = (I — Q)B gives:
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1 1 —by 0 —di —ep bii bio b1,3 b1,4

Ty —ay 1 —co 0 —e bai bao baz bag

s = 0 —=by 1 —dy —eg bs1 bsa b33 bsa

T4 —ay 0 —cg 1 —ey bi1 bio baz bagy

0 0 O 0 —das —b5 —Cs —d5 1 b5 1 b5 2 b573 b5’4

Multiplying this out will give us 20 equations. The equations can be written
in the matrix form Ap = b as follows:

Ay Py By
Ay Py By

Az Py | = | Bs

Ay Py B,

As Ps Bs

Where each A; is a 4 x 4 matrix of entries from the matrix B, each P; is a 4-
component column vector of unknown probabilities corresponding to interior
node 7, and each B; is a 4-component column vector of entries from the
matrix B.

As in the previous cases, if we can prove that each of the five sub-matrices
of A has non-zero determinant, then each sub-matrix will have rank 4 and
we can solve Ap = b uniquely for the unknown p’s (1’s, a’s, b’s, ¢’s, d’s, and
e’s in this case) by separately solving each of the five systems of 4 equations
in 4 unknowns.

The five systems of equations are: A;P; = By, or

1 b2,1 b4,1 b5,1 1 bl,l
0 52,2 b4,2 55,2 by _ b1,2
0 bag bag bss d; by 3
0 baa baa bsa el b1 4
AQPQ = BQ, or
1 b1,2 b3,2 55,2 T2 52,2
0 b1,1 53,1 b5,1 az | _ 5271
0 51,3 53,3 bs,3 Co 52,3
0 big 53,4 55,4 €2 bz,4



A3P3 = Bg, or

A4P4 = B4, or

and AsPs = Bs, or

Notice that by proving that any one of Ay, As, Az, or Ay (which corre-
spond to the interior nodes numbered 1-4, respectively) has positive deter-
minant, we will have proved that all four have positive determinants because
of the symmetry of the network. Thus we are left to prove that the fifth
determinant, along with one of the first four determinants are positive.

Proof

Counsider the fifth determinant:

b1 b2a
bio Dboo
det i ’
N b bos
bia baa
g (7"1
since B = NR.

b3
b32
b3,3
b3

.7"‘2

1 bas bas bs3 ]|
0 ba1 bag1 b5
0 bap byz bs2
0 bag bya bsa |
1 bia bza bsa]
0 big b31 bsp

0 bio b3z bse
0 b1z b3z bs3 |
bigi bay b3i ban
bia bao b3o bao
big baz b3z b3
biga bos b3a bygy

3
b3
d3

€3

Ty
Gy
C4
€4

54,1 niim
by o N1 272
’ = det k
54,3 1,373
54,4 TNy,4T4
nNii N2
Ni2 N22
- 13- 1y)det ’ ’
nisz N23
Ni4a N24

12

bs,1

bs,2

bs.3
bs.4

N21T
UPRAD)
N23T3
N2 4aT4

n3a
ngo
URE:!
N34

n3ir
UZID
N3 3”3
N3 474

UZ%]
UZ%)
M43
Mg 4

UZNAA!
Nyg2T9
TNy 373
UZWA P



We know (rq 79 -73-74) is positive. We also know N is always invertible.
Thus

Nii1 N21 N31 N4

Ni2 N22 N32 N4p2

Nni3z MN23 N33 N43

Nia N24 N34 N4y
det N

det

(N s5=(I-Q)ss=1=

and

Nii1 N2i1 N31 N4

det | b2 1122 T2 TM2 et N = det N

Nisz MN23 N33 N43

Nia N24 N34 N4y
which is positive since N = (I — Q)™!, and det(I — Q) > 0.

So the fifth sub-determinant of A is the product of two positive numbers

and hence positive. Thus, the fifth sub-matrix of A has rank 4.

Now we need to show that one of the first four sub-determinants is posi-
tive. We will prove that the third sub-determinant (det As) is positive. We
want to show

1 b2,3 b4,3 b5,3 b b b
0 b2 1 b4 1 b5 1 2,1 4,1 5,1
det ’ ’ ’ =det | byo bia bso 7& 0.
0 baa bis bso b ’ b ’ b ’
0 boy bus bsa 24 044 054

I created the new matrices

51,1 b1,2 51,3 b1,4 1 ™ U1
~ 52,1 b2,2 52,3 52,4 0 ~ T2 V2
B= b3,1 b372 b3,3 b374 0 and R = T3 (%]
b4,1 b4,2 b4,3 b4,4 0 Ty U4
bsq bs2 bsz bsy O Vs
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which are just the matrices B and R with the extra columns added. The v;’s
in R are unknown. ) ) 3
Now we want to make R such that B = NR. We do this by setting

1 U1 U1 1
0 (%) (%) 0
O|=N|wvs|or|wvs|=I-Q)|0
0 (W) V4 0
0 Us Vs 0

and solving for the v;’s.
This gives v; = 1, vo = —ag, v3 = —ag, V4 = —ay, and vs = —as.
Now we have B = NR. We know N is invertible, and R is upper trian-
gular so
detR: (Tl'TQ'Tg'T4'—CL5) 7é0

so R is invertible. We calculate R~! to be:

Thus det B # 0 (because det N -det R # 0) and B is also invertible. Then

bii big bia 1
dot ba1 boa bas O ba1 b2 baa
byr bso bya O det | ba1 bao baa
(B )5 — bs,1 b5,2~ bsa 0O _ bs 1 b5~,2 bs.4
det B det B
bai bag bsg

det | bao bao bso
baa bas b5y
det B

14



SO

b2,1 b2,2 b2,4 5 5
det b471 b4,2 b474 = (Bil)g,g'detB

bsa D52 bsa

We know det B0, so we need to show (B~ Y33 # 0.
(B7')33 = (third row of R™!) - (third column of (I — Q))

I asc
-1 — — 3¢5 —
=(0 0 ry- 0 =2 ). 1 =r;t+ =yt >1
raas 3 3
r3as

since ag = 0. So (B~')s3 - det B > 0 which implies:

by bs3 bs3
ba1 bag bs;
bao sz b5
boa baa bsa

b2,1 b4,1 b5,1
det b272 b4’2 b5’2 = det
b2,4 b4,4 b5,4

>0

o O O

Thus the third sub-matrix (and also sub-matrices 1, 2, and 4 by symme-
try) of A has positive determinant and therefore rank 4. This, along with
the fact that the fifth sub-matrix of A also has rank 4 ensures that each of
the unknown probabilities can be found uniquely by solving separately each
of the five systems of 4 equations in 4 unknowns. This completes the proof.

7 An Idea Concerning the Recoverability of
P from B for any Gerneral Network

Given any network N, create a new network N = N U {”sink node” z with
an incoming edge from each boundary node in N}

Let each edge in N have a flow capacity of 1 (each edge is capable of
handling a maximum of 1 unit of flow), where edges that can be traversed in
either direction have a flow capacity of 1 in either direction. A flow can be
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thought of as a particle moving from some source node to some sink node.
For each interior node a of N, we will maximize the a — z flow in N , Where
a is the source node and z is the sink node, such that the flow in each edge
does not exceed that edge’s capacity (1). Because of the requirement that
each edge has unit capacity, the paths that each ”particle” takes in an a — z
flow will be edge-disjoint.

We can find the value of the maximum a— zflow for each interior node a by
using the Augmenting Flow Algorithm as seen in Tucker, AppliedCombinatorics.

By the Max Flow-Min Cut Theorem, the value of a maximal a — z flow
is equal to the capacity of a minimal ¢ — z cut (minimal number of edges
whose removal disconnects a and z).

Conjecture - Given a network N with interior nodes a;, if a; has k; transi-
tional probabilities (is adjacent to k; other nodes), then those k; probabilities
of leaving node a; can be recovered from B if and only if

maximum a; — z flow in N = k;

Corollary - The entire matrix P for a network N is recoverable from B
if and only if
maximum a; — z flow in N = k;

for all interior nodes q;.
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