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This is an interim rapcrt for tha resaarch I completed at the Univarsity
of Washington. Further research will be completed at Texas A&M University,
and a complete, formatted report will follow.

The original purpcse of my research was to determine the location of

a resistor in a circular natwork whose conductivity has been altered from
its original value. I first attempted to locate the altered resistor

by using Robert Coury’s mathod in "Finding an Altered Resiator in a Cubic
Network". According te Coury, an altered resistor in a cubic network can
be lccated by determining the angles between the cclumns of the original
lambda matrix and the altered lambda matrix. By determining the maximum
angle for each pair of opposing sides, the location of the altered resistor
was approximately at the point of intersection of the three rays.

However, this proceas does not completely work for circular networks.
First, determining the maximum angle will determine the ray on which the
resistor is located {if the altered reaistor is located on a ring, there
will be two equal maximum angles), but it is not easily determined between
which rings the resistor is lccated. Moreover, there are some unigue
examples where the altered reaistor is net located on the ray with the
maximum angle. However, thase facts below were determined:

1) By determining the sum of the absclute value cf tha differencasa between
each ceolumn of the lambxa matrices, the altered resistor is located on
the ray with the maximum sum,

2) By altering an extaerior reslstor, the angle corresponding to the ray
of the resistor ecuals zerc. Thus, the corresponding column in the new
lambda matrix is a multiple of the original column.

3) For any (m,3) circular network, altering any radial resistor will result
that the corresponding ray will have an angle equal to zero, {i.e. the
corresponding column in the new lambda matrix is a multiple of the
column of the original lambda matrix.)

4) For any (m,2n+l) ecircular network (with an odd number of rays), altering
a circular resistor results that the angle for the ray directly oppozing
the altered reaistor is zero.

By examining the data of computed angles for various networks, thera seemed
to be some local patterns for locating radial resistors in (Z,n) and (3,n)
networks, but these patterna did not hold once n became large.

At this time, I belisved that the location of an altered resistor was not
recoverable in a circular network, s0 I began to research tetrahedronal
networks. By examining a cne-tetrahedronal netwerk, if each cenductance
of every resistor waa arbitrary and one internal resistor was altered,

the location of the altered resistor could be determined because it would
be located between the rays of the maximum angles and the second maximum
angle. However, general tetrahedronal networks with arbitrary conductances
do not hold this pattern. In fact, if each tetrahedron has constant
conductivity, but different tetrahedrons had different conductivities,

I could not locate the position of a uniformly altered tetrahedron.

The position of a uniformly altered tetrahedron can only be found if

the original network had a constant background conductivity. The locaticn
of this altered tetrahedron was located by determining the maximum sum

(of differences between the two lambda matricea) for each pair of

opposing sides and intersecting the two rays. This same pattern heolds for
determining the maximum angles if the tetrahedron is not connected to

a boundary node.

Further reasearch on multiple-tetrahedronal natworks with constant
background conductivity resulted that altering two different raesistors



could result in the same lambda matrix, For every four tetrahedrons
connected in a square, altering a diagonal internal resistor conductivity
produces the same lambda matrix as altering the diagonal internal resistor
of the opposing {diagonal) tetrahedzron.

Aftar determining the method for locating a uniformly altered tetrahedron
is a network with consatant background conductivity, I attempted to apply
these metheods te circular networks. Since a tetrahedron with four nodes
and a cross with five nodes are equivalent networks, I separated each
circular network into diatinct crosses, With the excepticn of networks
with three rays, I was able to determine the location of every altered
cross for networks with one, two, or three rings, for each altered cross
produced a unique set of maximum and minimum angles and sums. For
four-ringed resistor networks, the uniqueness dissolved, and I intend in
the future to detarmine the cause for this disappearance.

>From examining the patterns resulting by altering a single cross, I was
able to return to the data of altering a single resistor and find similar
patterns in determining the location of the altered resistor. Bacause

I have not yet discovered all of thase relationships, I leave them cut

of this report. However, I have some new ideas of determining the
location of an alteresd resistor, and hopefully I will get some beneficial
results.

My research plans for the future are as follows:

1} Continue my ressarch of a new method on locating an altered resistor
in a circular network.

2) Apply Hudelson's methods of finding multiple altered resistors in
gircular networka.

3) Medify Hudelson’s methods te determine the locaticns of alterad
resistors by using angles inatead of sums.

For the next two weeks, I can be reached at the following e-mail address:
jowltenet.edu.

I shall contact ycu whan I achleve more results.
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