
DETERMINING THE SHAPE OF CRITICAL CIRCULAR

PLANAR RESISTOR NETWORKS FROM BOUNDARY

MEASUREMENTS

DEREK A. JERINA

Abstract. The general topic of this paper is the recovery of the shape
of a resistor network from boundary measurements. The particular fo-
cus is determining shape in the case where the graph is critical circular
planar. An algorithm is presented which returns both the shape and
the conductivities for a member of the graph’s Y −∆ equivalence class.
Additionally, applying the shape recovery algorithm to a non-critical
graph will return the shape and conductivities for an electrically equiv-
alent critical version of the graph.

1. Introduction

This article makes use of many concepts developed in [1]. Let a graph with
boundary be a triple Γ = (V, ∂V,E), where (V,E) is a finite graph with the
set of nodes V and the set of edges E. Let ∂V be a nonempty subset of V
called the set of boundary nodes. Let I = V − ∂V , representing the interior
nodes of a graph with boundary Γ.
A resistor network (Γ, γ) is a graph with boundary analogous to an elec-

tric circuit. Similarly, each edge has a number γ(pq) associated with it,
representing the conductivity of the edge(resistor) connecting nodes p and
q. For a resistor network (Γ, γ), the Kirchhoff matrix K = K(Γ, γ) will be
defined as in [1].
The forward problem for a resistor network: Given a graph Γ and a

potential function for the voltage on ∂V , determine the current flow on ∂V .
Given an ordering of ∂V and a potential function φ on ∂V , then there is
a matrix Λ which satisfies the equation Λφ = ψ where ψ is the current
on ∂V induced on the network by φ. In [1] it was shown that if (Γ, γ) is a
connected resistor network, then the network response matrix Λ is the Schur
complement

(1.1) Λ = K/K(I; I)

The network response matrix Λ can be obtained from boundary measure-
ments on a resistor network. The network can be enclosed in a “black box”
with access limited to the boundary nodes. To determine the entries in the
jth column of Λ, set the voltage at boundary node j to one and the voltage at

1

2 D. JERINA

all other boundary nodes to zero. The resulting current vector corresponds
to the jth column of Λ.
The standard inverse problem is: Given a graph with boundary Γ and a

response matrix Λ for a resistor network, determine γ(pq) for each edge in
the network. The inverse problem considered here is more difficult: Given
the response matrix Λ determine both Γ and γ(pq). This involves finding V ,
E, and γ(pq) from Λ which contains solely information from ∂V . We will
begin by attempting to recover the “shape” (Γ) and conductivities (γ(pq))
for critical circular planar resistor networks.

2. Circular Planar and Critical Graphs

A graph Γ is defined as circular planar if and only if ∂V can be placed
on a circle C in the plane so that the rest of Γ is in the interior of C. The
∂V of a circular planar graph will be labeled v1, . . . , vn in the (clockwise)
circular order around C. A pair of sequences of boundary nodes (P ;Q) =
(p1, . . . , pk; q1, . . . , qk) such that the entire sequence (p1, . . . , pk; qk, . . . , q1)
is in circular order will be called a circular pair. A circular pair (P ;Q) =
(p1, . . . , pk; q1, . . . , qk) of ∂V is said to be connected through Γ if ∃ k dis-
joint paths α1, . . . , αk in Γ, so that αi starts at pi, ends at qi, and passes
through no other boundary nodes. We will call α a connection from P to
Q. Let Λ(A;B) correspond to the sub-matrix of Λ composed of the en-
tries in Λ where rows A and columns B intersect. From [1], we know that
detΛ(P ;Q) = 0, where (P ;Q) is a circular pair of ∂V , if and only if P ;Q) are
not connected through Γ. For each circular planar graph Γ, let π(Γ) be the
set of all circular pairs (P ;Q) of ∂V which are connected through Γ. An edge
can be removed from a graph by either deleting an edge or by contracting
an edge to a single node. Removing an edge is said to break the connection
from P to Q if (P ;Q) is in π(Γ) before the edge is removed, but (P ;Q) is
not in π(Γ) after the edge is removed. A graph Γ is called critical if the
removal of any edge breaks some connection in π(Γ). From [1] we know that
γ for a circular planar graph is recoverable from Λ and Γ if and only if Γ is
critical. For this reason we begin by limiting our attempts to recover both
Γ and γ from Λ for critical circular planar resistor networks.

3. Y −∆ Transformations

Suppose Γ is a circular planar graph and s is a trivalent interior node in
Γ with incident edges sp, sq and sr, as in Figure 3A.

DETERMINING SHAPE FROM THE LAMBDA MATRIX 3

Figure 3B

r

s

p

q

p

r q

Figure 3A

A Y −∆ transformation removes the vertex s, the edges sp, sq and sr, and
replaces them with three new edges pq, qr and rp as in Figure 3B. Similarly,
suppose pqr is a triangle in Γ as in Figure 3B, then a ∆− Y transformation
removes edges pq, qr and rp, replacing them with a new vertex s and three
new edges sp, sq and sr, as in Figure 3A. Suppose Γ1 and Γ2 are two circular
planar graphs. We say that Γ1 and Γ2 are Y −∆ equivalent if Γ1 can be
transformed to Γ2 by a sequence of Y −∆ or ∆ − Y transformations. We
define the Y −∆ equivalence class of a graph Γ to be the set of all graphs
Y −∆ equivalent to Γ. Suppose Γ1 and Γ2 are two circular planar graphs
which are Y −∆ equivalent. From [1] we know the following:
(1) π(Γ1) = π(Γ2)
(2) Γ1 is critical if and only if Γ2 is critical.
(3) If γ1 is a conductivity on Γ1 then there is a γ2 on Γ2 such that

Λ(Γ1, γ1) = Λ(Γ2, γ2).
Hence, the response matrix can not differentiate between various members

of a Y −∆ equivalence class. From Λ one can only hope to recover the Y −∆
equivalence class of Γ. For this reason, our inverse problem must be limited
to: Given the response matrix Λ for a critical circular planar resistor network
(Γ, γ) find a graph Γ

′
which is Y −∆ equivalent to Γ and a γ

′
on Γ

′
such

that Λ(Γ
′
, γ

′
) = Λ(Γ, γ).

4. Medial Graphs

Suppose Γ is a circular planar graph. We define the medial graph M(Γ)
and a geodesic as in [1]. Since Γ is circular planar, the boundary nodes
v1, v2, . . . , vn occur in clockwise circular order around a circle C and the
rest of Γ is in the interior of C. For each edge e of Γ, let me be its midpoint.
Now, place 2n points t1, t2, . . . , t2n on C so that

t1 < v1 < t2 < t3 < v2 < . . . < t2n−1 < vn < t2n < t1

in clockwise circular order around C. The vertices of M(Γ) consist of the
points me for e ∈ E and the points ti for i = 1, 2, . . . , 2n.
The edges in M(Γ) are defined as follows. Two vertices me and mf are

joined by an edge inM(Γ) whenever e and f have a common vertex and are

4 D. JERINA

incident to the same face in Γ. In addition, there is one edge for each point
tj as follows. The point t2i is joined by an edge to me where e is the edge
in Γ of the form e = vir which comes first after arc vit2i in clockwise order
around vi. The point t2i−1 is joined by an edge to mf where f is the edge in
Γ of the form f = vis which comes first after arc vit2i−1 in counter-clockwise
order around vi.
The vertices me of M(Γ) are 4-valent, and the vertices of the form ti are

1-valent. An edge uv of M(Γ) has a direct extension vw if the edges uv
and vw separate the two other edges incident to the vertex v in M(Γ). A
path u0u1 . . . uk inM(Γ) is called a geodesic arc if each edge ui−1ui has edge
uiui+1 as a direct extension. A geodesic arc u0u1 . . . uk is called a geodesic if
either u0 and uk are points on the circle C or uk = u0 and uk−1uk has u0u1

as a direct extension. M(Γ) is said to have a lens if two geodesics in M(Γ)
intersect each other more than once. M(Γ) is said to be lensless if each
geodesic in M(Γ) begins and ends on C, has no self-intersection, and M(Γ)
has no lenses. From [1] we know that a circular planar graph is critical if
and only if its medial graph is lensless.
A triangle inM(Γ) is a triple {f, g, h} of geodesics which intersect to form

a triangle with no other intersections within the configuration, as in Figure
4A.

Figure 4B

g h

f

g h

f

Figure 4A

Suppose {f, g, h} form a triangle in M(Γ) as in Figure 4A. A motion
of {f, g, h} consists of replacing this configuration with that of Figure 4B.
Suppose Γ1 and Γ2 are two circular planr graphs. From [1] we know that Γ1

and Γ2 are Y −∆ equivalent if and only if their medial graphs are equivalent
under motions.

5. Z-Sequence

Suppose Γ is a critical circular planar graph embeded in a circle C. Then
M(Γ) is lensless. In addition, M(Γ) will have n geodesics each of which
intersects C twice. The n geodesics intersect C in 2n distinct points. These

DETERMINING SHAPE FROM THE LAMBDA MATRIX 5

2n points are labeled t1, . . . , t2n, so that

t1 < v1 < t2 < t3 < v2 < . . . < t2n−1 < vn < t2n < t1

in clockwise circular order around C. The geodesics are labelled as follows.
Let g1 be the geodesic which begins at t1. The remaining geodesics are
labelled g2, g3, . . . , gn so that if i < j, then the first point of intersection
of gi with C occurs before the first point of intersection of gj with C in
clockwise circular order starting from t1. For each i = 1, 2, . . . , 2n, let zi
be the number associated with the geodesic which intersects C at ti. In
this way we obtain a sequence z = z1, z2, . . . , z2n, which we define as the
z-sequence for M(Γ). From [1] we know that two critical circular planar
graphs are Y −∆ equivalent if and only if their z-sequences are the same.
If i < j, and if the occurrences of i and j appear in z in the order

. . . i . . . j . . . i . . . j . . .

we say that i and j interlace in z. Otherwise, we say that i and j do not
interlace in z.

6. Finding B-B Edges and B-Spikes

Suppose we have a graph with boundary Γ = (V, ∂V,E). We call an edge
connecting two nodes i, j ∈ ∂V a boundary to boundary edge between nodes
i and j. Suppose there is some node i ∈ ∂V with only one edge connected
to it. We then say that there is a boundary spike at node i. Suppose there
is a boundary spike at node i with the edge e ∈ E. If e connects node i to
another node j ∈ ∂V we say that there is a boundary to boundary spike at
node i.

Lemma 6.1. Suppose (Γ, γ) is a critical circular planar resistor network
with a response matrix Λ. There is a boundary to boundary spike at node
i ∈ ∂V if and only if column i in Λ has only one strictly negative entry.
In addition, if we let j equal the row in which column i in Λ has it’s only
strictly negative entry, then node i is a boundary to boundary spike connected
to boundary node j.

Proof. The proof is left to the reader. ¤

Suppose we have a critical circular planar resistor network (Γ, γ) with n
boundary nodes and a response matrix Λ. We make use of recent results
proven by David Ingerman to find boundary to boundary edges and bound-
ary spikes by examining the ranks of sub-matrices of Λ. First, we examine
the sub-matrix M1,1 consisting of column one in Λ after dropping row one.
Next, we drop row two and examine this sub-matrix M1,2. Then we add
column two except for rows one and two and examine this sub-matrix M2,2.
We continue in this manner so that each sub-matrix Mj,k consists of either
(1) Columns 1 . . . i in Λ except for rows 1 . . . i labelled Mi,i

(2) Columns 1 . . . i in Λ except for rows 1 . . . i+1 labelledMi,i+1 as shown
in Figure 6A.

6 D. JERINA

M

Figure 6A

1,1 M1,2

1
1

2

1
1

M

2

1

2,2

1

21

M i,i

i

i

1

1

1

i+1

i

M i,i+1

In this way we generate a sequence of sub-matrices

M1,1,M1,2,M2,2, . . . ,Mi,i,Mi,i+1, . . .

DETERMINING SHAPE FROM THE LAMBDA MATRIX 7

which we call the M -sequence for Λ.

Lemma 6.2. Suppose Mi,j is an element of some M -sequence. If Mi,j has
maximum rank then all Mk,l prior to Mi,j must also have maximum rank.

Proof. The proof is left to the reader. ¤

We make use of the following lemma proven by David Ingerman.

Lemma 6.3. Suppose we have a critical circular planar resistor network
(Γ, γ) with n boundary nodes and a response matrix Λ. Let us further suppose
than Γ has no isolated nodes. Let Mi,j be the first sub-matrix in the M -
sequence associated with Λ which has rank less than i. If i < j then Γ is
Y − ∆ equivalent to a graph Γ

′
with a boundary to boundary edge between

nodes i and j. Otherwise, i = j and Γ is Y − ∆ equivalent to a graph Γ
′

with a boundary spike at node i.

It is important to note that all sub-matrices in the M -sequence which
occur before Mi,j , the first sub-matrix in the M -sequence which has rank
less than i, will all have atleast as many rows as columns. This fact is used
implicitly in the following section.

7. Breaking Boundary Edges and Spikes

In this section we show how break boundary to boundary edges and
boundary spikes found using lemma 6.3.
Suppose we have a critical circular planar resistor network (Γ, γ) with n

boundary nodes and a response matrix Λ. Let us further suppose that using
lemma 6.2 we have found that Γ is Y − ∆ equivalent to a graph with a
boundary to boundary edge e ∈ E between two nodes p and q = p + 1 in
∂V . In order to break this boundary to boundary edge we must find γ(pq),

the conductance of edge e. Let Λ
′

be the response matrix for the graph Γ
′

produced by removing e from Γ. Let ξ = γ(pq). From [1] we know that Λ
′

will equal the following:

Λ
′

p,p = Λp,p − ξ

Λ
′

q,q = Λq,q − ξ

Λ
′

p,q = Λp,q + ξ

Λ
′

q,p = Λp,q + ξ

Λ
′

i,j = Λi,j , otherwise

The only sub-matrix in the M -sequence of Λ which will differ from the M -
sequence for Λ

′

will beMp,p. Now,Mp,p must no longer have maximum rank
because otherwise, lemma 6.1 would indicate that there still is a boundary to
boundary edge between p and q, contradicting the assumption of criticality.
Thus, we can use linear algebra and gaussian elimination on Mp,p to find
the value of ξ which would cause Mp,p to have rank less than maximum.

8 D. JERINA

If node q = p + 1 was a boundary to boundary spike in Γ, then node q
will no longer have any edges incident to it in Γ

′
and will thus be an isolated

node in Γ
′
. If this is the case then we can remove node q from Γ

′
, eliminating

row q and column q from Λ
′

, without affecting the ranks of any members of
the M -sequence from M1,1 to Mp,p.
If node p was a boundary to boundary spike in Γ, then node p will no

longer have any edges incident to it in Γ
′

and will thus be an isolated node
in Γ

′
. If this is the case then we can remove node q from Γ

′
, eliminating row

q and column q from Λ
′
, without affecting the ranks of any members of the

M -sequence from M1,1 to Mp−1,p−1.
Suppose we have a critical circular planar resistor network (Γ, γ) with n

boundary nodes and a response matrix Λ. Let us further suppose that using
lemma 6.3 we have found that Γ is Y − ∆ equivalent to a graph with a
boundary spike at node i ∈ ∂V . Node i is either a boundary to boundary
spike or a boundary spike to some interior node. We will consider these two
cases separately.
Let us consider the case in which node i is a boundary spike to some

interior node j. In order to break this boundary spike we must find γ(ij),

the conductance of edge e ∈ E between nodes i and j. Let Λ
′

be the response
matrix for the graph Γ

′
produced by contracting edge e between nodes i and

j in Γ. Let ξ = γ(ij). We know from [1] that to contract edge e we can
utilize the process of adjoining a boundary spike with conductance −ξ to
node i.
We will make use of a basic concept from Linear Algebra. Let W be a

m× n matrix. Suppose

(7.1) W =









x b

a M









where x is a single entry in W .

(7.2) W/x =M −
ba

x

(7.3) rank(W) = 1 + rank(W/x)

The first step in the process of adjoining a boundary spike with conduc-
tance −ξ to node i is to add a new boundary node j in circular order directly
after node i with only one edge, which has conductance −ξ and connects
node j to node i. This will produce a new response matrix Λ1 as follows:

(7.4) Λ1 =









P b̃ 0 Q
a m− ξ ξ ã
0 ξ −ξ 0
M b 0 R









DETERMINING SHAPE FROM THE LAMBDA MATRIX 9

where

P =







Λ1,1 · · · Λ1,i−1

...
. . .

...
Λi−1,1 · · · Λi−1,i−1







Q =







Λ1,i+1 · · · Λ1,n

...
. . .

...
Λi−1,i+1 · · · Λi−1,i+1







M =







Λi+1,1 · · · Λi+1,i−1

...
. . .

...
Λn,1 · · · Λn,i−1







R =







Λi+1,i+1 · · · Λi+1,n

...
. . .

...
Λn,i+1 · · · Λn,n







m = Λi,i





b̃
m
b



 =







Λ1,i

...
Λn,i







[

a m ã
]

=
[

Λi,1 · · · Λi,n

]

The next step in the process of adjoining a boundary spike with conduc-
tance −ξ to node i is to take the Schur complement of Λ1 with respect to
the entry δ = m− ξ. This will produce a new response matrix Λ2 as follows:

(7.5) Λ2 =







P − b̃a
δ

− ξb̃
δ

Q− b̃ã
δ

− ξa
δ

−ξ − ξ2

δ
− ξã

δ

M − ba
δ

− ξb
δ

R− bã
δ







Let Λ
′
be the response matrix for the graph Γ

′
produced by contracting

the boundary spike at node i. We have just shown that Λ
′
= Λ2. Let Ma,b

be our notation for a sub-matrix in the M -sequence for Γ. Let M
′

a,b be our

notation for a sub-matrix in the M -sequence for Γ
′
. By applying equations

7.1 - 7.3 we know the following:

(7.6) M
′

i−1,i−1 =

[

− ξa
δ

M − ba
δ

]

=





a δ
0 ξ
M b



 /δ

(7.7) rank
(

M
′

i−1,i−1

)

= rank









a δ
0 ξ
M b







− 1

10 D. JERINA

We assumed that we used lemma 6.3 to find that Γ is Y −∆ equivalent to
a graph with a boundary spike at node i ∈ ∂V . Therefore,

Mi−1,i−1 =

[

a
M

]

must have maximum rank. Therefore,




a δ
0 ξ
M b





must also have maximum rank. Thus, M
′

i−1,i−1 must also have maximum

rank. By lemma 6.1 we know thatM
′

1,1 . . .M
′

i−1,i−1 all have maximum rank.
We know that

Mi,i =
[

M b
]

has rank less than maximum. Therefore,
[

a δ ξ
M b 0

]

must have rank less than maximum. Now, using the same methodology used
to find the rank of M

′

i−1,i−1, it follows that M
′

i,i must have rank less than

maximum. If M
′

i−1,i had maximum rank, then by lemma 6.3 Γ
′
would be

Y −∆ equivalent to a graph with a boundary spike at node i. Γ
′
can not

be Y − ∆ equivalent to a graph with a boundary spike at node i or the
assumption that Γ was critical would be violated. Hence,

(7.8) rank
(

M
′

i−1,i

)

< maximum

We now have two useful results:
(1) M

′

i−1,i is the first sub-matrix in the M -sequence for Γ
′
with rank less

than maximum.
(2) The value of the conductance ξ > 0 will be such that

rank

([

a m− ξ
M b

])

< maximum

We now consider the case when Γ has a boundary to boundary spike
at node i. Let node j ∈ ∂V be one node which is connected to node i.
Now, node j is either a boundary to boundary spike to node i or node j is
connected to other nodes in Γ. We will consider these two cases separately.
Let us consider the case in which node j is a boundary to boundary spike

to node i. Nodes i and j are disconnected from the rest of Γ since both i and
j are boundary to boundary spikes to each other. Hence, columns i and j in
Λ will be linearly independent from all other columns in Λ. Both rows i and j
and columns i and j in Λ will have zero entries except for Λi,i,Λi,j ,Λj,i,Λj,j .
Now, ifMi−1,i has maximum rank thenMi,i must also have maximum rank.
Similarly, if Mj−1,j has maximum rank then Mj,j must also have maximum
rank. Thus, we would not have found a boundary spike at node i using

DETERMINING SHAPE FROM THE LAMBDA MATRIX 11

lemma 6.3. Some sub-matrix other thanMi,i in theM -sequence would have
been the first sub-matrix with rank less than maximum.
Let us consider the case in which node j is not a boundary to boundary

spike to node i. In order to break this boundary spike we must find γ(ij), the

conductance of edge e ∈ E between nodes i and j. Let Λ
′

be the response
matrix for the graph Γ

′
produced by contracting edge e between nodes i and

j in Γ. Let ξ = γ(ij). It follows from the fact that there is only one edge
incident to node i that ξ = Λi,i. Thus, m− ξ = 0. We can not contract edge
e by utilizing the process of adjoining a boundary spike with conductance
−ξ to node i because the Schur complement used in the process would not
be defined. However, we can contract edge e, collapsing node i onto node
j, by the using the process we call collapsing a boundary to boundary spike
at node i to node j. This process is performed in three steps as follows:
(1) Remove edge e as a boundary to boundary edge between nodes i and

j as described previously, producing a new response matrix Λ1.
(2) Renumber the boundary nodes such that node j and node i are in-

terchanged. This is done by switching row i with row j and column i with
column j in Λ1, producing a new response matrix Λ2.
(3) Remove node j (previously node i before step 2) which has become

isolated by removing row j and column j from Λ2, producing a new response
matrix Λ3.
Now, Λ

′
= Λ3. Let Ma,b be our notation for a sub-matrix in the M -

sequence for Γ. LetM 1
a,b be our notation for a sub-matrix in theM -sequence

for Γ1. Let M
2
a,b be our notation for a sub-matrix in the M -sequence for Γ2.

Let M3
a,b be our notation for a sub-matrix in the M -sequence for Γ3. Let

M
′

a,b be our notation for a sub-matrix in the M -sequence for Γ
′
.

Suppose that node j comes after node i. Λ1 from Step (1) in collapsing
a boundary to boundary spike at node i onto node j will be identical to
Λ in columns 1 . . . i − 1. Thus, M 1

a,b = Ma,b for a ≤ i − 1 and b ≤ i.

Hence, M1
1,1 . . .M

1
i−1,i all have maximum rank. Λ2 Step (2) will equal Λ1

with rows i and j interchanged as well as columns i and j interchanged.
After switching columns i and j M 2

1,1 . . .M
2
i−1,i will still equalM

1
1,1 . . .M

1
i−1,i.

Switching rows i and j can not affect the rank of M 2
1,1 . . .M

2
i−1,i−1 because

M2
1,1 . . .M

2
i−1,i−1 will be row equivalent toM

1
1,1 . . .M

1
i−1,i−1. Thus, M

2
i−1,i−1

will have maximum rank becauseM 1
i−1,i−1 has maximum rank. Now,M

2
i−1,i

and M1
i−1,i will be row equivalent except that M

2
i−1,i will have a row of zero

entries from row i in Λ while M 1
i−1,i will have a row of entries from row j

in Λ. Using the fact that M 1
i,i has rank less than maximum and applying

equations 7.1 - 7.3, it can be shown thatM 3
i−1,i has rank less than maximum.

Thus, M
′

i−1,i is the first sub-matrix in the M -sequence for Γ
′

with rank less
than maximum as was the case when node i was a boundary spike to an
interior node.

12 D. JERINA

Suppose that node j comes before node i. As shown in figure 7A, nodes
j + 1, . . . , i− 1 can only be connected to each other and node j.

Figure 7A

j

j+1

i-1 i

?

Let P = j, . . . , i− 1 and (P ;Q) be a circular pair. We know that Λ(P ;Q) =
0. It follows that Mi−1,i−1 would have to have rank less than maximum.
Therefore, there can not be any nodes between j and i or we would not have
found node i as a boundary spike using lemma 6.3. Thus, j = i− 1. In this
case, we use the process of collapsing a boundary to boundary spike at node
i onto node i − 1. However, we can not conclude which sub-matrix will be
the first with rank less than maximumn in the new M -sequence for Γ

′
after

node i has been collapsed onto node i− 1.

8. Finding Geodesics

Suppose we have a critical circular planar resistor network (Γ, γ) with n
boundary nodes and a response matrix Λ. Let Mi,j be the first sub-matrix
in the M -sequence associated with Λ which has rank less than i. Now, Mi,j

corresponds to either a boundary to boundary edge or a boundary spike.
From [1] we have the following two lemmas:

Lemma 8.1. Suppose Γ is a critical circular planar graph and pq is a bound-
ary to boundary edge. Let Γ

′

be the graph obatined after the deletion of pq.
Then Γ

′

is also a critical circular planar graph.

Lemma 8.2. Suppose Γ is a critical circular planar graph with a boundary
spike rp where r is a boundary node of Γ. Let Γ

′
be the graph obatined after

contracting rp to p. Then Γ
′

is also a critical circular planar graph.

DETERMINING SHAPE FROM THE LAMBDA MATRIX 13

Thus, we can remove the boundary to boundary edge or a boundary spike
corresponding toMi,j and the resulting graph Γ

′
will still be critical circular

planar, but will have fewer edges and connections than Γ. In addition, if we
return the boundary to boundary edge or a boundary spike to Γ

′
, it would

be Y −∆ equivalent to Γ.

Lemma 8.3. Suppose we have a critical circular planar resistor network
(Γ, γ) with n boundary nodes and a response matrix Λ. Let Mi,j be the first
sub-matrix in the M -sequence associated with Λ which has rank less than
i. If i < j, then after removing the boundary to boundary edge between
nodes i and j = i + 1 in Γ producing a new graph Γ

′

, Mi,i will be the first

sub-matrix in the M -sequence associated with Γ
′

which has rank less than
maximal. This will guarantee that either Γ

′
is Y −∆ equivalent to a graph

Γ
′′
with boundary spike at node i, or node i will have become isolated in Γ

′
.

Proof. We have shown that breaking a boundary to boundary edge will cause
node i+1 to become isolated in Γ

′

if node i+1 was a boundary to boundary
spike Γ. However, the ranks of M1,1 to Mi,i will be unaffected by removing
this isolated node. Similarly, node i could become isolated, but removing
this isolated node would only leave the ranks ofM1,1 toMi−1,i−1 unaffected.
If node i does not become isolated we have shown thatMi,i will no longer

have maximum rank but the ranks of M1,1 . . .Mi−1,i will be unchanged and

thus still maximal. Therefore, from lemma 6.1 we know that Γ
′
is Y − ∆

equivalent to a graph Γ
′′

with boundary spike at node i. However, if node
i does become isolated removing it would affect the ranks of Mi−1,i and
subsequent sub-matrices in the M -sequence. Thus, we can not conclude
that Γ

′

is Y − ∆ equivalent to a graph Γ
′′

with boundary spike at node
i. ¤

Lemma 8.4. Suppose we have a critical circular planar resistor network
(Γ, γ) with n boundary nodes and a response matrix Λ. Let Mi,j be the first
sub-matrix in the M -sequence associated with Λ which has rank less than i.
If i = j and node i is not a boundary to boundary spike to node i− 1, then
after removing the boundary spike at node i in Γ producing a new graph Γ

′
,

Mi−1,i will be the first sub-matrix in theM -sequence associated with Γ
′
which

has rank less than maximal. Thus, there will be a boundary to boundary edge
between nodes i− 1 and i in Γ

′
or node i was a boundary to boundary spike

to node i− 1 in Γ.

Proof. We have shown that if i is a boundary spike to an interior node then
Mi−1,i will be the first element of the M -sequence for Γ

′
with rank less than

maximum. Thus there must be a boundary to boundary edge between nodes
i− 1 and i in Γ

′
. We have shown that if i is a boundary to boundary spike

to some node j ∈ ∂V and j comes after i in clockwise circualr order, then
Mi−1,i will be the first element of the M -sequence for Γ

′
with rank less than

maximum. Thus there must be a boundary to boundary edge between nodes
i − 1 and i in Γ

′

. We have further shown that the only other possiblity is

14 D. JERINA

that node i is a boundary to boundary spike to node i − 1, in which case
we can not conlude which element of the M -sequence for Γ

′
will be the first

with rank less than maximum. ¤

Thus, given solely the Λ matrix for a critical circular planar resistor net-
work (Γ, γ), we can show that Γ is Y − ∆ equivalent to a graph Γ

′

which
has a sequence of boundary spikes and boundary to boundary edges similar
to one of the four forms shown in Figure 8A.

DETERMINING SHAPE FROM THE LAMBDA MATRIX 15

Figure 8A

t start

t end

t start
t end

t start

t end

t start
t end

interior node

boundary node graph

geodesic

Lemma 8.5. Suppose Γ is a critical circular planar graph which is Y −∆
equivalent to a graph Γ

′

which has a sequence of nodes and edges in one

16 D. JERINA

of the four forms shown in Figure 8A. This uniquely determines the two
endpoints of a geodesic G in M(Γ). In addition G interlaces with any other
geodesics in M(Γ) which have an endpoint which lies between tstart and tend
as shown in Figure 8A.

Proof. The proof is left to the reader. ¤

9. Recovery Algorithm

Given a critical circular planar resistor graph (Γ, γ) we can now find a
graph Γ1 which is Y − ∆ equivalent to Γ and has a sequence of boundary
spikes and boundary to boundary edges as shown in figure 8A. In addition,
we located a geodesic in M(Γ). Now we collapse boundary spikes and break
boundary to boundary edges in Γ1 as indicated by the sequence we found,
producing a new graph Γ2. We know the exact relationship between the
z-sequence of Γ2 and the z-sequence for Γ1 because we know how a medial
graph is affected by collapsing a boundary spike or breaking a boundary
to boundary edge. Thus, we can continue this process, finding a graph Γ3

which is Y −∆ equivalent to Γ2 and again has a sequence of boundary spikes
and boundary to boundary edges as shown in figure 8A. Now have found a
geodesic in Γ2. We can now collapse boundary spikes and break boundary
to boundary edges, removing the sequence and producing a new graph Γ4.
Every time we find a geodesic and then remove it, we are guaranteed to have
atleast one less boundary node in the new graph. Thus, we can continue
this process until there is no longer anything left of the original graph Γ.
By tracing the steps we took, we have found the z-sequence of Γ as well as
a new graph Γ

′

with conductances γ
′

such that the resistor network (Γ
′

, γ
′

)
is not only Y −∆ equivalent to the original resistor network (Γ, γ) but also
has the same response matrix Λ.

10. Non-Critical Graphs

Suppose we have a circular planar resistor (Γ, γ) which is not critical.
By removing all the superfluous edges in (Γ, γ) we would produce a critical

circular planar resistor (Γ
′
, γ

′
). The response matrix Λ

′
for this network

will be identically equal to the response matrix Λ for the original network if
(Γ

′

, γ
′

) is produced in the following manner:
(1) Multiple edges in series e1, . . . , en in Γ with conductances γ1, . . . , γn

are replaced by one edge in Γ
′
with conductance

1
1
γ1
+ . . .+ 1

γn

(2) Multiple edges in parallel e1, . . . , en in Γ with conductances γ1, . . . , γn
are replaced by one edge in Γ

′
with conductance γ1 + . . .+ γn in Γ

′
.

Thus, by applying our algorithm to a non-critical circular planar resistor
network (Γ, γ) we will find the z-sequence for (Γ

′

, γ
′

) as described above, as

well as a new graph Γ
′′

with conductances γ
′′

such that the resistor network

DETERMINING SHAPE FROM THE LAMBDA MATRIX 17

(Γ
′′

, γ
′′

) is not only Y −∆ equivalent to the resistor network (Γ
′

, γ
′

) but also

has the same response matrix Λ as both (Γ, γ) and (Γ
′
, γ

′
).

We know that all members of a Y − ∆ equivalence class have the same
number of edges. Hence, our algorithm can be used to test the criticality of
a graph. A graph will be critical if and only if it has the same number of
edges as the graph which our algorithm produces.

11. Continuing Research

In our efforts to determine the shape of a graph from Λ we found an inter-
esting result which we were unable to prove, but shall state as a conjecture.

Conjecture 11.1. Suppose we have a critical circular planar resistor net-
work (Γ, γ) with n boundary nodes and a response matrix Λ. Let tstart and
tend be two endpoints of geodesics (or possibly the two endpoints of one geo-
desic) in M(Γ). Now tstart and tend divide the boundary nodes of Γ into two
halves. Let B be the set containing the boundary nodes contained in the half
with the least number of boundary nodes. Let B

′
be the set containing the

boundary nodes contained in the other half. Let i ∈ B be the boundary node
with no other boundary nodes between it and tstart on C, the circle which
Γ is embedded in. Let j ∈ B be the boundary node with no other boundary
nodes between it and tend on C. Let k, l ∈ B

′
be the boundary nodes closest

to i and j on C, respectively. If there is a geodesic with an endpoint between
tstart and i then remove k from B

′
. If there is a geodesic with an endpoint

between tend and j then remove l from B
′

. Let M be a sub-matrix of Λ
containing the intersection of the columns for the boundary nodes in B with
the rows for the boundary nodes in B

′

. Let T be the set of endpoints t of
geodesics in M(Γ) such that all t ∈ T are on the half of C corresponding to
B between tstart and tend inclusively. Let N be the number of geodesics with
both ends contained in T . Now,

rank(M) = maximum−N

If the conjecture is true, then it would be possible to recover the z-
sequence for a critical circular planar resistor network solely from the ranks
of sub-matrices of Λ, without recovering any conductivities or performing
any operations on Λ.

12. Results and Examples

The algorithm we have described here to recover the shape of a graph
from its response matrix Λ was coded in the C++ language in the unix
environment. The program also implements a procedure for recovering the
z-sequence based on conjecture 11.1. The program code and a README file
explaining how to use the program appear in the Appendix. The program
will work for graphs with up to about 70 to 80 edges. Graphs with more
edges will result in roundoff error becoming large enough that the Λ matrix
becomes corrupted. Roundoff error occurs from operations on the Λ matrix

18 D. JERINA

as well as from determining conductivities. However, the procedure based on
conjecture 11.1 which recovers solely the z-sequence produces no roundoff
error and can be applied to an arbitrarily large graph. In addition, this
procedure, albeit unproven, has worked successfully on all sample data.
In the following example we ran the program on a five by five square

lattice with conductances of one on each edge. The program has a built
in procedure which will generate the Kirchoff matrices and Λ matrices for
square lattices as explain in the README file contained in the appendix.
We used this procedure for this example. A diagram of this graph is shown
in Figure 12A.

1 2 3 4

2

5

7

9

10

8

6

1213 111415

16

17

18

19

20

boundary node

graph

geodesic

Figure 12A

2 3 4 5 6 7

9

1615141813191211

10

8

6

18

4

16

1 8 9 10

11

12

7

13

5

14

3

15

1

1720

20

19

17

DETERMINING SHAPE FROM THE LAMBDA MATRIX 19

escher% recover

Written by Derek A. Jerina

Based on paper by Derek A. Jerina, REU Summer 1996

Problems do have solutions you know...

0 1 0 5 1

0 0 1 0 0 1

tol 1e-06

N5 to N20 Spike cond 1

N4 to N20 BB cond 1

N5 to N21 Spike cond 1

N20 to N21 BB cond 1

N4 to N22 Spike cond 1

N3 to N22 BB cond 1

N5 to N23 Spike cond 1

N21 to N23 BB cond 1

N4 to N24 Spike cond 1

N22 to N24 BB cond 1

N3 to N25 Spike cond 1

N2 to N25 BB cond 1

N5 to N26 Spike cond 1

N23 to N26 BB cond 1

N4 to N27 Spike cond 1

N24 to N27 BB cond 1

N3 to N28 Spike cond 1

N25 to N28 BB cond 1

N2 to N29 Spike cond 1

N1 to N29 BB cond 1

N5 to N30 Spike cond 1

N26 to N30 BB cond 1

N4 to N31 Spike cond 1

N27 to N31 BB cond 1

N3 to N32 Spike cond 1

N28 to N32 BB cond 1

N2 to N33 Spike cond 1

N29 to N33 BB cond 1

N1 to N34 Spike cond 1

N0 to N34 BB cond 1

N10 to N30 BB cond 1

N5 to N35 Spike cond 1

N30 to N35 BB cond 1

N5 to N36 Spike cond 1

N35 to N36 BB cond 1

20 D. JERINA

N35 to N31 BB cond 1

N5 to N37 Spike cond 1

N36 to N37 BB cond 1

N4 to N38 Spike cond 1

N31 to N38 BB cond 1

N5 to N39 Spike cond 1

N37 to N39 BB cond 1

N4 to N40 Spike cond 1

N38 to N40 BB cond 1

N38 to N32 BB cond 1

N39 to N15 BB cond 1

N4 to N41 Spike cond 1

N40 to N41 BB cond 1

N3 to N42 Spike cond 1

N32 to N42 BB cond 1

N41 to N16 BB cond 1

N3 to N43 Spike cond 1

N42 to N43 BB cond 1

N42 to N33 BB cond 1

N43 to N17 BB cond 1

N2 to N44 Spike cond 1

N33 to N44 BB cond 1

N44 to N18 BB cond 1

N44 to N34 BB cond 1

N34 to N19 BB cond 1

of edges in derived graph: 60

of edges in inputted kirchoff matrix: 60

Inputted kirchoff matrix was critical

Z-seq: 1 2 3 4 5 6 7 8 9 10 11 9 12 7 13 5 14 3 15 1 16 15 17

14 18 13 19 12 20 11 10 20 8 19 6 18 4 17 2 16

The greatest difference between any two entries of original

Lambda matrix and the derived Lambda matrix was 7.18331e-08%

Attempting to Obtain Z-seq without recovery.

Z-seq: 1 2 3 4 5 6 7 8 9 10 11 9 12 7 13 5 14 3 15 1 16 15 17

14 18 13 19 12 20 11 10 20 8 19 6 18 4 17 2 16

DETERMINING SHAPE FROM THE LAMBDA MATRIX 21

The exact shape of this graph was recovered because a square lattice is
the only member of it’s equivalence class. We did not output the Kirchoff
matrix because of it’s size. The program was able to determine that the
graph was critical because we had the original Kirchoff matrix as well as the
original Λ matrix.
The next example is of a cricular graph with two circles and three spikes,

with conductances of one on each edge. The program has a built in procedure
which will generate the Kirchoff matrices and Λ matrices for circular graphs
as explained in the README file contained in the appendix. We used this
procedure for this example. A diagram of this graph is shown in Figure 12B.

Figure 12C

11

3 2
3 2

1 2

3

12

3

1 2

3

12

3

interior node

boundary node

geodesic

graph

Figure 12B

escher% recover

Written by Derek A. Jerina

Based on paper by Derek A. Jerina, REU Summer 1996

Problems do have solutions you know...

0 0 1 3 2 1

1 1 1 1 1 1

22 D. JERINA

Original Kmat

3 -1 -1 -1 0 0 0

-1 3 -1 0 -1 0 0

-1 -1 3 0 0 -1 0

-1 0 0 4 -1 -1 -1

0 -1 0 -1 4 -1 -1

0 0 -1 -1 -1 4 -1

0 0 0 -1 -1 -1 3

Original Lmat

2.53333 -1.26667 -1.26667

-1.26667 2.53333 -1.26667

-1.26667 -1.26667 2.53333

tol 1e-06

N1 to N3 Spike cond 3.8

N0 to N3 BB cond 3.8

N3 to N2 BB cond 3.8

of edges in derived graph: 3

of edges in inputted kirchoff matrix: 12

Inputted kirkchoff matrix was non-critical

Z-seq: 1 2 3 1 2 3

The derived Kmat

3.8 0 0 -3.8

0 3.8 0 -3.8

0 0 3.8 -3.8

-3.8 -3.8 -3.8 11.4

The derived Lmat

2.53333 -1.26667 -1.26667

-1.26667 2.53333 -1.26667

-1.26667 -1.26667 2.53333

The greatest difference between any two entries of original

Lambda matrix and the derived Lambda matrix was 1.75298e-14%

Attempting to Obtain Z-seq without recovery.

DETERMINING SHAPE FROM THE LAMBDA MATRIX 23

Z-seq: 1 2 3 1 2 3

The program was able to determine that the graph was not critical because
we had the original Kirchoff matrix as well as the original Λ matrix. The
actual graph recovered is shown in Figure 12C. While the derived graph may
seem quite different from the original graph, the Λ matrix for the derived
resistor network is identical to the Λ matrix for the original resistor network.
The derived graph is essentially a lensless version of the original.
The next example is of a well-connected graph with nine boundary nodes

and conductances of one on each edge. The program was run with data
stored in an input file called “wellconn.dat”. This graph is shown in Figure
12D.

24 D. JERINA

Figure 12D

boundary nodes

interior nodes

DETERMINING SHAPE FROM THE LAMBDA MATRIX 25

Figure 12E

boundary nodes

interior nodes

escher% recover <wellconn.dat

Written by Derek A. Jerina

Based on paper by Derek A. Jerina, REU Summer 1996

Problems do have solutions you know...

tol 1e-06

N4 to N9 Spike cond 151

N3 to N9 BB cond 1.05594

N3 to N10 Spike cond 3.85315

N2 to N10 BB cond 1.88055

N2 to N11 Spike cond 1.88055

N1 to N11 BB cond 3.85315

N1 to N12 Spike cond 1.05594

N0 to N12 BB cond 151

N9 to N5 BB cond 1.05594

N3 to N13 Spike cond 0.760575

N10 to N13 BB cond 0.500472

N2 to N14 Spike cond 0.618944

N11 to N14 BB cond 1.10795

N1 to N15 Spike cond 0.0608849

26 D. JERINA

N12 to N15 BB cond 7.39161

N3 to N16 Spike cond 3.85315

N13 to N16 BB cond 0.500472

N2 to N17 Spike cond 3.76671

N14 to N17 BB cond 9.54477

N1 to N18 Spike cond 0.409369

N15 to N18 BB cond 8.70655

N16 to N6 BB cond 1.88055

N2 to N19 Spike cond 0.618944

N17 to N19 BB cond 9.54477

N1 to N20 Spike cond 0.47541

N18 to N20 BB cond 9.03279

N2 to N21 Spike cond 1.88055

N19 to N21 BB cond 1.10795

N1 to N22 Spike cond 0.409369

N20 to N22 BB cond 9.03279

N21 to N7 BB cond 3.85315

N1 to N23 Spike cond 0.0608849

N22 to N23 BB cond 8.70655

N1 to N24 Spike cond 1.05594

N23 to N24 BB cond 7.39161

N24 to N8 BB cond 151

of edges in derived graph: 36

of edges in inputted kirchoff matrix: 36

Inputted kirchoff matrix was critical

Z-seq: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

The greatest difference between any two entries of original

Lambda matrix and the derived Lambda matrix was 4.16751e-11%

Attempting to Obtain Z-seq without recovery.

Z-seq: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

The graph the program recovers turns out to be the standard graph as
described in [1]. The derived graph is shown in Figure 12E. The reason
for this is the way the recovery algorithm works. It finds a geodesic G and
then removes it. Essentially, the algorithm is taking the inputted graph and
performing motions such that all geodesics which interlace with G, intersect

DETERMINING SHAPE FROM THE LAMBDA MATRIX 27

G in the order which they occur in the z-sequence. These motions generate
the “zig-zag” sequence along the boundary of the graph as shown in Figure
8A.
In our final example we ran the program on a ten by ten square lattice with

conductances of one on each edge. We used the program’s built in procedure
to generate the network. This network is large enough that roundoff error
prevents our algorithm from working. However, the procedure based on
conjecture 11.1 successfully recovered the z-sequence.

escher% recover

Written by Derek A. Jerina

Based on paper by Derek A. Jerina, REU Summer 1996

Problems do have solutions you know...

0 1 0 10 1

0 0 0 0 0 1

Attempting to Obtain Z-seq without recovery.

Z-seq: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

19 22 17 23 15 24 13 25 11 26 9 27 7 28 5 29 3 30 1 31 30 32

29 33 28 34 27 35 26 36 25 37 24 38 23 39 22 40 21 20 40 18

39 16 38 14 37 12 36 10 35 8 34 6 33 4 32 2 31

The program and conjecture 11.1 were tested on several other resistor net-
works and both performed successfully every time.

13. Appendix

13.1. README.

This readme file explains how to use the recover program,

written by Derek A. Jerina.

The program may use user inputted data or generate a graph for the user.

If you use your own data (presumably in an data file) the format should

be as follows:

Line 1: "1 #ofB-nodes #ofInt-Nodes K-dat L-dat"

The "1" lets the program know that user inputted data will be inputted.

Next the number of boundary nodes and then the number of interior nodes.

Then use a "1" for K-dat if you will give the program the original

Kirchoff matrix and "0" if not.

Then use a "1" for L-dat if you will give the program the original

Lambda matrix and "0" if not.

Note: it wont matter what you give for #ofInt-Nodes if you are only giving

28 D. JERINA

the Lambda matrix.

After Line 1, you must give the Kirchoff matrix if you inputted "1" for

K-dat. Then you must enter the Lambda matrix if you inputted "1" for

L-dat. The order is important.

Final Line: PrintOriginalK-mat PrintOriginalL-mat Do-Recovery

PrintDerivedK-mat PrintDerivedL-mat GetZ-seq-w/o-Recovery

Enter "1" if you what it done and "0" otherwise.

Now, the program can only tell you if the inputed graph was critical if

you give the original K-mat. You can use "1" for Do-Recovery and the

program will recover the z-seq and the K-mat and L-mat for a Y-Delta

equivalent graph to the one you inputted. However, due to roundoff

error the program will crash when the inputted graphs have around 80+

edges. But you can use a "1" for GetZ-seq-w/o-Recovery and still get

just the z-sequence. However, the algorithm for getting the z-sequence

has not be proven to be correct; it has however, worked for all inputted

test files. The maximum number of boundary nodes is 150 due to

constraints of the programming environment. If inputting a K-mat or

recovering a graph with conductivities the total # of nodes must be

less than or equal to 150.

To use a data file with the input simply type: "recover <filename"

There are a few sample data files already available to use or use as a

template to make your own datafile. These files all have the

extension ".dat"

If you wish you can have the program generate a graph on its own. The

program can make two types of graphs: square lattice and circular graphs.

To use this feature type "recover". Then type as follows:

Line 1: 0 Square_Lat Circle

The "0" lets the program know that you wont be inputting a graph of your

own. Then use either "1 0" for a square lattice or "0 1" for a circular

graph. If you use "1 0" then continue Line 1 with: Size Conductance

Size will be the number of boundary nodes per side. Conductance will be

the conductance assigned to each edge in the graph. A size of "2" for

example would produce a graph in the shape of a tic-tac-toe board.

For example with a Line 1: "0 1 0 2 1" the program would produce a graph in

the shape of a tic-tac-toe board.

If you use "0 1" for a circular graph then continue

Line 1 with: Circles Spikes Conductance

Circles will correspond to the number of circles in the graph. You may

DETERMINING SHAPE FROM THE LAMBDA MATRIX 29

have none. Spikes will correspond to the number of radial spikes from the

center of the graph. The spikes connected the innermost node to the outer

most circle but don’t extend beyond that. Conductance again is the

conductance assigned to each edge. You can see examples of what these

graphs would typically look like in my paper’s results section. As an

example Line 1: "0 0 1 5 0 1" would produce a graph with one interior node

and 5 spikes to boundary nodes from that interior node.

Line 2 should be the same as the Last Line for user inputted graphs; it

simple lets the program know what you what done with the given data and

what output to print.

To direct output to a data file one can use "> filename". For example,

"recover <inputfile >outputfile" will have the program read in input from

the inputfile and write the output to outputfile.

13.2. Makefile.

#set up compiler and options

CC = g++

CFLAGS = -g

#set up C++ suffixes and relationship between .cc and .o files

.SUFFIXES: .cc

.cc.o:

$(CC) $(CFLAGS) -c $<

#

program specific options

#

recover: tools.o matrix.o graph.o shape.o

$(CC) $(CFLAGS) -o recover shape.o graph.o matrix.o tools.o

tools.o: tools.h

matrix.o: matrix.h

graph.o: graph.h

shape.o: graph.h

clean:

/bin/rm *.o

13.3. tools.h.

30 D. JERINA

/*

* Author: Derek A. Jerina

* Date: July 25, 1996

*

*/

#include <assert.h>

#include <iostream.h>

double abs(double val);

int half(int n);

int I(double r);

int size(int a[], int n);

void print_array(int a[], int n);

void arrange(int a[], int n);

void swap(int a[],int t1,int t2);

void reorder(int a[], int first, int size);

void rm_geo(int a[],int t,int n);

int t_left(int a[], int n);

int g_between(int a[], int t1, int t2);

void get_t(int& t_start, int& t_end, int bb_start, int start,

int end, int bb_end, int L_size);

13.4. tools.cc.

/*

* Author: Derek A. Jerina

* Date: July 25, 1996

*

* Contains various operations on matrices and various useful functions

*

*/

#include "tools.h"

double abs(double val)

{

if (val >= 0)

{return(val);}

else

{return(-val);};

};

int half(int n)

{

assert(n >= 0);

DETERMINING SHAPE FROM THE LAMBDA MATRIX 31

int i = 0;

while (i < (n*0.500))

{++i;};

return(i);

}

int I(double r)

{

int j = 0;

while (j < r) ++j;

return(j);

}

int size(int a[], int n)

{

int i,j;

j = 0;

for (i = 0; i < n; ++i)

if (a[i] > 0)

++j;

return(j);

}

void print_array(int a[], int n)

{

int i;

for (i = 0; i < n; ++i)

cout << a[i] << " ";

cout << endl;

}

void arrange(int a[], int n)

{

int i,j,k,used;

int result[n];

used = 0;

for (i = 0; i < n; ++i)

{

k = -1;

for (j = i+1; j < n; ++j)

if (a[i] == a[j])

k = j;

if (k > i)

{

++used;

32 D. JERINA

result[i] = used;

result[k] = used;

};

};

for (i = 0; i < n; ++i)

a[i] = result[i];

}

void swap(int a[],int t1,int t2)

{

int temp;

temp = a[t1];

a[t1] = a[t2];

a[t2] = a[temp];

}

void reorder(int a[], int first, int size)

{

int i, j, result[size];

for (i = 0; i < size; ++i)

{

j = i + first;

if (j >= size)

j = j - size;

result[i] = a[j];

};

for (i = 0; i < size; ++i)

a[i] = result[i];

}

void rm_geo(int a[],int t,int n)

{

int i,j,k;

for (i=t; i < (n); ++i)

a[i]=a[i+1];

}

int t_left(int a[], int n)

{

int i,sum;

sum = 0;

for (i=0; i < n; ++i)

if (a[i]<0)

++sum;

return(sum);

DETERMINING SHAPE FROM THE LAMBDA MATRIX 33

}

int g_between(int a[], int t1, int t2)

{

int i,j,sum;

sum = 0;

for (i=t1; i <= t2; ++i)

{

if (a[i]>0)

for (j = i+1; j < t2; ++j)

if (a[j] == a[i])

++sum;

};

return(sum);

}

void get_t(int& t_start, int& t_end, int bb_start, int start,

int end, int bb_end, int L_size)

{

t_start = start*2 - bb_start;

if (t_start<0)

t_start += L_size*2;

t_end = end*2 + 1 + bb_end;

if (t_end >= L_size*2)

t_end = t_end - L_size*2;

}

13.5. matrix.h.

/*

* Author: Derek A. Jerina

* Date: July 20, 1996

*

* Includes the header file for matrices and various operations on them.

*

*/

#include <iostream.h>

#include <iomanip.h>

#include <assert.h>

#include "tools.h"

#define max_nodes 150

class matrix{

private:

34 D. JERINA

int c_size, r_size;

double p[max_nodes][max_nodes];

public:

matrix(int c, int r);

init(int val);

clean(double tol);

wash(int n);

get_matrix();

void print_matrix(int precision);

r_swap(int r1, int r2);

c_swap(int c1, int c2);

r_mult(int row, double val);

c_mult(int col, double val);

add_mult_r(int receive, double val, int send);

add_mult_c(int receive, double val, int send);

put(int row, int col,double val);

matrix add(const matrix left, const matrix right);

matrix subtract(const matrix left, const matrix right);

matrix mult(const matrix left, const matrix right);

matrix inv_mat(matrix mat);

matrix kirk_to_lamda(matrix K, int b_n, int i_n);

int rows() {return (c_size);}

int cols() {return (r_size);}

double operator()(int i, int j) {return (p[i][j]); }

void operator=(const matrix m);

int rank(matrix m,double tol);

void get_medial(matrix L, int& bb_start, int& start, int& end,

int& bb_end, double tol);

form(matrix L, int bb_start, int start, int end, int bb_end);

double get_cond(matrix L, int bb_start, int start, int end,

int bb_end, double tol);

matrix cyclic_reorder(matrix m, int first);

break_edge(matrix& L, matrix& K, matrix C_V, int n1, int n2,

double C, double tol);

break_spike(matrix& L, matrix& K, matrix& C_V, int C_G[], int n,

int geo[], int& z_num, double C, double tol);

rm_row(int row);

rm_col(int col);

rm_unconn_n(matrix& L, matrix& C_V, double tol, int& z_num,

int C_G[], int geo[]);

recover(matrix& L, matrix& K, int& i_nodes, double frac, int o_edges);

square_lat(int n, double C);

circle(int spikes, int circles, double C);

double min();

get_geodesic(matrix L, int geo[], int& t_start, int& t_end,

DETERMINING SHAPE FROM THE LAMBDA MATRIX 35

int level, double tol);

get_geodesic2(matrix L, int geo[], int& t_start, int& t_end,

int level, double tol);

find_zseq(matrix L, double tol);

int count_edges();

double maxdiff(matrix LO, matrix LD);

};

13.6. matrix.cc.

/*

* Author: Derek A. Jerina

* Date: July 20, 1996

*

* Includes the implementation for matrices and various operations on them.

*

*/

#include "matrix.h"

#include <iomanip.h>

matrix:: matrix(int c, int r)

{

c_size = c;

r_size = r;

}

matrix:: init(int val)

{

for (int i = 0; i < c_size; ++i)

for (int j = 0; j < r_size; ++j)

p[i][j] = val;

}

matrix:: clean(double tol)

{

int i,j;

for (i = 0; i < c_size; ++i)

for (j = 0; j < r_size; ++j)

if (abs(p[i][j]) < tol)

p[i][j] = 0;

}

matrix:: wash(int n)

{

int i,j;

36 D. JERINA

for (i = 0; i < c_size; ++i)

{

p[i][n] = 0;

p[n][i] = 0;

};

}

matrix:: get_matrix()

{

int i,j;

for (i = 0; i < c_size; ++i)

for (j = 0; j < r_size; ++j)

cin >> p[i][j];

}

void matrix:: print_matrix(int precision)

{

setprecision(precision);

for (int i = 0; i < c_size; ++i)

{

for (int j = 0; j < r_size; ++j)

{

cout << p[i][j] << ’\t’;

/*

if (i==j) {cout << "*" << ’ ’;}

else if (p[i][j] != 0) {cout << ’-’ << ’ ’;}

else cout << "0" << " ";

*/

};

cout << endl;

};

}

matrix:: r_swap(int r1, int r2)

{

double temp;

for (int i = 0; i < r_size; ++i)

{

temp = p[r1][i];

p[r1][i] = p[r2][i];

p[r2][i] = temp;

}

}

matrix:: c_swap(int c1, int c2)

DETERMINING SHAPE FROM THE LAMBDA MATRIX 37

{

double temp;

for (int i = 0; i < c_size; ++i)

{

temp = p[i][c1];

p[i][c1] = p[i][c2];

p[i][c2] = temp;

}

}

matrix:: r_mult(int row, double val)

{

for (int i = 0; i < r_size; ++i)

p[row][i] = p[row][i] * val;

}

matrix:: c_mult(int col, double val)

{

for (int i = 0; i < c_size; ++i)

p[i][col] = p[i][col] * val;

}

matrix:: add_mult_r(int recieve, double val, int send)

{

for (int i = 0; i < r_size; ++i)

p[recieve][i] = p[recieve][i] + (val * p[send][i]);

}

matrix:: add_mult_c(int recieve, double val, int send)

{

for (int i = 0; i < c_size; ++i)

p[i][recieve] = p[i][recieve] + (val * p[i][send]);

}

matrix:: put(int row,int col,double val)

{

p[row][col] = val;

}

matrix matrix:: add(const matrix left, const matrix right)

{

assert(left.r_size == right.r_size);

assert(left.c_size == right.c_size);

int i,j;

matrix result(left.c_size,left.r_size);

38 D. JERINA

for (i = 0; i < result.c_size; ++i)

for (j = 0; j < result.r_size; ++j)

result.p[i][j] = left.p[i][j] + right.p[i][j];

return(result);

}

matrix matrix:: subtract(const matrix left, const matrix right)

{

assert(left.r_size == right.r_size);

assert(left.c_size == right.c_size);

int i,j;

matrix result(left.c_size,left.r_size);

for (i = 0; i < result.c_size; ++i)

for (j = 0; j < result.r_size; ++j)

result.p[i][j] = left.p[i][j] - right.p[i][j];

return(result);

}

matrix matrix:: mult(const matrix left, const matrix right)

{

assert(left.r_size == right.c_size);

matrix result(left.c_size,right.r_size);

int i,j,k;

double sum;

for (i = 0; i < result.c_size; ++i)

for (j = 0; j < result.r_size; ++j)

{

sum = 0;

for (k = 0; k < left.r_size; ++k)

sum += left.p[i][k] * right.p[k][j];

result.p[i][j] = sum;

};

return(result);

}

matrix matrix:: inv_mat(matrix mat)

{

matrix Inv(mat.c_size,mat.r_size);

Inv.init(0);

int i,j;

for (i = 0; i < Inv.r_size; ++i)

Inv.put(i,i,1);

for (i = 0; i < Inv.r_size; ++i)

{

for (j = Inv.r_size - 1; j > i; --j)

DETERMINING SHAPE FROM THE LAMBDA MATRIX 39

{

if (

// Can’t use fabs for some reason

// fabs(mat(j,i)) > abs(mat(j-1,i))

(

(mat.p[j-1][i]>0) && (

(mat.p[j][i] > mat.p[j-1][i]) ||

(-mat.p[j][i] > mat.p[j-1][i])

)

) ||

((mat.p[j-1][i]<0) && ((mat.p[j][i] < mat.p[j-1][i]) ||

(-mat.p[j][i] < mat.p[j-1][i])

)

)

)

{

Inv.r_swap(j,j-1);

mat.r_swap(j,j-1);

}

}

Inv.r_mult(i,(1/mat(i,i)));

mat.r_mult(i,(1/mat(i,i)));

for (j = i+1; j < Inv.r_size; ++j)

{

Inv.add_mult_r(j,-mat(j,i),i);

mat.add_mult_r(j,-mat(j,i),i);

// Should decrease roundoff error

mat.p[j][i]=0;

}

}

for (i = Inv.r_size -1; i > 0; --i)

{

for (j = i -1; j >= 0; --j)

{

Inv.add_mult_r(j,-mat(j,i),i);

mat.add_mult_r(j,-mat(j,i),i);

// Should decrease roundoff error

mat.p[j][i]=0;

}

}

return (Inv);

}

matrix matrix:: kirk_to_lamda(matrix K, int b_n, int i_n)

40 D. JERINA

{

assert((K.c_size == K.r_size) && (K.r_size == (b_n+i_n)));

matrix result(b_n,b_n);

result.init(0);

int i,j;

if (i_n == 0)

{

result = K;

return(result);

};

matrix A(b_n,b_n);

for (i=0; i<b_n; ++i)

for (j=0; j<b_n; ++j)

A.put(i,j, K(i,j));

matrix B(b_n,i_n);

matrix BT(i_n,b_n);

for (i = 0; i < b_n; ++i)

for (j = b_n; j < K.r_size; ++j)

{

B.put(i,j-(b_n), K(i,j));

BT.put(j-(b_n),i, K(j,i));

};

matrix C(i_n,i_n);

for (i = b_n; i < K.r_size; ++i)

for (j = b_n; j < K.c_size; ++j)

C.put(i-(b_n),j-(b_n), K.p[i][j]);

result = result.subtract(A,result.mult(result.mult(B,result.inv_mat(C)),BT));

return result;

}

void matrix::operator=(const matrix m)

{

int i,j;

c_size = m.c_size;

r_size = m.r_size;

for (i = 0; i < c_size; ++i)

for (j = 0; j < r_size; ++j)

p[i][j] = m.p[i][j];

}

int matrix:: rank(matrix m,double tol)

{

if ((m.r_size == 0) || (m.c_size == 0))

return(0);

int i,j,k,row;

DETERMINING SHAPE FROM THE LAMBDA MATRIX 41

k = 0;

row = -1;

for (i = 0; i < m.r_size; ++i)

{

if (row < (m.c_size-1))

{do

{

++row;

for (j = m.r_size-1; j > i; --j)

if (abs(m.p[row][j]) > abs(m.p[row][j-1]))

{m.c_swap(j,j-1);};

}

while ((abs(m.p[row][i]) < tol) && (row < (m.c_size-1)));

};

// Must take care of when there are more cols than rows

if ((abs(m.p[row][i]) >= tol) && (row < m.c_size))

{

++k;

m.c_mult(i,1/m.p[row][i]);

for (j = i+1; j < m.r_size; ++j)

m.add_mult_c(j,-m.p[row][j],i);

};

};

return(k);

}

void matrix:: get_medial(matrix L, int& bb_start, int& start, int& end,

int& bb_end, double tol)

{

assert((L.c_size == L.r_size) && (L.r_size != 0));

int i,j,k,row,col;

// -1 used as a flag until initialized

bb_start = -1;

start = -1;

end = -1;

bb_end = -1;

matrix D(0,0);

for (i = 0; i < half(L.c_size); ++i)

{

D.c_size = L.c_size-(i+1);

D.r_size = i+1;

for (j = i+1; j < L.c_size; ++j)

for (k = 0; k < i+1; ++k)

D.p[j-(i+1)][k] = L.p[j][k];

42 D. JERINA

//For debugging purposses only.

//D.print_matrix(5);

//cout << "rank " << D.rank(D,tol);

if (D.rank(D,tol) < D.r_size)

{

// Note end = position in L matrix. So node 1 would be 0.

end = i;

bb_end = 0;

break;

}

// Perhaps I should use --D.c_size

D.c_size = L.c_size-(i+2);

D.r_size = i+1;

for (j = i+2; j < L.c_size; ++j)

for (k = 0; k < i+1; ++k)

D.p[j-(i+2)][k] = L.p[j][k];

if (D.rank(D,tol) < D.r_size)

{

// Note end = position in L matrix. So node 1 would be 0.

end = i;

bb_end = 1;

break;

}

}

for (i = end; i > (end - half(L.r_size)); --i)

{

D.c_size = L.c_size - (end - i + 1) - bb_end;

D.r_size = end - i + 1;

for (j = 0; j < D.c_size; ++j)

for (k = 0; k < D.r_size; ++k)

{

row = j + end + 1 + bb_end;

if (row >= L.c_size)

row = row - L.c_size;

col = end - k;

if (col < 0)

col = col + L.r_size;

D.p[j][k] = L.p[row][col];

};

if (D.rank(D,tol) < D.r_size)

{

// Note start = position in L matrix. So node 1 would be 0.

start = i;

if (start < 0)

DETERMINING SHAPE FROM THE LAMBDA MATRIX 43

start = start + L.r_size;

bb_start = 0;

break;

}

// Perhaps I should use --D.c_size

D.c_size = L.c_size - (end - i + 2) - bb_end;

D.r_size = end - i + 1;

for (j = 0; j < D.c_size; ++j)

for (k = 0; k < D.r_size; ++k)

{

row = j + end + 1 + bb_end;

if (row >= L.c_size)

row = row - L.c_size;

col = end - k;

if (col < 0)

col = col + L.r_size;

D.p[j][k] = L.p[row][col];

};

if (D.rank(D,tol) < D.r_size)

{

// Note start = position in L matrix. So node 1 would be 0.

start = i;

if (start < 0)

start = start + L.r_size;

bb_start = 1;

break;

}

}

assert((bb_start != -1) && (start != -1) && (end != -1) && (bb_end != -1));

}

matrix:: form(matrix L, int bb_start, int start, int end, int bb_end)

{

assert(bb_start || (start != end) || bb_end);

int i,j,k,row,col;

i = start-1;

j = 0;

do

{

++i;

++j;

if (j >= L.r_size) j = j - L.r_size;

}

while (i!=end);

r_size = j;

44 D. JERINA

c_size = L.c_size - r_size - bb_start + (1-bb_end);

for (i=0; i < c_size; ++i)

for (j=0; j < r_size; ++j)

{

row = i + end + bb_end;

if (row >= L.c_size) row = row - L.c_size;

col = j + start;

if (col >= L.r_size) col = col - L.r_size;

p[i][j] = L.p[row][col];

}

}

double matrix:: get_cond(matrix L, int bb_start, int start,

int end, int bb_end, double tol)

{

assert(bb_start || (start != end) || bb_end);

if ((start == end) && (bb_end==0))

return(L.p[start][start]);

matrix m(0,0);

m.form(L,bb_start,start,end,bb_end);

assert((m.r_size != 0) && (m.c_size != 0));

int i,j,k,row;

k = 0;

row = m.c_size;

for (i = 0; i < (m.r_size-1); ++i)

{

if (row > 0)

{

do

{

--row;

for (j = m.r_size-2; j > i; --j)

if (abs(m.p[row][j]) > abs(m.p[row][j-1]))

{m.c_swap(j,j-1);};

}

while ((abs(m.p[row][i]) < tol) && (row > 0));

};

// Must take care of when there are more cols than rows

if ((abs(m.p[row][i]) >= tol) && (row >= 0))

{

++k;

m.c_mult(i,1/m.p[row][i]);

for (j = i+1; j < m.r_size; ++j)

m.add_mult_c(j,-m.p[row][j],i);

};

DETERMINING SHAPE FROM THE LAMBDA MATRIX 45

};

assert(k==(m.r_size-1));

if (bb_end)

{return(-m.p[0][m.r_size-1]);}

else return(m.p[0][m.r_size-1]);

}

matrix matrix:: cyclic_reorder(matrix m, int first)

{

matrix result(m.c_size,m.r_size);

int i,j,row,col;

for (i = 0; i < m.c_size; ++i)

for (j = 0; j < m.r_size; ++j)

{

row = i + first;

col = j + first;

if (row >= m.c_size)

row = row - m.c_size;

if (col >= m.r_size)

col = col - m.r_size;

result.p[i][j] = m.p[row][col];

};

return(result);

}

matrix:: break_edge(matrix& L, matrix& K, matrix C_V, int n1, int n2,

double C, double tol)

{

cout << "N" << C_V.p[n1][0] << " to N" << C_V.p[n2][0] << " BB cond ";

cout << C << endl;

assert(C > 0);

K.p[I(C_V.p[n1][0])][I(C_V.p[n1][0])] += C;

K.p[I(C_V.p[n2][0])][I(C_V.p[n2][0])] += C;

K.p[I(C_V.p[n1][0])][I(C_V.p[n2][0])] += (-C);

K.p[I(C_V.p[n2][0])][I(C_V.p[n1][0])] += (-C);

L.p[n1][n1] += (-C);

L.p[n2][n2] += (-C);

L.p[n1][n2] += C;

L.p[n2][n1] += C;

L.clean(tol);

// If either node should become unconnected then it is washed to avoid

// possible roundoff error

int i,j,k;

j = 0;

k = 0;

46 D. JERINA

for (i = 0; i < L.c_size; ++i)

{

if ((abs(L.p[i][n1]) > tol) && (i!=n1) && (i!=n2))

++j;

if ((abs(L.p[i][n2]) > tol) && (i!=n1) && (i!=n2))

++k;

};

if (!j) L.wash(n1);

if (!k) L.wash(n2);

}

matrix:: break_spike(matrix& L, matrix& K, matrix& C_V, int C_G[], int n,

int geo[], int& z_num, double C, double tol)

{

matrix D(0,0);

// First deal with the possibility of having to collapse one b_node

// onto another b_node.

int i,j,k;

double delta;

j = 0;

for (i = 0; i < L.c_size; ++i)

if ((abs(L.p[i][n]) > tol) && (i!=n))

{

++j;

k = i;

}

assert(j > 0);

if (j==1)

{

D.break_edge(L,K,C_V,n,k,C,tol);

// Since n was connected to just 1 node it should have all zeros.

// Thus it’s washed.

L.wash(n);

L.r_swap(n,k);

L.c_swap(n,k);

C_V.r_swap(n,k);

// Now we deal with the medial lines and adjusting Lambda and C_V, etc.

++z_num;

geo[C_G[n*2-1]]=z_num;

geo[C_G[k*2+1]]=z_num;

swap(C_G,n*2-1,k*2);

rm_geo(C_G,k*2+1,L.c_size*2); // Need to do end before start

rm_geo(C_G,k*2,L.c_size*2);

L.rm_row(k);

L.rm_col(k);

DETERMINING SHAPE FROM THE LAMBDA MATRIX 47

C_V.rm_row(k);

}

else

{

matrix L2(0,0);

L2 = L;

L2 = D.cyclic_reorder(L2,n);

// Take Schur Complement with respect to [0][0]

double E = -C;

delta = L2.p[0][0] + E;

matrix L3(0,0);

L3 = L2;

matrix A(1,L3.r_size-1);

matrix B(L3.c_size-1,1);

for (i = 0; i < A.r_size; ++i)

{

A.p[0][i] = L3.p[0][i+1];

B.p[i][0] = L3.p[i+1][0];

};

matrix C2(L3.c_size-1,L3.r_size-1);

for (i = 0; i < C2.c_size; ++i)

for (j = 0; j < C2.r_size; ++j)

C2.p[i][j] = L3.p[i+1][j+1];

matrix A2(0,0);

A2 = A;

A2.r_mult(0,(1/delta));

C2 = D.subtract(C2,D.mult(B,A2));

A.r_mult(0,(E/delta));

B.c_mult(0,(E/delta));

L3.p[0][0] = E - E*E/delta;

for (i = 0; i < A.r_size; ++i)

{

L3.p[0][i+1] = A.p[0][i];

L3.p[i+1][0] = B.p[i][0];

};

for (i = 0; i < C2.c_size; ++i)

for (j = 0; j < C2.r_size; ++j)

L3.p[i+1][j+1] = C2.p[i][j];

L2 = L3;

L2 = D.cyclic_reorder(L2,(L2.c_size-n));

L = L2;

// Adjust K and C_V matrices

K.c_size++;

K.r_size++;

for (i = 0; i < K.c_size; ++i)

48 D. JERINA

{

K.p[i][K.r_size-1] = 0;

K.p[K.c_size-1][i] = 0;

};

K.p[K.c_size-1][K.r_size-1] = C;

K.p[I(C_V.p[n][0])][I(C_V.p[n][0])] += C;

K.p[K.c_size-1][I(C_V.p[n][0])] = -C;

K.p[I(C_V.p[n][0])][K.r_size-1] = -C;

C_V.p[n][0] = K.c_size - 1;

cout << "N" << n << " to N" << C_V.p[n][0] << " Spike cond " << C << endl;

};

L.clean(tol);

}

matrix:: rm_row(int row)

{

int i,j = 0;

for (i = row; i < (c_size-1); ++i)

for (j = 0; j < r_size; ++j)

p[i][j] = p[i+1][j];

--c_size;

}

matrix:: rm_col(int col)

{

int i,j;

for (i = col; i < (r_size-1); ++i)

for (j = 0; j < c_size; ++j)

p[j][i] = p[j][i+1];

--r_size;

}

matrix:: rm_unconn_n(matrix& L, matrix& C_V, double tol, int& z_num,

int C_G[], int geo[])

{

int i,j,k = 0;

int t_start,t_end;

for (i = 0; i < L.c_size; ++i)

{

k = 0;

// For efficiency matrix is cleaned of roundoff error as unconnected

// nodes are removed. Saves having an extra call to clean function

for (j = 0; j < L.r_size; ++j)

if (abs(L.p[i][j]) >= tol)

{++k;}

DETERMINING SHAPE FROM THE LAMBDA MATRIX 49

else L.p[i][j] = 0;

if (k == 0)

{

t_start = 2*i;

t_end = 2*i+1;

++z_num;

geo[C_G[t_start]] = z_num;

geo[C_G[t_end]] = z_num;

rm_geo(C_G,t_end,L.c_size*2); // Need to do end before start

rm_geo(C_G,t_start,L.c_size*2);

L.rm_row(i);

L.rm_col(i);

C_V.rm_row(i);

--i;

}

};

}

matrix:: recover(matrix& L, matrix& K, int& i_nodes, double frac, int o_edges)

{

// C_V is a correspondence vector relating the b-node in the lamda matrix

// as it gets modified to the node it corresponds to in the kirchoff

// matrix being constructed.

int geo[L.c_size*2]; // geodesics

int C_G[L.c_size*2]; // correspondence vector for geodesics

int* z_seq;

int t_start,t_end,z_num,temp;

z_num = 0;

double tol = frac;

cout << "tol " << tol << endl << endl;

int i,b_nodes,edges;

b_nodes = L.c_size;

matrix C_V(b_nodes,1);

matrix D(0,0);

double cond;

// Initialize the correspondence vectors

for (i = 0; i < b_nodes; ++i)

C_V.put(i,0,i);

for (i = 0; i < (L.c_size*2); ++i)

{

C_G[i] = i;

geo[i] = -1; // A nice flag to know if something went wrong

}

K = L;

K.init(0);

50 D. JERINA

int bb_start, start, end, bb_end = -1;

D.rm_unconn_n(L,C_V,tol,z_num,C_G,geo);

edges = 0;

while (L.c_size)

{

D.get_medial(L,bb_start,start,end,bb_end,tol);

t_start = start*2 - bb_start;

if (t_start<0)

t_start += L.c_size;

t_end = end*2 + 1 + bb_end;

if (t_end >= L.c_size*2)

t_end = t_end - L.c_size;

++z_num;

geo[C_G[t_start]] = z_num;

geo[C_G[t_end]] = z_num;

while (bb_start || bb_end || (start != end))

{

t_start = start*2 - bb_start;

if (t_start<0)

t_start += L.c_size;

t_end = end*2 + 1 + bb_end;

if (t_end >= L.c_size*2)

t_end = t_end - L.c_size;

if (bb_end)

{

cond = D.get_cond(L,bb_start,start,end,bb_end,tol);

i = end + 1;

if (i >= L.r_size)

i = i - L.r_size;

D.break_edge(L,K,C_V,end,i,cond,tol);

bb_end = 0;

temp = t_end-1;

if (temp < 0)

temp+=L.c_size;

swap(C_G,t_end,temp);

}

else if (start != end)

{

cond = D.get_cond(L,bb_start,start,end,bb_end,tol);

D.break_spike(L,K,C_V,C_G,end,geo,z_num,cond,tol);

--end;

if (end<0)

end += L.r_size;

bb_end = 1;

temp = t_end-1;

DETERMINING SHAPE FROM THE LAMBDA MATRIX 51

if (temp < 0)

temp+=L.c_size;

swap(C_G,t_end,temp);

}

else if (bb_start)

{

cond = D.get_cond(L,bb_start,start,end,bb_end,tol);

i = start - 1;

if (i < 0)

i += L.r_size;

D.break_edge(L,K,C_V,start,i,cond,tol);

bb_start = 0;

temp = t_start+1;

if (temp >= L.c_size*2)

temp = temp - L.c_size;

swap(C_G,t_start,temp);

};

++edges;

};

// The medial line has been removed in such a way that the node start

// must be an isolated node now. Thus, start is removed.

t_start = start*2;

if (t_start<0)

t_start += L.c_size;

t_end = start*2 + 1;

if (t_end >= L.c_size*2)

t_end = t_end - L.c_size;

rm_geo(C_G,t_end,L.c_size*2); // Need to do end before start

rm_geo(C_G,t_start,L.c_size*2);

L.rm_row(start);

L.rm_col(start);

C_V.rm_row(start);

D.rm_unconn_n(L,C_V,tol,z_num,C_G,geo);

};

i_nodes = K.c_size - b_nodes;

L = D.kirk_to_lamda(K,b_nodes,i_nodes);

cout << "\n# of edges in derived graph: " << edges << endl;

if (o_edges > 0)

{

cout << "\n# of edges in inputted kirchoff matrix: " << o_edges << endl;

if (o_edges == edges)

{cout << "\nInputted kirchoff matrix was critical" << endl;}

else cout << "\nInputted kirkchoff matrix was non-critical" << endl;

};

// Adjust the numbering of geodesics for z-seq

52 D. JERINA

arrange(geo,b_nodes*2);

cout << "\nZ-seq: ";

print_array(geo,L.c_size*2);

cout << endl;

}

matrix:: square_lat(int n, double C)

{

int i,j,k;

r_size = n*(n+4);

c_size = r_size;

init(0);

// Set the diagonal

for (i = 0; i < r_size; ++i)

{

if (i < (4*n))

{p[i][i] = C;}

else p[i][i] = (4*C);

};

// Set connections

for (i = 0; i < (n+4); ++i)

{

for (j = 0; j < n; ++j)

{

switch (i)

{

case 0:

{p[i*n+j][(i+4)*n+j] = -C;

p[(i+4)*n+j][i*n+j] = -C;

break;}

case 1:

{p[i*n+j][(j+5)*n-1] = -C;

p[(j+5)*n-1][i*n+j] = -C;

break;}

case 2:

{p[i*n+j][(n+4)*n-1-j] = -C;

p[(n+4)*n-1-j][i*n+j] = -C;

break;}

case 3:

{p[i*n+j][(n+3-j)*n] = -C;

p[(n+3-j)*n][i*n+j] = -C;

break;}

default:

{if (i < (n+3))

{p[i*n+j][(i+1)*n+j] = -C;

DETERMINING SHAPE FROM THE LAMBDA MATRIX 53

p[(i+1)*n+j][i*n+j] = -C;};

if (j < (n-1))

{p[i*n+j][i*n+j+1] = -C;

p[i*n+j+1][i*n+j] = -C;};}

}

}

}

}

matrix:: circle(int spikes, int circles, double C)

{

int i,j,k;

c_size = spikes*circles + 1;

if (circles==0)

c_size += spikes;

r_size = c_size;

init(0);

// Set the diagonal

for (i = 0; i < spikes; ++i)

if (circles>0)

{p[i][i] = 3*C;}

else p[i][i] = C;

for (i = spikes; i < (c_size-1); ++i)

p[i][i] = 4*C;

p[c_size-1][r_size-1] = spikes*C;

// Set connections

for (i = 0; i < (circles-1); ++i)

for (j = 0; j < spikes; ++j)

{

// Connect circle to next most inner circle

p[i*spikes+j][(i+1)*spikes+j] = -C;

p[(i+1)*spikes+j][i*spikes+j] = -C;

// Connect points on a circle to each other

if (j<(spikes-1))

{p[i*spikes+j][i*spikes+j+1] = -C;

p[i*spikes+j+1][i*spikes+j] = -C;}

else

{p[i*spikes+j][i*spikes] = -C;

p[i*spikes][i*spikes+j] = -C;};

};

// Deal with the inner most circle

for (j = 0; j < spikes; ++j)

{

// Connect points on innermost circle to each other

if (circles)

54 D. JERINA

if (j<(spikes-1))

{p[(circles-1)*spikes+j][(circles-1)*spikes+j+1] = -C;

p[(circles-1)*spikes+j+1][(circles-1)*spikes+j] = -C;}

else

{p[(circles-1)*spikes+j][(circles-1)*spikes] = -C;

p[(circles-1)*spikes][(circles-1)*spikes+j] = -C;};

// Connect circle to the most inner node

if (circles)

{p[(circles-1)*spikes+j][r_size-1] = -C;

p[r_size-1][(circles-1)*spikes+j] = -C;}

else

{p[j][r_size-1] = -C;

p[r_size-1][j] = -C;};

};

}

double matrix:: min()

{

int i,j;

double small;

small = p[0][0];

for (i = 0; i < c_size; ++i)

for (j = 0; j < r_size; ++j)

if ((abs(p[i][j])<abs(small)) && (p[i][j] != 0))

small = p[i][j];

return(abs(small));

}

matrix:: get_geodesic(matrix L, int geo[], int& t_start, int& t_end,

int level, double tol)

{

int i,j,k,row,col,bb_start,start,end,bb_end;

assert((L.c_size == L.r_size) && (L.r_size != 0));

// -1 used as a flag until initialized

bb_start = 0;

start = 0;

end = 0;

bb_end = 0;

int found = 0;

matrix D(0,0);

for (i = 0; i < half(L.c_size); ++i)

{

D.c_size = L.c_size-(i+1);

D.r_size = i+1;

for (j = i+1; j < L.c_size; ++j)

DETERMINING SHAPE FROM THE LAMBDA MATRIX 55

for (k = 0; k < i+1; ++k)

D.p[j-(i+1)][k] = L.p[j][k];

//For debugging purposses only.

//D.print_matrix(5);

//cout << "rank " << D.rank(D,tol);

end = i;

bb_end = 0;

get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);

// cout << t_start << " " << t_end << " ";

// cout << g_between(geo,t_start,t_end) << endl;

if ((level == g_between(geo,t_start,t_end)+1)

&& (D.rank(D,tol) == D.r_size-level))

{

// Note end = position in L matrix. So node 1 would be 0.

end = i;

bb_end = 0;

found = 1;

break;

};

// Just ’cuz you don’t want to go past half way around graph

// if (((2*half(L.c_size)-L.c_size)+i) < half(L.c_size))

// {

// Perhaps I should use --D.c_size

D.c_size = L.c_size-(i+2);

D.r_size = i+1;

for (j = i+2; j < L.c_size; ++j)

for (k = 0; k < i+1; ++k)

D.p[j-(i+2)][k] = L.p[j][k];

bb_end = 1;

get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);

if ((level == g_between(geo,t_start,t_end)+1)

&& (D.rank(D,tol) == D.r_size-level))

{

// Note end = position in L matrix. So node 1 would be 0.

end = i;

bb_end = 1;

found = 1;

break;

}

// }

}

// Make sure you caught the end of a geodesic also

int happy = 0;

56 D. JERINA

for (i = end;((i > -2) && (found==1)); --i)

{

D.c_size = L.c_size - (end - i + 1) - bb_end;

D.r_size = end - i + 1;

for (j = 0; j < D.c_size; ++j)

for (k = 0; k < D.r_size; ++k)

{

row = j + end + 1 + bb_end;

if (row >= L.c_size)

row = row - L.c_size;

col = end - k;

if (col < 0)

col = col + L.r_size;

D.p[j][k] = L.p[row][col];

};

start = i;

bb_start = 0;

get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);

// cout << t_start << " " << t_end << " "

// cout << g_between(geo,t_start,t_end) << endl;

if ((level == g_between(geo,t_start,t_end) +1)

&& (D.rank(D,tol) == D.r_size-level))

{

// Note start = position in L matrix. So node 1 would be 0.

start = i;

if (start < 0)

start = start + L.r_size;

bb_start = 0;

++happy;

break;

}

// Perhaps I should use --D.c_size

D.c_size = L.c_size - (end - i + 2) - bb_end;

D.r_size = end - i + 1;

for (j = 0; j < D.c_size; ++j)

for (k = 0; k < D.r_size; ++k)

{

row = j + end + 1 + bb_end;

if (row >= L.c_size)

row = row - L.c_size;

col = end - k;

if (col < 0)

col = col + L.r_size;

DETERMINING SHAPE FROM THE LAMBDA MATRIX 57

D.p[j][k] = L.p[row][col];

};

bb_start = 1;

get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);

if ((level == g_between(geo,t_start,t_end)+1)

&& (D.rank(D,tol) == D.r_size-level))

{

// Note start = position in L matrix. So node 1 would be 0.

start = i;

if (start < 0)

start = start + L.r_size;

bb_start = 1;

++happy;

break;

}

}

// cout << "found " << found << " happy " << happy << endl;

if (happy>0)

{get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);}

else

{t_start = -1;

t_end = -1;};

}

matrix:: get_geodesic2(matrix L, int geo[], int& t_start, int& t_end,

int level, double tol)

{

int i,j,k,row,col,bb_start,start,end,bb_end;

assert((L.c_size == L.r_size) && (L.r_size != 0));

// -1 used as a flag until initialized

bb_start = 1;

start = 0;

end = 0;

bb_end = 0;

int found = 0;

matrix D(0,0);

for (i = 0; i < half(L.c_size); ++i)

{

D.c_size = L.c_size-(i+1)-1;

D.r_size = i+1;

for (j = i+1; j < L.c_size; ++j)

for (k = 0; k < i+1; ++k)

D.p[j-(i+1)][k] = L.p[j][k];

58 D. JERINA

//For debugging purposses only.

//D.print_matrix(5);

//cout << "rank " << D.rank(D,tol);

end = i;

bb_end = 0;

get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);

// cout << t_start << " " << t_end << " ";

// cout << g_between(geo,t_start,t_end) << endl;

if ((level == g_between(geo,t_start,t_end)+1)

&& (D.rank(D,tol) == D.r_size-level))

{

// Note end = position in L matrix. So node 1 would be 0.

end = i;

bb_end = 0;

found = 1;

break;

};

// Just ’cuz you don’t want to go past half way around graph

// if (((2*half(L.c_size)-L.c_size)+i) < half(L.c_size))

// {

// Perhaps I should use --D.c_size

D.c_size = L.c_size-(i+2)-1;

D.r_size = i+1;

for (j = i+2; j < L.c_size; ++j)

for (k = 0; k < i+1; ++k)

D.p[j-(i+2)][k] = L.p[j][k];

bb_end = 1;

get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);

if ((level == g_between(geo,t_start,t_end)+1)

&& (D.rank(D,tol) == D.r_size-level))

{

// Note end = position in L matrix. So node 1 would be 0.

end = i;

bb_end = 1;

found = 1;

break;

}

// }

}

// Make sure you caught the end of a geodesic also

int happy = 0;

for (i = end;((i > -2) && (found==1)); --i)

{

DETERMINING SHAPE FROM THE LAMBDA MATRIX 59

D.c_size = L.c_size - (end - i + 1) - bb_end;

D.r_size = end - i + 1;

for (j = 0; j < D.c_size; ++j)

for (k = 0; k < D.r_size; ++k)

{

row = j + end + 1 + bb_end;

if (row >= L.c_size)

row = row - L.c_size;

col = end - k;

if (col < 0)

col = col + L.r_size;

D.p[j][k] = L.p[row][col];

};

start = i;

bb_start = 0;

get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);

// cout << t_start << " " << t_end << " "

// cout << g_between(geo,t_start,t_end) << endl;

if ((level == g_between(geo,t_start,t_end) +1)

&& (D.rank(D,tol) == D.r_size-level))

{

// Note start = position in L matrix. So node 1 would be 0.

start = i;

if (start < 0)

start = start + L.r_size;

bb_start = 0;

++happy;

break;

}

// Perhaps I should use --D.c_size

D.c_size = L.c_size - (end - i + 2) - bb_end;

D.r_size = end - i + 1;

for (j = 0; j < D.c_size; ++j)

for (k = 0; k < D.r_size; ++k)

{

row = j + end + 1 + bb_end;

if (row >= L.c_size)

row = row - L.c_size;

col = end - k;

if (col < 0)

col = col + L.r_size;

D.p[j][k] = L.p[row][col];

};

bb_start = 1;

60 D. JERINA

get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);

if ((level == g_between(geo,t_start,t_end)+1)

&& (D.rank(D,tol) == D.r_size-level))

{

// Note start = position in L matrix. So node 1 would be 0.

start = i;

if (start < 0)

start = start + L.r_size;

bb_start = 1;

++happy;

break;

}

}

// cout << "found " << found << " happy " << happy << endl;

if (happy>0)

{get_t(t_start,t_end,bb_start,start,end,bb_end,L.c_size);}

else

{t_start = -1;

t_end = -1;};

}

matrix:: find_zseq(matrix L, double tol)

{

assert(L.c_size == L.r_size) ;

matrix D(0,0);

int geo[L.c_size*2]; // geodesics

int i,j,k,level,t_start,t_end,edges,bb_start,start,end,bb_end,z_num;

edges = 0;

z_num = 0;

level = 0;

for (i = 0; i<(L.c_size*2); ++i)

geo[i] = -1;

while (t_left(geo,L.c_size*2)>2)

{

++level;

for (i = 0; i < L.c_size; ++i)

{

L = D.cyclic_reorder(L,1);

reorder(geo,2,L.c_size*2);

// print_array(geo,L.c_size*2);

// cout << "level: " << level << " znum: " << z_num << endl;

D.get_geodesic(L,geo,t_start,t_end,level,tol);

DETERMINING SHAPE FROM THE LAMBDA MATRIX 61

if ((t_start!=-1) && (t_end!=-1))

{

// assert(((geo[t_end] == -1) && (geo[t_start] == -1)) ||

// ((geo[t_end] != -1) && (geo[t_start] != -1)));

if ((geo[t_end] == -1) && (geo[t_start] == -1))

// If you found a new geodesic

{

// Record geodesic

++z_num;

geo[t_start] = z_num;

geo[t_end] = z_num;

// I think you know the # of edges created by each step

j = t_end - t_start;

if (j < 0)

j += L.c_size*2;

edges = edges + i - level;

};

};

D.get_geodesic2(L,geo,t_start,t_end,level,tol);

if ((t_start!=-1) && (t_end!=-1))

{

// assert(((geo[t_end] == -1) && (geo[t_start] == -1)) ||

// ((geo[t_end] != -1) && (geo[t_start] != -1)));

if ((geo[t_end] == -1) && (geo[t_start] == -1))

// If you found a new geodesic

{

// Record geodesic

++z_num;

geo[t_start] = z_num;

geo[t_end] = z_num;

// I think you know the # of edges created by each step

j = t_end - t_start;

if (j < 0)

j += L.c_size*2;

edges = edges + i - level;

};

};

};

};

// Adjust the numbering of geodesics for z-seq

arrange(geo,L.c_size*2);

cout << "\nZ-seq: ";

62 D. JERINA

print_array(geo,L.c_size*2);

cout << endl;

}

int matrix:: count_edges()

{

int i,j,sum;

sum = 0;

for (i = 0; i < c_size; ++i)

for (j = i; j < r_size; ++j) // only looks at lower triangle

if (p[i][j] < 0)

++sum;

return(sum);

}

double matrix:: maxdiff(matrix LO, matrix LD)

{

int i,j,k;

double diff,temp;

diff = 0;

assert((LO.c_size == LD.c_size) && (LO.r_size == LD.r_size));

for (i=0; i < LO.c_size; ++i)

for (j = 0; j < LO.r_size; ++j)

{

temp = abs((LO.p[i][j] - LD.p[i][j])/LO.p[i][j]);

if (temp > diff) diff = temp;

};

return(diff);

}

13.7. graph.h.

/*

* Author: Derek A. Jerina

* Date: July 21, 1996

*

* Header file for graph class.

*

*/

#include "matrix.h"

class graph{

public:

int b_nodes,int_nodes,K_dat,L_dat;

matrix K_mat,L_mat;

DETERMINING SHAPE FROM THE LAMBDA MATRIX 63

graph (int b_n,int i_n, int K_d, int L_d,const matrix K,const matrix L);

};

13.8. graph.cc.

/*

* Author: Derek A. Jerina

* Date: July 21, 1996

*

* Implementation for graph class

*

*/

#include "graph.h"

graph:: graph(int b_n, int i_n, int K_d, int L_d,

const matrix K, const matrix L):

K_mat(K), L_mat(L)

{

b_nodes = b_n;

int_nodes = i_n;

K_dat = K_d;

L_dat = L_d;

};

13.9. shape.cc.

/*

* Author: Derek A. Jerina

* Date: July 20, 1996

*

* This program is designed to calculate the shape and conductivities

* of a critical circular planar resistor network from its Lamba matrix.

*

*/

#include <iostream.h>

#include <assert.h>

#include "graph.h"

#define frac 0.000001

void get_info(int& User_dat, int& b_nodes, int& i_n, int& K_dat,

int& L_dat, int& SQ_Lat, int& C_Lat, double& C)

{

// Data must have format of B-nodes, int-nodes, is there a Kirchoff matrix

// is there a Lamda matrix (1 means true and 0 means false)

64 D. JERINA

// If one inputs both a Kirkoff and a Lamba matrix the Kirchoff should

// come first. In a Kirchoff matrix it is assumed that the first

// rows and cols are filled by all the data for b-nodes before

// any int-node data comes.

cin >> User_dat;

if (User_dat)

{cin >> b_nodes >> i_n >> K_dat >> L_dat;}

else

// If you use computer generated K_mat uses b_n for vertices per

// side in square matrix and i_n is # of circles

{

cin >> SQ_Lat >> C_Lat;

if (SQ_Lat)

{

cin >> b_nodes >> C;

}

else

{

if (C_Lat)

cin >> b_nodes >> i_n >> C;

};

};

}

main()

{

cout << "\nWritten by Derek A. Jerina";

cout << "\nBased on paper by Derek A. Jerina, REU Summer 1996";

cout << "\nProblems do have solutions you know...\n";

matrix D(max_nodes,max_nodes);

int User_dat=0, b_nodes=0, i_nodes=0, K_dat=0, L_dat=0;

int SQ_Lat=0, C_Lat=0, edges = 0;

double C=0;

get_info(User_dat,b_nodes,i_nodes,K_dat,L_dat,SQ_Lat,C_Lat,C);

// Kirk will be good for either since square_lat and circle will

// set the size of the kirchoff matrix

matrix Kirk(b_nodes+i_nodes,b_nodes+i_nodes);

// SQ_Lat has b_nodes on each of 4 sides

if (SQ_Lat)

{

Kirk.square_lat(b_nodes,C);

i_nodes = b_nodes*b_nodes;

DETERMINING SHAPE FROM THE LAMBDA MATRIX 65

b_nodes = b_nodes*4;

};

if (C_Lat)

{

Kirk.circle(b_nodes,i_nodes,C);

i_nodes = Kirk.rows()-b_nodes;

};

matrix Lamda(b_nodes,b_nodes);

graph original(b_nodes, i_nodes, K_dat, L_dat, Kirk, Lamda);

// if (SQ_Lat || C_Lat)

// original.K_mat = Kirk;

if (User_dat)

{

// Must either input a kirkoff matrix or a lamda matrix or both with

// kirkoff first.

assert(K_dat || L_dat);

if (K_dat)

{ original.K_mat.get_matrix();

}

else { original.K_mat.init(0);

};

if (L_dat)

{ original.L_mat.get_matrix();

}

else

{ original.L_mat = D.kirk_to_lamda(original.K_mat,b_nodes,i_nodes);

};

};

if (SQ_Lat)

{

original.K_mat = Kirk;

original.L_mat = D.kirk_to_lamda(original.K_mat,b_nodes,i_nodes);

K_dat = 1;

original.K_dat = 1;

};

if (C_Lat)

{

original.K_mat = Kirk;

original.L_mat = D.kirk_to_lamda(original.K_mat,b_nodes,i_nodes);

K_dat = 1;

original.K_dat = 1;

};

66 D. JERINA

// Need some data to work with

assert(User_dat || SQ_Lat || C_Lat);

int temp;

cin >> temp;

if (temp && K_dat)

{

cout << "\nOriginal Kmat\n";

original.K_mat.print_matrix(5);

};

cin >> temp;

if (temp)

{

cout << "\nOriginal Lmat\n";

original.L_mat.print_matrix(5);

};

cin >> temp;

if (temp)

{

cout << endl;

matrix K2(0,0);

matrix L2(0,0);

graph derived(b_nodes, 0, 0, 1, K2, L2);

derived.L_mat = original.L_mat;

derived.K_mat = original.L_mat;

derived.K_mat.init(0);

edges = -1; // Flag in case no original k_dat

if (original.K_dat)

edges = original.K_mat.count_edges();

D.recover(derived.L_mat,derived.K_mat,derived.int_nodes,frac,edges);

int temp2;

derived.K_dat = derived.L_dat = 1;

cin >> temp2;

if (temp2)

{

cout << "\nThe derived Kmat\n";

derived.K_mat.print_matrix(5);

};

cin >> temp2;

if (temp2)

{

cout << "\nThe derived Lmat\n";

derived.L_mat.print_matrix(5);

};

DETERMINING SHAPE FROM THE LAMBDA MATRIX 67

cout << "\nThe greatest difference between any two entries of original";

cout << "\nLambda matrix and the derived Lambda matrix was ";

cout << D.maxdiff(original.L_mat,derived.L_mat)*100 << "%\n";

} else cin >> temp >> temp;

cin >> temp;

if (temp)

{

cout << endl << "Attempting to Obtain Z-seq without recovery." << endl;

D.find_zseq(original.L_mat,frac);

};

}

References

[1] E. Curtis, D. Ingerman, J. Morrow, Circular planar graphs and resistor networks,
submitted.

E-mail address: daj2@acpub.duke.edu

