INFINITE NETWORKS

PHILLIP LYNCH

ABSTRACT. In this paper, I consider infinite rectangular resistor net-
works in m dimensions. I show that the power dissipated due to a single
source of current is infinite in dimensions 1 and 2, and finite in dimension
3.

1. GENERAL DEFINITIONS

I consider a rectangular network of resistors, denoted by Q,., which
extends infinitely in m dimensions. The weights on each edge are assumed
to be real and positive.

In the one-dimensional case, the underlying graph of the network 2,
lies on the x-axis, with each point (4,0) for b € Z as a node. Each node is
joined by an edge to the two other nodes which are nearest to it; each node
lies a Euclidean distance one away from each of its neighbors.

Similarily, the set of the nodes of £, is the two-dimensional lattice
consisting of the points with integer coordinates:{(a, b}|a, b€ Z}. Each node
is joined by an edge to four other nodes; again, each node lies a Euclidean
distance one away from each of its neighbors.

This leads to the following definition:

DEFINITION

An m-dimensional infinite rectangular network of resistors, denoted by Q,,,,
is a function defined on each edge of a rectangular graph, together with
this graph, which is defined as follows: The nodes of {1, are the points
{(a1,a3, ... ,an)|a1,as, ... ,an € Z}. Each node is joined by an edge to
2m other nodes; each node is a Euclidean distance of one away from each
of its neighbors. The function defined on the edges of Q,,, is positive and
real.

DEFINITION

On Qw,,, the class of networks defined above, impose a unit source at the
node which lies at the origin. By imposing certain boundary conditions upon
Qoo,» 2 unique electric potential function, denoted by g, will be generated
throughout the network in response to the unit source. This function will
be called the Green’s function.

1
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2. THE GREEN’s FuNcCTION

Let us construct the Green’s function for these networks. For simplicity,
initially assume that all conductivities 4;; have the same value, denoted by
7 in each case,

I will first consider the case of dimension one:

Theorem 2.1. Let all conductivities of Q, be constant. Assign the value
v, Lo the potential of the node which lies at (0,0). Then the electric potential
g at each node is a function of its lattice point (z,0), and is given by

(2.1) 9(z) = vo - |z|/27

Proof. By symmetry, the current which flows from the source node in each
direction is equal, so .5 units of current flow in both directions away from
the unit source. By repeated applications of Kirchhoff’s law, it is easily seen
that .5 units of current flow through every conductor in the network, directed
away from the source node. Thus the potential change across each conduc-
tor, AV = IR, is constant, equalling 1/2y. Furthermore, since current flows
away from the source node, the potential at each node must decrease as a
function of its distance from the source node. Assign the value v, to the
potential at the source node. Then the potential at the nth node from the
source is given by v, —n (1/27). The nth node from the source lies at either
(n,0) or (—n,0). Therefore g(z) = vo — |z|/27 . O

In two dimensions, the Green’s function is much more complicated. In [3],
it is shown that the Green’s function, g(a, b), for {0, is uniquely determined
by the following two conditions:

(2.2) 9(0,0)=0
(2.3)
As Va? 4+ b2 — o0, g(a,b) ~ g(a — 1,b) and g(a,b) — g(a,b~ 1) - 0.

Theorem 2.2. Let all conductivities of (Yoo, be constant. The electric po-
tential g for Qo, determined by (2.2) and (2.3) is given by

; 1 w etloz+by) _ 1 dod
2.4 W)= —— " "
(2.4) 9(a,5) y(27)? ,/;,.. ,[_,, 4(sin® £ + sin? £). ey

Proof. Let 4=1. Then, as shown in [1], the Green’s function is given by

0 ; 1 x T e:'(az-l-by) -1 dnd
( '5) 91(0, )"' W,/_.,,/_,4(sin2%+sin2§) oy

Let D., be the operator which takes a potential function to the corre-
sponding current function for a given value of 4:

Dy (u(a, b)) = w(a,b) = 7[u(a + 1,8) + u(a — 1,5)

(2.6) +u(a,b+ 1) + u(a,b — 1) — 4u(a,b)]
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Let gy denote the Green’s function for a given value of . Since there is a
unit source at the origin,

w(0,0) = D,(g4(0,0)) = -1
Let gy = &, Then

91(0 0)

D(9+(0,0)) = 7D1(y~,(0 0)) = vD1(—— = D1(01(0,0)) = -1

from (2.5). Also, Dgy = 0 for all other points, so Dg., = —-'L does as well.
Since g, satisfies conditions (2.2) and (2.3),50 g, = & does a.lso Therefore
gy = & satisfies all conditions for the Green’s funct:on 0

It will become very useful to know how the Green’s function behaves at
infinity. By expanding the Green's function as r approaches infinity, we
obtain the following theorem:

Theorem 2.3. Asr — oo, the Green’s function for Qc.,, given by (2.4),
has the asymptotic ezpansion

1 . 3In2 cosd4¢ 1
(2.7) Q(G,b)—m(-h‘lf—ﬂf —_2-.+T27'—2__O(;))

where 12 = a? + b2, v* is Euler’s constant, and ¢ = arctan(b/a).

This theorem is proved in [3).
Now, let us consider {1, for m > 3. Impose the following condition
upon the Green’s function:

(2.8) As \/a'f+a§ ...at ,g(ay,ay,...,a)— 0

Theorem 2.4. Let all conductivities of Q.,, be constant, For m > 3, the
Green’s function ¢ as a function of its lattice point i3 given by

(2.9) o ) - / ’ f ¢t 2nn .dz.
. Qlyeere y8p) = —o— P m
9(ar T CLSL AR MRS S smz(-n) z

Proof. Let D be the operator which takes a potential node function to the
corresponding current node function, i.e.,

Dlu(ay, ... ,am)] = w(ay, ... ,an)
=y[u(ar +1, ...,am)+ ...+ ulay, ..., @m +1)+ula; -1, ... ,am)+

tu(ay, ... 0, — 1) — 2mu(ey, ... ,am)]

Let the lattice functions v and w be regarded as the Fourier coefficients of
the functions U and W. Then the Fourier series I/ and W are related to u
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and w by the following formulas:

(2.10) U(:h, ey a‘:m Z Z u(al, censy am)e—i' Yon=18nZn

am==00 81=—00

"
m

(2.11) W(:Cl, ;zm) = Z Z w(al, ,ﬂm)e_iz:’?’l Gn¥n

dm=—0 1=
(2.12)
1 ™ " . m
u(ay, ... ,8m) = W/ / e'zﬂ-l“"”‘U(zl, ceyZm)dzy .. dzy,
- -
m
(2.13)
1 k4 x R m
w(@yy +.. ,8p) = W/ . / | e‘Eﬂﬂ“""‘W(zl, veesyZm)dzy...dz
. -7 -
m

. Operate on (2.12) with D. Then
(2.14)

1 k) x . m
D(u) =w= (2— f .. / D[C‘E"" G"”"]U(Ii, ves ,zm)da:l voldzoy
- -z

)™
m

Now, by a simple calculation,

(2.15)  D(e'Xrw1non) = yei Enma anen} " gimn 4 3™ g=itn _ o]

n=1 n=1

= —4ye' Lrnmt n7n f: sin® (%"—)

n=1
Now, by (2.13) and (2.14),

m
. 2,Z
(2.16) W(zq, ... 2;m) = —47231112(?")6’(::1, versZm)
n=1
since the two functions with identical Fourier coefficients are equal. In our
case, W(zy, ... ,Zm) = —1 by (2.10) since Kirchhoff’s law holds at all nodes
besides the unit source. Thus

(2.17) Uz, ... %m) = 1

4y e 5“12('“)

Substituting into (2.11) gives (2.8). By a simple calculation, it is seen that
u— 0asr— o0,
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Now it must be shown that (2.8) is the unique solution of condition (2.7).
Suppose that v is another solution of the above conditions. Then s = ¢ - v
is a y-harmonic everywhere, and s — 0 as r — co. Let A be the least upper
bound of 5. If A > 0, then v = A at some point p. Since 3(p) is the average
of the values of s at the neighbors of p, then s = A at all its neighbors.
Continuing the same argument shows v = A everywhere. But s — 0, 50 s
cannot be A everywhere. Thus A # 0.

Let B be the greatest lower bound of s. Then the same argument holds
for B,so B £ 0. Thus s = 0, or ¢ = v. Thus g is the unique solution of
(2.7). O

The above proof is a generalization of Duffin’s work in 3-space in [2].
In 3-space, by again expanding the Green’s function as r approaches in-
finity, another asymptotic expansion is found:

Theorem 2.5. As r — oo, the Green’s function for Q.,, given by (2.8)
has the asymptotic expansion

1 1 5(at + b4 +¢*), O(%)
4yrr + 3271rr3[_3 + r I+ ¥

where r? = a2 + 5% + ¢2.

The proof is due to Duffin [2].

(2.18) g(a,b,c)=

3. PoOwER DISSIPATED

The power P, or energy per unit time, dissipated over a single resistor is
defined to be P = I?R. Similarily, the power dissipated over an entire net-
work of resistors is the sum of the dissipations over each individual resistor,
or

(3.1) P= Zr,'j(w,'j)z
i<y
where w;; denotes the current from node i to node j if ¢ and j are neighbors
(otherwise w;; = 0), and r;; is the resistance of the edge between node i and
node j.
By Ohm’s law, the expression becomes

(3.2) P= Z’r.‘j(v,' - v_f)z

i<
where v; is the electric potential at node ¢ , and «;; is the conductivity of
the edge joining ¢ and j. (If ¢ and j are not neighbors, v;; = 0.)

In an arbitrary infinite network, given the conductivities of each edge and
the voltages at each node, the power dissipated in the entire network can
be found. Simply construct an infinite sum over all edges using the ahove
formula. Now, in our case, each Green’s function can be used to find the
power dissipated in the corresponding infinite network.
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Theorem 3.1. Let all conductivities of Qo,, be constant. Then its Green’s
function (2.1) dissipates infinite power in the network.

Proof. The current in every edge is constant, at .5, so
(3.3) P= Z 1",'_.;(‘!1},':')2 = .5 Z rij
i< i<j
Since r;; is a positive constant for all  ~ j, and there are an infinite number
of edges in Q,, P is infinite. 0

In the two dimensional case, the increased complexity of the network
requires the introduction of a few new concepts:
Let §),, be the subnetwork of Q.,, with vertices

{(a,d)la,b€ Z, |a} < n,[b] < n}

All connections within (1., between nodes of (1., are preserved.
Let By, be the exterior subnetwork of (n,, i.c., the subnetwork which is
composed of nodes .

{(a,)la,b€Z, la| =n or[b| = n}

and all edges in 2, between any two of these nodes.

Let I, be the subnetwork of Q,, with edges which adjoin vertices in B, to
vertices not in B,

For example, below is the graph of 25,:

And the graph of By:
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L
HERE

Using the subnetworks B, and I, an explicit equation for power dissipated
is found:

(34) P(Qeo,) =) P(Ba)+ Y P(I,)

n=1 n=1 -

And the graph of I:

since U B, UULY, In = Qeo,, and since this union js disjoint,

Now since the asymptotic expansion {2.6) converges to the Green’s func-
tion (2.4), the power dissipated in Q, will be finite if and only if the
approximation, the power dissipated due to (2.7) converges. Using the as-
ymptotic expansion in the infinite sums above, we can find their conver-
gence/divergence, and hence whether finite or infinite power is dissipated in

the network.

Theorem 3.2. Let all conductivities of Qo be constant. Then its Green’s
function dissipates infinite power in the network.

‘ Proof. Consider B,.
(3.5) O P(Ba)= Y y(mi- )

i~gii,jEBn
Let p and g be two adjacent nodes of B, with rp 2 7q. Then using (2.7),
(3.6) |

_ L[ 1 cos4¢p_cés4¢q_ 1 1
o)~ 90) = = [~ 1a(2) + Torz” ~ ot ~ O+ 00

v Tq
for large n. Now
cos 4¢, _ cosdg,
12r2 12r}
Since p and ¢ are neighbors,

4 |d, ~ oyl < 4ta.n‘1(;li_)_
121‘3 ~  12n2

(3.7

< 41 — 85| | |cosdgy,] (1 1
+ —_ -
- 12 12 rZ  p2

(3.8)
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and

|cosdgp| 1 1 1 /1 1
. =l o sl
(3.9) 12 r:2 1} T 12\a? n?2+1

The sum of the right-hand sides of (3.8) and(3.9) is less than or equal to

3 + piv. And since |O(-:r) O(‘r) ot

(3.10) lg(p) — 9(9)| 2 ( )— 3% - %
Therefore,
(3.11)
r In{Z2) 2In(Z2
(9(p) — 9(9))* 2 (5= )2 [lnz( ")+ :8+ 5%—,—- 3(1:;) - ()

Now, summirg over all edges in By, by (3.5),

1 = VnZ 4 a2
P(Bn) 2 7('2?,;)2 Szlln2 m
(3.12) . o=

1 1 1 Ihv2 2lnv2
I ERETRY R
n n

T 3n® nd

since 2 < v2. Now, we will sum B, from n = 2 to oo, skipping n = 1
because the Green’s function is finite there (and the asymptotic expansion
is not), and so will not affect the convergence of B,.

f:P(Bn)=“Z[ In? vn? 4+ a2

(3 13) n=2 n=2 \/n2 (a - 1)2
Jl,l, 1 V3 208
95 ' a7 ' 306 3n? 0 n3

Clearly, all sums converge other than the first. Thus consider

n? + g2
(3.14) Z:“z—;lnz 1/’12 o1y

By the double integral test, this sum converges if and only if the following
double integral converges:

(3.15)
ratyaeci ) [ty
o T -1 dydzr = P Ty T -1 dydz

Divide this integral into the difference of two integrals:

R e e



INFINITE NETWORKS 9

The second integral is finite, so consider the first. Converting it to polar
coordinates gives

1 % et 2 Tz
(3.17) Z/o ,/mxﬁln r’—2rsin0+1rdrd8

This integrand is positive for all y > 0, so the integral (3.17) is greater than
the integral over part of the region (3.18):

3.18) AN r drd8

(3.18) 4,/;;. ,/4 r2—2rsin9+1rr
-2 2

—2rsiné4-1 2 ré—ar+l

For ;<0<%,r>4, 5
(3.17) is greater than

> 1for @ = 2sin}. Thus

r—1 f® , r
. —_-—rd
(3.19) ) et

Now make the substitution r = §. Then dr = =g, and the above expression

becomes

' 1
r—1 [¢1n?%(1 - at+t?)
(3.20) 76 /0 e di
For0<z<1l,In(l-2)<z<0,50ln*(1-2)>22>0 For0<t< H
0 < at — 12 < 1, s0 In*(1 — at + 12) > (at — t2)2, Therefore (3.19) is greater
than

1 1

T—1 fe(at-t3)® x-1 /4a2 a 1

. di = : —dt — =+ —
(3.21) 6 Jo B 6 1) t% 2716

e <]

a clearly divergent expression. Therefore 3 72, P(B,) diverges by compar-
ison with (3.11) through (3.20). P(Q,,) > P(B,) for all n, so
P(Qo0,) 2 302, P(By). Thus P(R,) is infinite. a

n=2

Remark Another very similar proof can be constructed by examining

oog P(In) which also diverges.-

A similar procedure can be used to find the convergence of the power
dissipated in the three dimensional case. Let us create similar subnetworks
of oo, :

Let ., be the subnetwork of (., with vertices

{(a,b,¢c)la,b,c € Z , |a] < m,[b] < n,[c| < n}

All connections within Q,, between nodes of Q,, are preserved.
Let b, be the ezterior subnetwork of ., i.e., the subnetwork which is
composed of nodes

{(a,b,¢c)la,b,c€Z ,|a|=n or|blj=n or|c|=n}

and all edges in Q,, between any two of these nodes.
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Let hy, be the subnetwork of Q1,, with edges which adjoin vertices in h, to
vertices not in b,,.

Now, let us consider the difference in the Green’s function between two
adjacent nodes. Let i~ j, i{,j € §;, and assume r; < r;. Then the
asymptotic expansion (2.17) gives

1 3
l9() - ()i = 471rr, 4ymr; + 32yr?
(3.22) 3 .5 5 |oth) _ 065)

_3271‘? + 32vynrd - 321#1} ¥ ¥

for large ry, r;. Using this equation, the convergence of the power dissipated
can be found.

Theorem 3.3. Let all conductivities of Quo, be constant Then its Green’s
function dissipates finite power in the subnetwork [

n—l

Proof. For i,j € b,,

1 1 3 5 1
(3.23) ]g(z) ()l < 4y7 (_, - E) + 32yn3 + 32ymrnt + yns

where the inequality holds for large n. Since 0 < 1 — ;1; <i

1 1\? 9 25
2 — ——
(3.24)  7(9())-9(5))" < 16')r1'r2 ( r,-) 1042ynS + 1024~x2n8
1 3 ] 1 15 3 ]
+7n1° + 64yrnt + 64yn2ns + 2y7nd + 512ymn7 t 16yn8 + 164mwn®

Summing over all edges in b, gives

1 1 1)\?*
< E -
P(bﬂ) -— 167“‘2 . (r'- rj)
(3.25) init,J€EBn

a b ¢ d e f g
+48n? [;;+;g+;§+;?+;l§+'n—9+'—16]

since there are 48n® edges in b, (where a through g are the constants given
above). Summing b, over all n gives

5o <z[m z G2

(3.26) n=2 INj;C',jEBn
b f
+4s[ ¥+ -;+n6+ =+ H

Obviously, all terms converge other than the first, so consider
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(3.27) 3 (?17 - %)2

i~jii,JEBn

Let us examine a face of the cube upon which b, lies. On any face of the
cube, the above sumi is given by

2
1
SZZ (s/nz+a?-[-bf \/n2+(a—1)2+b2)

b=1 a=1
(3.28) \ ,

i 1 1
+4>" - ——
( nta n2+(a—1)2)

Thus } .2, P(b,) converges if
2
1 1
48 ——e e
5 2L (e vrris)
(3.29)

n 2
1 1
+24§ (m—w——n Ta Jartla 1)2) ]

converges. By the double and triple integral tests, this sum converges if and
only if the following integrals converge:

. 2
-1
dydzd
/]/( .'.'."2+y"'+z2 \/z2+(y—1)7'+z2) yeraz

N o (S —
2 h \Vairy Ve -17)
Examine the first integral. Since the integrand is always positive, we can

integrate over a larger region and bound the integral. Converting to spherical
coordinates gives

(3.31) /%]%/m i ! 2 ?sin ¢ dpdfde
o o Jo Ja \P +/p?—2psingsing+1 P P

as an upper bound for this integral. Consider the integrand a function of ¢
and 8. Then in the range 0<¢< % 0<0< 3,0t attains its maximum
value at ¢ = %, 8 = 7. Therefore, a.n upper bound for (3.31) is

(3.30)

2 \2
(3.32) L / o1 )
16 J; Y ;;2,0 +1
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2
The integrand simplifies to |1 — . Now for p > 2, -
P2 —/2p+1 P

1)v/p? — V2p + 1 < p*, and this implies that
—
(3.33) p2 o - vVopt1-YE f‘”l

o2 -
(3.34) Vo -vVap+1-p< YL ;/EPH

(3.35) 1-—2__ )< !
Vet —-v2p+1 P

or that the integral {3.32) is less than

\/iﬂﬂ oo dp
(3.36) . 16[2 27

This converges, so {3.31) and (3.32) also converge, and by comparison, the
first integral of (3.30) does as well. Now convert the second integral of (3.30)
to polar coordinates. An upper bound for the second integral, found by
converting the integrand to polar coordinates and integrating over a larger
region, is given by

1 2
3.37 —_—,—,————— in & drdéd
(3:37) ./ / ( 2rsm8+ ) Tembar

Consider the integral as a function of #. Then in the range 0 < ¢ < %, it
attains its maximum value at § = . Therefore, an upper bound for (3.37)
is

2
(3.38) var / 1o ] rar
8 JE\T 2 —/2r+1
From (3.35),
1 1 1
3.39 S < —
(3.39) T r2—+2r+1 ?

Thus the integrand is less than 4 =¥, and so the integral converges. Therefore
both integrals of (3.30) converge, "and thus Y oneg P(bn) converges as well. O

Theorem 3.4. Let all conductivities of Qoo, be constant. Then its Green’s
function dissipates finite power in the subnetwork | J;_, hn
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Proof. From (3.22),for i~j, r; < v;, 4,5 € hy,
(3.40) :
I 1 3 5 1
|lg(¢) — g(3)f < 4vr (fi 1.1) 327(n—1)3 + 32yr(n - 1)4 + y(n - 1)8
where the inequality holds for large n. Since -r{- - % < 15,

(3.41)
: . 1 (1 1Y\? 9 25
- 2 & i
9(i) - 9(7))" < 16772 (r,- r,-) + 10227(n— 1) | 102477%(n — 1)8
1 3 5 1
+7(n - 1)10 t 64yr(n ~ 1)4 + 64y72(n — 1)8 + 297(n - 1)6-
15 3 5

+51271r(n— 1y + 16y(n—1)8 + 1647 (n—1)*°
Summing over all edges in h, gives

(3.42) '
' 1 1 1)\? 2 a
P(flu) < 16772 iNj;‘z’thn (;: - "r';) +6(2n — 1) [(n —1)
b ¢ d e f g

since there are 6(2n — 1)? edges in h, (where a through g are the constants
given above). Summing P(h,) from n = 2 to oo gives

(3.43)
S 1 1)\? .
ﬂz_:zp(hn) < [15 — .~j§eh,. (1"_.' - r_,-) + 6(2n - 1)? [(n —
b c d € f g
R e AR VA CE VA e Vo (n-nw”

Obviously, all terms converge except the first, so consider
1 1\?
(340 2 (55
#3131 €bn

Let us examine the sixth of h,, which is adjacent to one face of the 2nx2nx2n
cube centered at the origin. The above sum over this portion of A, is

(3.45) .
1 n-=1n-1 1
(;_ n—l) +4§§, (\/n Tral+ b \/(n-1)?'-|'-'aﬂ—+zﬂ)




14 PHILLIP LYNCH

Thus Y oe, P(hy) converges if

i[G(%_nil)z

2
1

converges. The first term simplifies to Y02, ;:‘(;}'_-f)-r, which converges.
Consider the second term:

(3.46)

oo n—1n-1

1 1 :
an 200 (—m+ A Cpgy an 62)

By the triple integral test, this sum converges if and only if the following
~ triple integral converges:

(3.48)

=1 2
f ./ ,/ (\/_4. 2 + 22 \/32+y21+ G- 1)2) dzdydz

Again, converting to spherical coordinates and integrating over a larger
region gives

r x . 2

T i1 1
3.49) . / j / -- 2 sin ¢ dpddl
(3.49) o Jo JvE (P \/p2—2pcos¢+1) p'sin § dpag

as an upper bound for (3.48). In the range 0 < ¢ < %, sin ¢ attains its
maximum at ¢ = . Thus

I L E oo 2
(3.50) v2 [ : / ‘ / e ! o2 dpdgdd
2 Jo Jo Js\P +/pP-2pcoséd+1l 7

bounds (3.49). This integral has already been shown to converge by com-
parison with%. Therefore both terms of (3.46) converge, and so PUZ,)
is finite. a

Theorem 3.5. Let all conductivities of 3o, be constant. Then P(Qu,) is
finite.

Proof.

(35 P(Rey)= 3 P(a)+ 3" Plha) + P(5:) + P(hy)

n=2 n=2

By Theorem 2.4, g is finite everywhere. Thus the power dissipated in the
eight edges of b; and the four edges of h, is finite. By Theorems 3.3 and
3.4, 2, P(bs) and 3.2, P(hy,) are finite as well. Therefore P(Qc,) is
the sum of four finite quantities, so it is finite. |
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Conjecture 3.6. Let all conductivities of ., be constant for m > 3.
Then P(Qle,, ) i8 finite.

Remark The first term in the asymptotic expansions of the Green’s func-
tions of ., and 2, are the same as the Green’s functions in the continuous
case in dimensions two and three. If this pattern holds, as it should, the
conjecture is true.

4. THE FiNITE GREEN'S FuNCTION

I now consider an arbitrary connected network with positive weights as-
signed to each edge. By examining the Kirchhoff matrix X under appro-
priate conditions, an important result regarding the power dissipated by a
Green’s function will be derived.

First, a determinantal identity is needed. Let a be an n x n matrix, and
let A;; denote the (n — 1) x (n — 1) matrix constructed by deleting row i
and column j. Similarily, Ag;;x will denote the (n ~2)x (n - 2) matrix
constructed by deleting rows h and i and columns 7 and k.

Lemma 4.1. For any indices h, i, j, and k with 1 < h < i < n, and
1<j<k<n,

(4.1) [All Anigel = | Anii |l Aikl = [Anikl| Ais]
The proof is given in [1].

Lemma 4.2, Let Q be a connected network with positive conductivities as-
signed to each edge and with boundary 092. If a unit source is placed at
some node in int() = Q — 9Q, and zero potential is imposed at every bound-
ary node, then the power dissipated in 2 is identically the potential at s, the
source node.

Proof. Under the correct ordering of nodes, the Kirchhoff matrix K has the
following structure:

8 int
(4.2) A B a
BT C int

Also, Kv = w where v is the vector of potentials at each node, and w
is the vector of currents at each node (under the same ordering of nodes).
Number the nodes such that the node with the unit source is numbered first
among the interior nodes. Then under the above conditions, v and w are
given by the vectors below:

0 4] 8 w*
(4.3) 1
] int
int v* 0
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where w* is the vector of currents at boundary nodes, and v* is the vector

of potentials at interior nodes. The power dissipated in the network is given
by

w*
(4.4) P=vlKv=1vTw= {0 v*] 1 = v,
0

the value of the potential at the source node. a
Now :

A B 0 W*
(4.5) " = 1

B\ C w¥ 0

which implies that

(4.6) Cv*= [ }) ]
Therefore, by Cramer’s Rule,
_ Cul
ICI
This leads to the following theorem:

(4.7) = P(Q)

Theorem 4.3. Let$) be a network under the conditions described in Lemma
" (4.2). Construct Q" by increasing v;;, the conductivity of one edge of .
Then P(£1) > P(Q").

Proof, The entries of matrix K are as follows: If ¢ # j, ki; = —7i;. Other-
wise, ki = 3,4, 7:j- Let us divide the proof into several cases.

Casel: i, € 99

In K, only submatrix A is affected by a change in v;;. Since C' remains
uncha.nged for both 2 and Q*, the power dissipated does not change by
(4.7). Thus P(Q) = P(Q"). '

Case II: 1 € 8Q, j € intQd

Divide into two subcases:

CaseIla: j # s

In matrix K, four entries are affected by a change in v;;. However, the
only changed entry in C is ;. Let us change v;; by +x. Then k;; changes
by —z, so k;; will change by +z. Let us interpret |C| and |Cy;1| as functions
of z. Then we can take the derivative of v, with respect to z.

doy _ 4 (ICia(e) ,

(4.8)

Now
|Cra(z)] = [C1a(0)] + 2|C1jajl and|C(z)] = |C(0)| + 2]Cji5
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which implies that
IC1al’ = {Cjij| and|CY = |Cyy4
Thus

(4.9) |C”CIJ,111 IC;:31Ch;]

dz ICT2

By Lemma 4.1,
IC1iC1s5n4l = |C1allCyi5t — 1C15lICiia

Therefore, since C is symmetric, {Cj1| = |Ch;il, and

dv, _ —|C1;J‘|2
(4.10) = =g <O
Casellb: j=3s
By the same argument a.bove,
d dv,
(4.11) > (ICICral’ — ICICral)

IC iCP?
However, the derivatives cha.nge By a similar calculation, it is seen that the
derivatives change:
|C1al’ = 0 and|CY’ = |C14|

Thus |
& — ""ICl;]Iz
dr ~ |C|?

Case III: i € intf), j € intQd

Again, subcases are needed:

CaseIlla: i,7# s

Assume i < j. Now, all four entries which change, Vi and v;i, Wh.lch
change by —z, and 7;; and 7i;, which change by 4z, are in C. Rewrite IC|:

(4.13)

(4.12) <0

4]

i— 1

|C(z)| = |[Chs-..,Ci+zv,...,C; —2zv,...,Cp)| wherev= 0
i- |1

0

=|[C'1,...,C.-,...,C,--—:r-v,...,Cm]|+z|[Cl,...,v,...,C_,--— vere s Cmll
= |C(0)| = z|[Cys---+sCis e e s¥yeer s O]l + 2|[Cry oo v 5040, Gy , Crml|
—22|[C1yere y¥yeeesByene, Cmll

where C denotes the kth column of matrix €. From this expression, we
obtain an explicit formula for |C}'. Now evaluate the derivative at z = 0:

(4.14) ICF| = ~(=1)*|Cil + [Cisl + |Cual = (~1)™|Cjal

z=0
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Similarily,
(4.15) |Cuq/ 0 =(=1)*|Cuil + [Cijasl + [Crisuil = (=1)F|Cyjadl
Since C' is symmetric,

dv, 1 i+j

= = TC’HIE{IC”C“;“'I + [CllCrinil = 2(=1)"F|C||Cria;]
(4.16) #=0

1CualiCisl — 1CuallC] + 2(-1)‘+f|cl;1||a-;,-|}

By Lemma 4.1,

(417) ICHICLul = [CrallCiiil ~ 1C1l|Ca
(4.18) A IClICy5:;51 = 1C1allCiisl — |C1,5lICial
(4.19) IC1ICi5l = 1C1alICi] — [Crisll Cial
Thus (4.16) simplifies to
dv, —[Crf? + 2(=1)H|C1;l{Cry5] = {C1,41°
pany | ol HACD GO - 0
Now if i 4 j is even, then
(4.21) .
ﬂ’i = "‘ICl;iP + 2lcl'.1'“01;1'| - |Cl;j12 — -(Icl;il =~ lcl;jl)z <0
dz | .o IC]? |CP?
If i + 5 is odd, then
(4.22) ,
dv, | _ —lCuf? - 24CulI0u1 - 101 (Gl +1CsD? _ o
dz | ,_o - |CP? IC|?

Therefore %‘é‘ |z=0 < 0. However, because this relation holds for all ;;, it

holds for all z as well. So %‘f; < 0.
Case IIlb: 1 =3

Again,
(4.23) ICI| = ICssl + |Ciil — 2(=1)"|Ciy
: z=0
But
(4.24) [Chal’ = [Crjajl
Thus .
(4.25) dv, _ [ClIC1a5] = 1€l = [CrallCiisl — 2(=1)"*7|C1aICls]
] dﬂ: | =0 |C"|2
By Lemma 4.1,
(4.26) IClIC1snil = |Cral|Cii5l = [Crisl?
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So
dv, _ =ICua® — 2(=1)"H|C1a||Cyy] = ICyl?

(4.27) e IC?
If i + 7 is even, then

dv, _ =(ICial + 1Cy)?
(4.28) ol i ol <0
If i +j is odd, then

dv, _ =(ICal = [Cy;51)?
(429) @™ CR O
By the same argument in Case IlIa, %’5; < 0 for all z. Thus in every case,
4 < (. By Lemma 4.2, this implies that P($2) > P(Q*). !
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