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1 Introduction

For each positive integer n, construct an undirected triangle graph with bound-
ary I' = (V, Vg, E) as follows. V is the set of vertices in the graph and consists
of the integer lattice points (x,y) where 0 < z, 0 < gy, and z+y < n+1,
excluding the three corner points (0,0), (0,n+1), and (n+1,0). Vg C V is the
set of boundary vertices and consists of the vertices in V' where x or y is equal
to 0, or where ¢ +y = n+ 1. The interior vertices are denoted intV and consist
of V —Vp. E is the set of edges. Every vertex (,5) is connected by exactly one
edge to each of (l + ]-;j)a (Z - laj)a (Z,] + 1)7 (Z,] - 1)5 (2 + 1aj - 1)5 (7/ - ]-aj + l)a
whenever those vertices exist. These edges are the only edges in E. Given ver-
tices p and g, if there is an edge in E connecting p and ¢ we say that p neighbors
q, and denote this p ~ q.

A vertex conductivity network is a graph with boundary T' = (V, Vg, E)
together with a positive real-valued function v defined on V. A Schrédinger
network is a graph with boundary I' = (V, Vg, E) together with a real-valued
function g defined on V.

We use here vertex discretizations of the conductivity equation L. and
Schrodinger equation S, as follows:

Lygu(i) = > y(5)(u(j) — u(i))

irvi

Sypuli) = (Dum - u(i))) _ q(iyuli).

gri

Using these discretizations, if u is a solution to L,, = 0 then w = yu is a
solution to Sy, = 0 with ¢(3) = W We call u y-harmonic if L.,,u =0
for all interior vertices, and we call u a g-state if Sq,u = 0 for all interior vertices.

This paper refers to several properies of conductivity and Schrédinger net-
works established by Richard Oberlin. Though he took as a premise that the
networks he was working with were square, the properties we quote do not
utilize this in their proofs.

Given a conductivity network (T',+), let (T, q) be the Schrédinger network

with ¢ such that ¢(i) = Ze= 20770
¥, (with Neumann data -, ;(u(j) — u(i)) ), where A, is our conductivity
response matrix (with Neumann data -, ; v(j)(u(j) — u(@)) ) , is

. Then our Schrodinger response matrix

¥, = A,I,(B; B)™" — I,(B; B).

Here, I,(B; B) is the diagonal matrix with the values of v at the boundary
nodes on its diagonal, and I,(B; B) is the diagonal matrix with the values of
g at the boundary nodes on its diagonal. In general, M (FE; F) is the matrix
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Figure 1: Triangle network, n =4

defined by rows E and columns F' of matrix M, and we use B to refer to the
rows or columns corresponding to the boundary nodes of a graph, and N to the
interior.

The inverse problem is, given a conductivity response matrix A, and a tri-
angle graph with boundary T' = (V, Vg, E), to recover - on all vertices. We give
here an algorithm for doing this that utilizes the Schrédinger network.

2 Recovering ¢ on the boundary

We note that the formula for the Schrédinger response matrix requires us to
first obtain « and ¢ on the boundary; to obtain ¢ on the boundary, we must
also recover v on any vertices sharing an edge with a boundary node.

We quote a theorem from Oberlin:

Theorem 2.1 Let (T',v) be a conductivity network with boundary potential f.
There exists a unique y-harmonic function u such that u |yz= f.

The triangle graph with boundary has three edges: we call them West,
South, and Hypotenuse. Label the boundary vertices in clockwise order, with
v at the southmost position of the West edge and vs,, at the leftmost position
of the South edge.

Lemma 2.1 Given a triangular conductivity network with boundary potential
u defined on the West and South edges and Neumann data defined on the West
, there is a uniquely determined y-harmonic extension of u to the boundary
vertices on the Hypotenuse and the interior vertices.

Proof: Consider the interior vertices connected by edges to the West edge
(vertices (1, 1) through (1, n — 1) ). The potential of each vertex ¢ in this
collection is determined by the Neumann data on the vertex to its west, the



potential on the vertex to its west, the value of -y at 7, and the potential and value
of v on the vertex to its south. This is so inductively: the southmost vertex, (1,
1) in this group is determined; once we know its potential, we know that of its
neighbor to the north, and so on. So we also now know the extension of u on
the hypotenuse where it meets these vertices ( (1, n) ) by the same argument.
Now, proceeding inductively from south to north, at each step looking at node
i we can calculate the potential of the vertex just east of 4, since L,,u = 0 at
i, and the potentials at all of i’s neighbors but its eastern neighbor are known
(and all needed values of v are known). The boundary vertex of the Hypotenuse
here is also determined by the same argument. We’re now done by induction,
since this now determines the values of potentials of the vertices to the east,
and so on. O

Corollary 2.1 Let (T',v) be a triangular conductivity network. Let u be a ~y-
harmonic function on it which is 0 on the West and South edges, with corre-
sponding Neumann data which is 0 on the West edge. Then for each remaining
vertez i, u(i) is also 0.

Lemma 2.2 The submatriz of A, consisting of the rows corresponding to the
boundary vertices on the West edge and the columns corresponding to the bound-
ary vertices on the Hypotenuse is nonsingular.

Proof: This submatrix has the following interpretation: given a boundary
potential u which is 0 on the West and South edges, and equal to g on the
Hypotenuse, A (W; H)g is the resulting Neumann data on the West edge from
a y-harmonic extension of u. By our corollary, if A,(W;H)g = 0 then g =0. O

Corollary 2.2 Given A, and a vector of potentials u defined on the West and
South edges and Neumann data p on the West edge, there is a unique ~y-harmonic
extension of u to the Hypotenuse.

Proof: Let g be the boundary potential on the Hypotenuse. A,(W;S +
W)u+ A (W; H)g = p. By the previous lemma, A,(W; H) is invertible, so we
may solve here for g. Hence our extension. O

Theorem 2.2 Given a triangular conductivity network (I',~y) we can recover
on the boundary vertices and interior vertices adjacent to the boundary vertices.

Proof: Let the potentials on the West and South edges be 0. Specify cor-
responding Neumann data of 1 on v, and 0 elsewhere on the West edge. Note
that all interior vertices have potential 0: consider the interior vertices attached
by some edge to the West edge ( (1, 1) through (1, n — 1) ). By the Neumann
data of v; and the potentials of v; and vs,, we see that the southmost of these
vertices must have potential 0. But then by the Neumann data of vs, and the
potential on the previous vertex, the vertex just to the north of it must also
have potential 0. Similarly, each such interior vertex has potential 0. Since
u is y-harmonic, however, the next batch of interior vertices ( (2, 1) through
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Figure 2: Recovering v near the boundary

(2, n — 2) ) must also be 0 (starting at the bottom vertex and proceeding by
induction). Similarly, all interior vertices must have potential 0.

By the previous corollary, we can use the response matrix to find the poten-
tials on the hypotenuse. Call the potential at v,1 a. By the Neumann data
on vy, we have that y(v,41)a = 1, that is, that y(vs41) = 1. By symmetry, we
can use a similar method to determine v at all of the “corner” vertices, notably,
~(vy). Once we’ve discovered v(vy,), let us come back to this assignment again.
Consider the diagonal of interior vertices attached by an edge to the Hypotenuse
((1,n—=1)to (n—1,1)). Let i be the leftmost of these vertices. Now, the
Neumann data on v, 1, the potentials on v,,v,t1, and i, and the value of v at
vy, allow us to solve for the value of v at i. Next, using that u is y-harmonic and
knowing the potentials of v,,11 and v,y2, we can solve for y(v,42). Proceeding
in this fashion (using Neumann data at v,12, then looking at the vertex east
of i, etc.) we see that inductively we have solved for v at every vertex on the
Hypotenuse as well as all interior vertices connected to them. By symmetry, we
can do the same for the other two edges, and we are done. O

3 Recovering ¢ from the Schrodinger response
matrix

Now that we have recovered the conductances on the boundary nodes and all

nodes adjacent to them, we can compute ¢ on the boundary nodes, and thus

obtain, from our formula ¥,. Our task is now to recover ¢ on all interior nodes.
We quote the following lemma from Oberlin without proof.

Lemma 3.1 Let (T',v) be a conductivity network. Let (T, q) be the Schriodinger

network with q(i) = W Given a boundary potential f, there is a

unique g-state function v with u |y,= f.
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Figure 3: Recovering ¢

Lemma 3.2 Given ¥, and a vector of potentials u defined on the West and
South edges and corresponding Neumann data p on the West edge, there is a
unique g-state extension of u to the Hypotenuse.

Proof: Making the appropriate substitutions, the proof is identical to that
for conductivity networks (and utilizes analogous lemmas, also with identical
proofs). O

Theorem 3.1 Given a triangular conductivity network (T',~) and Schrédinger
network (T,q) where q(i) = %:))—7(;)’ and the response matriz for the

Schradinger network, we can recover q on all interior vertices of the Schrodinger
network.

Proof: We do so inductively. Assume we have recovered the value of ¢ at
all interior vertices east of (i,1) through (i,n —4). Set the potentials on the
West edge to be 0, specify corresponding Neumann data of 0 on the West edge,
a potential of 1 at (¢,0) and potential of 0 elsewhere on the South edge. Note
that proceeding inductively as in our previous theorem, all interior vertices west
of (i,1) through (¢,n — ¢) are of potential 0. Since this assignment extends to a
unique g-state, we know that S;,u = 0 at all interior vertices, that is,

(Z(u(j) - u(i))) _ qliyuli) = 0.

g~

At interior vertices where u(i) = 0 (as well as boundary vertices where
u(i) = 0 and our Neumann data is 0) this reduces to

> u()=0

jri



Examining this equation at (¢ — 1,1) (or the Neumann data, should that be
a boundary node), we see that u at (7,1) is —1. Examining it at (¢ — 1,2), we
see that u at (¢,2) is 1; and so on, alternatively taking on values 1 and —1.
Furthermore, since we know the values of ¢ of all interior vertices east of these
vertices, and using the Neumann and Dirichlet data on the boundary, we can
compute the potentials at all interior vertices east of (i,1) through (i,n — i)
(starting at the bottom right, proceeding left, and then starting up from the
right again). Thus, we need only examine Sy, u = 0 at each of (i,1) through
(i,n — i) to solve for g at each of these vertices. So, we’re done by induction
(the base case is trivial, since for interior vertex (n — 1,1), there are no interior
vertices to its east). O

Knowing g on every vertex and knowing v at least on the boundary, it is a
trivial matter now to recover <y on every interior vertex.



