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Abstract

This paper will investigate pairs of resistor arrays of the same shape
and with the same boundary data, and will show that two such arrays
have the same internal source configurations. For certain rectangular
and cylindrical networks, source location is uniquely determined by
boundary data.

1 Introduction

Consider the two resistor arrays referred to above; call them I' and 3.
I" and X are the same shape; each have unit resistors and no sinks. Let
A be the “difference” array of I and X, that is I{A) = I(T") — I{Z).
A, by definition, has sources where I" has sources, sinks where 3 has
sources, and unit resistors. Thus, if both T and ¥ have sources at a
particular node, then A will have a net current zero in that position.
Also, it has been proven that A has boundary voltages equal to zero.
Note that all potentials in A are zero if and only if there are no sources
or sinks present. If A has neither sources nor sinks, then I and &
have the same internal source configuration. In many of the networks
studied here, it is necessary to restrict the sources in I" and in 5 to
unit size. Thus A’s sources and sinks are restricted to unit size. Both
I' and X have the same boundary currents and thus the same number
of internal sources. In this paper, the idea of the difference network
A will be used to determine uniqueness of sources in 3-dimensional
rectangular and cylindrical networks.



2 Proof of Uniqueness in a 3-D Rect-
angular Network one unit in width

Before proving that two such arrays have the same internal source
configuration, it is necessary, in this case, to first prove that the voltage
at every node in the difference array must be an integer. Note that
the nodes in the array are not necessarily I'-harmonic.

Lemma 1 If g 3-dimensional rectangular resistor array (one unit in
width) with unit resistors has boundary currents and voltages zero,
then the voltage at every node in the array must be an integer.

Proof. The currents in the boundary spikes and between the first
layer in are zero because the net currents exiting the boundary spikes
are zero. Thus the nodes on the first layer in have zero potential.
Consider a node on the first layer in. Please refer to figure one.
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Figure 1: 3-dimensional rectangular resistor array one unit in width

Four currents flowing into this node are all zero. This node may be
a unit source, unit sink, or harmonic node, so the current flowing from
this node must be zero, 1, or -1. Therefore, all voltages on the second
layer in are either zero, -1, or 1. Four of the five nodes surrounding a
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node on the second layer have integer-valued potential. Because the
resistors have unit resistance, four of the five currents flowing into (or
out of) this node are integer-valued. Thus, the fifth current is also of
integer value. By induction, all nodes in the array have integer-valued
potential.

Theorem 1 Unigueness Theorem

If two 3-dimensional rectangular arrays (one unit in width) are the
same size, have unit resistors, and have the same boundary data, then
these two arrays have the same internal source configuration. Note
that the sources in this problem are restricted to unit size. Remember
that I and ¥ have no sinks.

Method. Show that there are no sources or sinks in the difference
array A. All potentials in A are zero if and only if there are no sources
or sinks present.

Proof. Let p be the maximum voltage in the difference array. Call
v the node on diagonal 0 with the highest potential x. Since y is the
highest value of any potential, v must be a unit source or harmonic
node. Please refer to figure two.
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Figure 2: Previous resistor array cut by diagonal planes -



If v is a harmonic node:

All neighbors of v must have potential . This is because the
potential at a node is the average of the surrounding potentials, and
since the highest is in the center, there can not be any surrounding
nodes at higher potential.

Two of the neighboring nodes to v are on the (8 ~ 1) diagonal.
Thus there is a node on 8 with the maximum voltage.

If v is a unit source:

Because v has the maximum voltage value u and all voltages are
integer-valued, four neighbors of v have potential g and the fifth has
potential g — 1. Therefore, because there are two neighboring nodes
on d — 1, at least one node on & — 1 has potential p.

The maximum is eventually found on the first diagonal. Note that
the only node on the first diagonal has potential zero. Thus the highest
potential in the array is zero.

Conversely, by making the necessary subtitutions (“minimum” for
“maximum,” “lowest” for “highest,” etc.), this proof shows that the
minimum is also found on the first diagonal, so the minimum voltage
value is zero.

The minimum and maximum voltage values in the array are both
zero. Therefore, all nodes in the array have potential values of zero.
The array is unique.

This proof, when modified, can be applied to any 3-D rectangular
network with no restriction on the number of rows or columns on any
of the sides.

3 Uniqueness in all 3-Dimensional Rect-
angular Networks

Theorem 2 If o 3-dimensional rectangular resistor array with unit
resistors has boundary currents and voltages zero, then the voltage at
every node in the array must be an integer.

Proof. This proof works the same way as the one above. The
currents in the boundary spikes and between the first layer in are zero



because the net currents exiting the boundary spikes are zero. Thus
the nodes on the first layer in have zero potential. Consider a node
on the first layer in. Please refer to figure three.
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Figure 3: Rectangular resistor array with arbitrary dimensions

If the node is on one of the outside faces of the network, then the
above proof applies. If the node is not on one of the outside faces,
five out of six currents flowing into it are all zero. This node may
be a unit source, unit sink, or harmonic node, so the current flowing
from it must be zero, 1, or -1. Therefore, all voltages on the second
layer in are either zero, -1, or 1. Five of the six nodes surrounding a
node on the second layer have integer-valued potential. Because the
resistors have unit resistance, five of the six currents flowing into {(or
out of} this node are integer-valued. Thus, the sixth current is alsc of



integer value. By induction, all nodes in the array have integer-valued
potential,

Theorem 3 Unigueness Theorem

If two 3-dimensional rectangular arrays with unit resistors are the
same size (no restrictions on the dimension size) and have the same
boundary data, then these two arrays have the same internal source
configuration. Note that the sources in this problem are restricted to
unit size.

Method. Show that there are no sources or sinks in the difference
array A. All potentials in A are zero if and only if there are no
sources or sinks present. This method is the same as the one above
witht he exception that the diagonal dividers are 2-dimensional sheets
as opposed to being one-dimensional lines.

Proof. Let y be the maximum voltage in the difference array. Call
v the node on diagonal & with the highest potential x. Since y is the
highest value of any potential, v must be a unit source or harmonic
node. Please refer to figure four.

If v is a harmonic node:

All neighbors of v must have potential . This is because the
potential at a node is the average of the surrounding potentials, and
since the highest is in the center, there can not be any surrounding
nodes at higher potential.

Two of the neighboring nodes to v are on the (3 — 1) diagonal.
Thus there is a node on 8 with the maximum voltage.

If v is a unit source:

Because v has the maximum voltage value p and all voltages are
integer-valued, five neighbors of v have potential ¢ and the sixth has
potential u — 1. Therefore, because there are two neighboring nodes
on d -1, at least one node on & — 1 has potential .

The maximum is eventually found on the first diagonal. Note that
the only node on the first diagonal has potential zero. Thus the highest
potential in the array is zero.

Conversely, by making the necessary subtitutions ( “minimum” for
“maximum,” “lowest” for “highest,” etc.), this proof shows that the
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Figure 4: Previous resistor array cut by diagonal planes

minimum is also found on the first diagonal, so the minimum voltage
value is zero.

The minimum and maximum voltage values in the array are both
zero. Therefore, all nodes in the array have potential values of zero.
The array is unique.

The method this proof is based upon can be applied to different
networks of unrelated shapes, as will be demonstrated later in this
paper.

Important note:

It was not necessary to carry out the proof to this length. If it is
proven that every node in this network has an integer-valued voltage,
and if the number of sources in this particular difference network is



limited to strictly less than six, then the network is unique. This is
because u is the maximum voltage but u always has some (not all)
neighboring nodes with this same value g. In the rectangular network
being examined, when looking at an interior node with six neighboring
nodes, it is known that at least five of the six neighbors have a voltage
with value g, as does the node in question itself. This makes a total
of at least six nodes with the maximum voltage u. However, not all
of these nodes can be source nodes because the number of sources is
restricted to be strictly less than six. So, one of these nodes with the
maximum potential 4 must be an interior node, neither a source nor
a boundary node. This cannot happen.

There are other networks where uniqueness can be proven if all the
nodes in a particular network all have integer-valued voltages. Often-
times, the number of sources in a given network must be limited to be
able to use this argument.

4 Proof of Uniqueness in Cylindrical
Networks

Definition: The word “table” indicates a circular edge that also sep-
arates rays and spikes.

The first cylindrical networks to be considered are those that have
.spikes. This network has two tables with one spike each. Please refer
to figure five.

As done previously, the difference network will be used to prove
uniqueness. In the difference network, it is known that the boundary
voltages and boundary currents are equal to zero, so the voltages at
nodes two and four are zero. There is thus no current flowing on the
circular edges, and there is none flowing between nodes two and four.
However, nodes two and/or four could be unit sinks, unit sources, or
harmonic nodes. There is no way to tell whether or not there is cur-
rent flowing from either of those nodes to nodes one and three, their
respective neighbors. Thus, this network is not unique.

The next network to be examined has two tables with two spikes
each. Please refer to figure six.
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Figure 5: A very simple cylindrical network
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Figure 6: Cylindrical network with two tables that have two rays each

Proof that the nodes have integer-valued potential:

The boundary voltages and currents are zero, so the voltages at nodes
one and two in this network are zero. Nodes one and two may each
be a unit source, unit sink, or harmonic node. By definition, the re-
sistors have unit resistance, so the current flowing from each of these
nodes may be 1, zero, or -1, which are integer values. Thus the current
flowing into node three must be integer-valued, so the voltage at node
three is integer-valued as well. The same argument can be used to
show that the voltage at node six also has an integer value. Thus all
nodes in this array have integer-valued potentials.

Proof of Uniqueness:
The following equations may be obtained by looking at a sketch of



the network. I(1) represents the net current at node one while v(1)
represents the voltage at node one, and so forth.

1) = I(2) = —u(3)
I(4) = I(5) = —u(86)
1(3) = 3(3) — v(6)
1(6) = 3u(6) — v(3)

The net current at any of the nodes in this network must be 1,
zero, or -1, because the sources in I' and in ¥ are restricted to unit
size. By equations one and two, |[v(3)| and |v(6)| must be less than or
equal to one. I(3) in equation three and I{6) in equation four must
be 1, 0, or -1. In order for equations three and four to have validity
with these restrictions, v(3) and v(6) each must be zero. Thus, the
net current at each and every node in the network is zero. There are
no sources or sinks in A, so this network is unique.

Equations one through four were obtained directly by looking at
the network. As long as there are two or more rays in each of the
faces, equations such as these can be used to prove uniqueness.

Theorem 4 Unigueness Theorem depending on number of rays

In a eylindrical network with two tables, there must be at least two
spikes for the network to be unigue. Please note that the spikes are
connected to rays, which are, in turn, connected to one center node in
the middle of each table.

Proof. Tt has already been shown that if there is only one ray and
spike in each table, then the network is not unique. It has also been
shown that if there are two rays on each table, then the network is
unique. In a similar manner, it will be shown that if there are two or
more rays on each table, then the network is indeed unique.

The difference network, once again, is to determine uniqueness.
It is known that hoth the currents and the voltages at the ends of
the spikes are zero. Thus, the voltages on the first and only layer
of the network are also zero. The nodes on the first layer are either
unit sources, unit sinks, or harmonic nodes. Thus the current flowing
into each center node is of integer valued, which determines that the
voltages at each of the center nodes are of integer-valued as well. All
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nodes in the network are determined to have integer-valued voltage,
so the equation method can be used to solve this problem, as it was
used to solve the above problem. Please refer to figure six. Note that
I(3) equals the number of rays coming into node three, multiplied by
the voltage at node three, minus the voltage at node six. Note that
I(6) equals the number of rays coming into node six, multiplied by
the voltage at node six, minus the voltage at node three. The same
“rules” as in the above paragraph apply to this network.

In order for the equations for 1(3) and I(6) to have validity with
these restrictions, v(3) and v(6) each must be zero at all times (unless
there are less than two rays). Thus, the net current at each and every
node in the network is zero. There are no sources or sinks in A, so
this network is unique.

The next network to be examined has two tables (tables A and C,
which are also referred to here as rims) with a horizontal connecting
line in between (line B). The two tables on the ends have rays that
extend into spikes. Each of the two tables has the same number of
rays as the other; let that number be six. Please refer to figure seven.

This proof of uniqueness is much like the one shown earlier for
three-dimensional rectangular networks. This sketch (please see fig-
ure seven) is of the difference network of a network of this shape: Note
that the boundary currents and voltages are zero, so the voltages on
the first and only layers on the end tables are zero. The boundary
nodes are those at the ends of the spikes on the end tables. It will
be shown that wherever the maximum voltage is (and likewise, the
minimum), its value is zero. Note that it is known that the potentials
on the outside end rims are zero.

If the maxtmum is af the center node on either end:

e If the maximum voltage 4 is a unit source, all neighbors except for
one have voltage p also. All of the neighbors except for one are on the
rim of table A or of table C (depending on which end is in question),
where all potentials are zero.

e If the maximum g is a harmonic node, then all of its neighbors have
the same potential, which is zero. Thus, the maximum g has potential
Z€ero. :

If the mazimum is on the center axis, not on either end:
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Lima B

Figure 7: Another cylindrical network with spikes

e [f the maximum is a unit source, all neighbors have potential u ex-
cept for one that has potential 4 — 1. Therefore at least one node on
rim B has potential 1 (unit source; also the maximum). All neighbors
of this 4 have potential u except for one that has potential g — 1.
There are two neighboring nodes; one of each is on rim A or rim C.
One of these neighbors has potential x (unit source; also the maxi-
mum). But all the potentials on the rim A and rim C are zero: Thus,
the maximum potential is zero.

olf the maximum is harmonic, all of its neighbors have potential u. At
least one of those neighbors lies on line B. All neighboring potentials
to that potential also have a value of u; neighboring potentials on rim
A or rim C have values of zero. Thus, the maximum potential in the
network, y, is zero.

If the mazimum 1is on line B:
e If the maximum g is a unit source, at least one node with the same
voltage 2 will be on rim A or rim C, where all the voltages have been
determined, already, to be zero.
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» If the maximum g is harmonic, all of its neighbors have potential
i as well; two neighboring nodes are on rims A and C, where all the
potentials are zero.

With any of these locations, the maximum u is found to be on the
edge of rim A and/or the edge of rim C, where all of the potentials
are zero. Thus the highest potential in the array is zero.

By making the necessary subtitutions (“minimum” for “maximum,”
“lowest” for “highest,” etc.), this proof shows that the minimum is also
found to be on rim A and/or on rim C, s0 the minimum voltage value
in the array is zero.

The minimum and maximum voltage values in the array are both
zero. Therefore, all nodes in the array have potential values of zero.
The array is unique.

5 Proof of Uniqueness in Cylindrical
Networks

The next cylindrical networks to be considered are those with con-
nected spikes; please refer to figure eight during the next proof.

R
T N

w0 L]

Figure 8: Simple cylindrical network with connected spikes

Nodes one, six, five, and ten have voltages and currents of zero.
Because there is neither a voltage drop between nodes one and six
and between nodes five and ten, no current flows along the respective
boundary edges connecting them. Thus, that edge can be ignored and
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this case reduces to one already proven earlier in this paper (please
see figure six and the accompanying proof).

6 Proving the uniqueness of a Cylin-
drical Network: a different approach

In the following specific networks, it is not simple to prove that the
nodes must have integer-valued potentials. Thus, a slightly different
approach to the problem may be required.

Quick note For the purposes of simplification, the use of the word
“sources” refers to both sources and sinks when referring to the dif-
ference network A {neither I' nor ¥ have sinks).

Method of Approach.

If both T" and ¥ are restricted to one source each, then A would
have one source and one sink if the network was not unique. If the
network was unique, then the sources in I and ¥ would overlap (that
is, their locations would overlap), and A would have zero potential
and zero net cuwrrent at each and every node.

The method is to show that one source, one sink cannot exist any-
where on A. This will show that a network of this shape is uniquely
determined in the single-source case. The next case to examine, nat-
urally, is the double-source case, and so on.

In the double-source case, I" and ¥ are restricted to two sources
each. Then, to prove uniqueness for this case, it must be shown that
two sources, two sinks cannot exist anywhere on A.

The next network to be considered is depicted in figure nine. The
single-source case will be considered for this network.

Single-source case

I' and ¥ are restricted to one source each, no sinks, and unit re-
sistors. To prove uniqueness, it is necessary to show that one sink
and one source cannot exist at any possible location in the difference
network A. This will show that single unit sources are uniquely de-
termined in a network with the same shape as I' and/or T,

This network can be reduced. Please refer to figure ten.
Proof of Uniqueness.
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Figure 9: More complicated cylindrical network with connected spikes

There can be no sources at the corner nodes where the voltages
are zero. If one of the sources were at a corner node, the positive
one for example, then zero would be the maximum voltage in the
network. However, zero would also be assumed at another corner,
which are considered interior nodes if no sources are there. If both of
the sources were at corner nodes, then zero would be the maximum
and minimum voltage in the network. The network would thus have
zero voltages at all nodes and would thus be unique.

Symmetry argument

This is a quick proof that if there are no sources at any of the four
corners, then the voltages at nodes two and eight and at nodes four
and six are respectively equivalent. In addition, the voltages at nodes
two and eight are equal and opposite to those at nodes four and six.

Proof. Let v represent the voltage at node eight. Since there are
no sources at nodes seven and nine, then the voltage at nodes four
and six each must be equal to —v. Let w represent the voltage at
node five. If there is a source at node four, a source of the same sign
and magnitude must be at node six because both nodes four and six
share the same voltage drops in all directions. However, there are only
two sources in this difference network and they are of opposite signs.

15
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Figure 10: More complicated cylindrical network: reduced

Therefore, there are no sources at nodes four and six, so the v must
represent the voltage at node two.

It has been proven that there cannot be sources at any of the
corners and there cannot be sources at nodes four and/or six. Now it
will be proven that there cannot be a source at either or both of nodes
two and eight.

If there is a source at node eight (note that the following can be
reversed for the case where there is a source at node two):

If the other source is at node two, then voltage v is the maximum
and minimum voltage in the network. All voltage values of interior
nodes fall in between the maximum and minimum voltage values in the
network, including the value of zero which is on the interior. Therefore,
all voltage values in the network are identically zero.

If the other source is somewhere other than node two, the voltage
v is an extreme value in the network (i.e., it is the maximum or the
minimum). However, it is assumed on the interior (at node two). This
is invalid.

If there is a source at node five, the other source must fall at an-
other point in the network. All other points have been ruled out.
Therefore, single unit sources are uniquely determined for this net-
Work.

GETTING STARTED ON A DEMONSTRATION OF THE DOUBLE-
SOURCE CASE

The next network to be examined is slightly more complicated: it
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has four tables with two rays upon each; on the end tables, the rays
extend to spikes and are connected with the spikes on the opposite
end table. Please refer to figure eleven.

G0} Oe)

o0}

o0

(\ :
S\

Figure 11: Cylindrical network with four tables and connected spikes

This network can be somewhat simplified to a network that looks
like this, with the four corners as boundary nodes where it is known
that the voltages are zero. Please refer to figure twelve.

For this network, the double-source case will be examined.

Double-source case

I' and X are restricted to two sources each, no sinks, and unit
resistors. A will have two sources and two sinks if the networks I and
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Figure 12: Previous network reduced to this network

. are not unique. Having one source and one sink present in A is also
a possibility, if a source in I" and a source in ¥ overlap, but the other
two sources in each one do not. If this does occur, the single-source
case applies (which has not yet been proven).

S0 to prove uniqueness, it is necessary to show that two sinks and
two sources cannot exist at any possible location in the difference net-
work A. This will show that two unit sources are uniquely determined
in a network with the same shape as T and/or Z.

Recap. To prove uniqueness, it must be shown that each case of
two sources and two sinks in the difference network cannot exist. The
difference network that will now be looked at will have two sources
and two sinks; each are of unit size.

Case one: Sources at corner nodes only

Proof. The maximum and/or minimum voltage must be located at
a source or at a boundary node. In this network, the sources are at
boundary nodes, where it is known that the voltages are zero. There-
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fore, the maximum and minimum voltages in the network are both
zero, so every voltage in the network is zero.

Case two: Sources at nodes one and three, and the other two located
anywhere along the center line (the center line has end nodes two and
eleven)

Proof. This argument is based upon the symmetry of the network
down the center line. Let s, , u, and v represent the voltages at
nodes two, five, eight, and eleven, respectively. The voltages at nodes
7 and 9 are —v because of the voltage of v at node eleven. It is
apparent that the current between nodes seven and four and between
nodes nine and six is equivalent, because the same currents flow into
node seven from nodes eight and ten as those that flow into node nine
from nodes eight and twelve. Therefore, the voltage at nodes four and
six is the same; let w represent this voltage. Please refer to figure
thirteen.

oy 2 G
5 §
t
v 8 o
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10 1 12
o 0

Figure 13: Case two

The voltage drop between nodes four and one and then nodes one
and two is the same as that between nodes six and three and then
nodes three and two. Therefore, the currents flowing along the edges
from nodes four to one to five is the same that flows along the edges
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from nodes six to three to two. Therefore, the sources located at
nodes one and three must be of not only the same sign, but of the
same magnitude. The contradiction of this proof lies in the fact that
if the current sources at nodes one and three are of the same sign,
say positive, then the other two current sources in the network are of
negative sign. This makes zero the maximum voltage in the network;
however, zero is assumed on the interior too. This cannot happen.

Case three: Sources at nodes two, three, eight, and twelve. Please
refer to figure fourteen.

A
JY

1 4 7 10

Figure 14: Case three

The two sources located at nodes with zero voltage have opposite
signs. This is because if they both had the same sign, positive for
example, then the other two sources would be negative. This would
make zero the maximum potential in the network, but zero is also
assumed at the interior. This cannot happen. So if one of the sources
of node three and node twelve has a positive sign and the other has
a negative sign, one of nodes two and eight have a positive and a
negative sign. The source with the positive sign will be arbitrarily
assigned to node two, so the source at node eight will have a negative
sign. Thus, node two will be the location of the network’s maximum
voltage and node eight will be the location of the minimum voltage.
Node four has a negative voltage because of current flowing out of
node two and through node one. Node eleven has a negative voltage
because its voltage is the average of those of its neighbors. Node seven
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thus has a positive voltage. Current flows in the directions indicated
on this sketch (please refer to figure fifteen).
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Figure 15: Case three

The two cases that must be considered are when the source at node

three has a positive sign and that at node twelve has a negative sign,
and vice versa.

Case a :
The source at node three has a positive sign and that at node
twelve has a negative sign. Current flows in the directions indicated
on this sketch (please refer to figure sixteen).
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Figure 16: Case three “a”
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Observe that no current is flowing into node nine. Current must
flow out of node seven and into node nine, but this leads to a contra-
diction at node seven: Current is flowing out of node seven but none
can flow in.

Case b

The source at node three has a negative sign and that at node
twelve has a positive sign. Observe line ! and the edges it crosses.
Please refer to figure seventeen.

4 7 10

line ]
1
1
l
3 : 6 L] 12
Olg o (+)
N N4
[}
2y N |1
¢} A HCERDE
Vo /N
° < N O
1 v ~ <
|
1
1

Figure 17: Case three “b”

On the left side on line {, there is a source and a sink. Two of the
edges that line [ cuts have currents flowing to the right. The third
edge does not have a designated current direction yet, but current
must flow to the left because an equal amount of current must flow
into the section with the source and sink than flows out of the sec-
tion. Therefore, node two must have a positive sign. Current must
flow from node five into node two because current is flowing out of
node two in every other direction. Node five therefore has a positive
voltage. Observe that no current is flowing into node nine. Current
must flow out of node seven and into node nine, but once again, this
leads to a contradiction at node seven: Current is flowing out of node
seven but none can flow in.

22



These three cases are only examples of the types pf cases that must
be discussued in order to determine that the netowrk is unique for the
double-source case.
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