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Abstract

This paper concerns the existence and uniqueness of solutions to the Dirich-
let problem for infinite networks. We formulate a Dirichlet problem for infinite
networks. Given that a solution to this problem exists, uniqueness is then shown.
Existence cannot be proven for a general infinite network, since it depends on con-
ditions imposed on the conductances. Consequently, it is pursued only for specific
networks—for a line, a fishbone, and a ladder.

1 Introduction1

A graph with boundary is a triple G = (V, ∂V,E), where V is the set of nodes and E is
the set of edges for a finite graph, and ∂V is a nonempty subset of V called the set of
boundary nodes. The set intG = V − ∂V is called the set of interior nodes.
A resistor network Γ = (G, γ) is a graph G together with a conductivity function γ

that assigns to each edge e in G a positive real number γ (e), called the conductance of
the edge e.
A function v defined on the nodes of G is said to be γ-harmonic at node p if the

sum of the currents from p to the neighboring nodes is 0. That is,

∑

q∼p

γ (p, q) [v (p)− v (q)] = 0. (1)

A Dirichlet problem for a finite resistor network can be stated as follows: Assume
that the graph G and the conductance γ (pq) of each edge pq in G are known. If a voltage
ϕ is imposed at the boundary nodes, is there a unique function v defined throughout
the network such that v is γ-harmonic on intG and v (p) = ϕ (p) for all p ∈ ∂V ?

1Definitions are taken from [CM-2].
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It is well-known that a unique solution exists for this problem (see [CM-1] for exam-
ple). The goal of this paper is to formulate an analogous Dirichlet problem for infinite
resistor networks and examine the associated notions of existence and uniqueness of
solutions.

2 The Dirichlet Problem

2.1 Formulation

For an infinite network Γ = (G, γ), we modify the above graph G so that |V | =∞ and
|E| = ∞. Unless otherwise stated, we assume the set ∂V of boundary nodes is finite.
This set ∂V includes a boundary node p∞ at infinity. If we think of the infinite network
as the stereographic projection of the 2-sphere onto the plane, then the boundary node
at infinity is the North Pole of the sphere. We also assume that the graph is locally
finite, that is, every node has finite valence.
For some node p0 ∈ intG and some q ∈ ∂V , let p0p1p2 · · · q denote a path connecting

the two; there are infinitely many paths to consider. Let `(p0q) ∈ R denote the number
of edges contained in such a path, and let

dist(p0, q) = min {`(p0q)} . (2)

For a function v defined on nodes V , we define the following notion of a limit:

Definition 2.1 For a path p0p1p2 · · · pk between p0 ∈ intG and pk ∈ ∂V (where pk
could be p∞), a sequence v (pi) is said to converge to a limit ` if for every ε > 0, there is
an integer N such that |v (pi)− `| < ε whenever dist (p0, pi) ≥ N . In this case we write
limi→k v (pi) = `.

We now state the Dirichlet problem for infinite networks. If a voltage ϕ is imposed at
the boundary nodes ∂V , is there a unique function v defined throughout the network such
that v (p) is γ-harmonic on intG and v (p) = ϕ (p) for all p ∈ ∂V (where v (p∞) = ϕ (p∞)
means limi→∞ v (pi) = ϕ (p∞) in the above sense)?

2.2 Uniqueness

Given that a solution exists to the above Dirichlet problem, uniqueness is straightforward
to show. We will make use of the following result:
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Theorem 2.2 (Finite Maximum Principle) Suppose v is a γ-harmonic function on
a (finite) resistor network Γ with boundary. Then the maximum and minimum values
of v occur on the boundary of Γ.

Proof. The proof is contained in [CM-1]. 2

The uniqueness result follows.

Theorem 2.3 Suppose a solution v (p) exists for the Dirichlet problem on an infinite
network Γ = (G, γ). Then v is unique.

Proof. The difference w ≡ v1 − v2 of two solutions is γ-harmonic on intG and
satisfies w = 0 on ∂V . Let p0 be an arbitrary point in G and q an arbitrary point in ∂V .
Given ε > 0, N can be chosen such that |w(p0) − 0| < ε for dist(p0, q) ≥ N . Consider
a finite subgraph Gε = (Vε, ∂Vε, Eε), where Vε = {p : dist(p, q) ≤ N}, ∂Vε = {p :
dist(p, q) = N}, and Eε is the appropriate subset of edges E. Since w|∂Vε

= |w(p0)| < ε,
the Finite Maximum Principle implies |w(p)| < ε on Gε. Thus |w(p)| < ε on the entire
graph G. But since ε can be made arbitrarily small, w(p) ≡ 0 and thus v1 = v2 on Γ. 2

2.3 Existence

The question of existence is a rather more difficult problem. In the above proof of
uniqueness, nothing was specified about the conductances γ, but without certain con-
ditions on the conductances, it is hopeless to show existence in general. As evidence of
this, consider the following simple example:

10cm2.6cmA:/Pic1.bmp

Figure 1: Infinite Line Network.

Example 2.4 Consider the infinite line network depicted above in figure 1, with nodes
{pj}∞j=0

and conductances {γi}∞i=1
. Let the set of boundary nodes be given by {p0, p∞},

where p∞ represents the boundary node at infinity. At the boundary nodes, we impose
the voltages ϕ (p0) = 1 and ϕ (p∞) = 0. Is there a solution to this Dirichlet problem if
no conditions are imposed on the γi?
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Solution Let voltages vn be defined on the nodes of the line such that vn = v (pn).
The current I between nodes p0 and p1 satisfies Ohm’s Law:

I = (v0 − v1) γ1, (3)

and since the function v must be γ-harmonic, it follows that

I = (v0 − v1) γ1 = (v1 − v2) γ1 = · · · = (vn−1 − vn) γ1. (4)

This establishes the recursion

vn = vn−1 −
I

γn
, with v0 = 1. (5)

Expanding this yields

v1 = v0 −
I

γ1

= 1− I

γ1

v2 = v1 −
I

γ2

= 1− I

γ1

− I

γ2

...

vn = 1− I
n
∑

i=1

1

γi
(6)

Thus as n→∞, limn→∞ vn does not even exist (much less approach ϕ (p∞) = 0) unless

the sum
∞
∑

i=1

1

γi
converges. For example, the conditions γi = 1 for all i, or γi = i for all

i, would cause the sequence {vn}∞n=0
to diverge, implying no solution to the Dirichlet

problem. 2

The best we can do then is establish convergence criteria for specific infinite networks.
We begin by revisiting the line.

3 Infinite Line Network

3.1 Effective Conductances

An alternative method for establishing the existence condition for the solution of a
Dirichlet problem on the infinite line network is to use effective conductances. We
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present this method here because it will be an extremely useful tool in more complicated
networks.
Assume the same formulation of the Dirichlet problem as in the above example.

Consider the subset of the infinite line network given by the first n+1 nodes {p0, . . . , pn}.
Between nodes p0 and pn, we seek the single conductance γ0n that is equivalent to the
n-conductance series combination. By equivalent, we mean that γ0n can replace the
combination without changing the current through the combination or the potential
difference between nodes p0 and pn. Since conductances add in series as resistors do in
parallel, we obtain

γ0n =
1

n
∑

i=1

1

γi

. (7)

Therefore the infinite line network depicted in figure 1 is equivalent to the following
(figure 2):

10cm2.6cmA:/Pic2.bmp

Figure 2: Effective Conductance for the Infinite Line Network.

The current I between nodes p0 and pn satisfies Ohm’s Law:

I = (v0 − vn)γ0n = (1− vn) γ0n (8)

or

vn = 1−
I

γ0n

, (9)

which gives

vn = 1− I
n
∑

i=1

1

γi
. (10)

As we let n→∞, we again arrive at the existence condition
∞
∑

i=1

1

γi
<∞.

4 Fishbone Network

4.1 Description

A fishbone network is obtained by taking the infinite line network and adding two
boundary spikes on opposite sides of each interior node, as depicted in the figure 3
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below. The resulting network has an infinite number of boundary nodes.

10cm3.5cmA:/Pic3.bmp

Figure 3: Infinite Fishbone Network.

4.2 Existence Condition

Recall that the Dirichlet-to-Neumann map (or response matrix ) Λ maps boundary value
potentials ϕ(p), p ∈ ∂V to the current function Iϕ(p), p ∈ ∂V , which is determined by
the solution to the Dirichlet problem with boundary values ϕ. Thus finding a condition
for the existence of a solution to the Dirichlet problem is equivalent to writing down the
response matrix Λ.
Recall that {Λ}ij = λij is interpreted as the current at node i due to a potential of 1 at

boundary node j and 0 at all other boundary nodes. The graph of the fishbone network
is a tree and so there is at most one path connecting any two nodes. In particular, there
is only one path βij between boundary nodes i and j. βij will resemble one of the three
paths indicated in figure 4. Equivalently, βij can be viewed as a line with the same

10cm2.7cmA:/Pic4.bmp

Figure 4: Three Types of Paths on Infinite Fishbone Network.

conductances in series and with boundary nodes i and j (figure 5). Thus, using Ohm’s

10cm3.5cmA:/Pic5.bmp

Figure 5: Paths Equivalent to Lines.

Law, and the expression for effective conductance on a line from §3.1, we obtain

λij = (vi − vj) γij = −
1

∑

γ∈βij

1

γ

. (11)
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Thus in order to write down the response matrix, we require that

1
∑

γ∈βij

1

γ

<∞ (12)

for each path βij between arbitrary boundary nodes i and j.

4.3 Inverse Problem

If the response map Λ is given, but the conductivity function γ is unknown, the inverse
problem is to use Λ to calculate the conductance of each edge in G. The fishbone
network, unlike other infinite networks we consider, has an infinite number of boundary
nodes, which bodes well for finding a solution to this inverse problem. Here, we present
an inductive procedure for doing so, recovering conductances from left to right.
Suppose we set a potential of 1 at node 1 and potential 0 at all other boundary nodes

(figure 6). Then the current out of node 2 is given by λ21, which satisfies

10cm3.5cmA:/Pic6.bmp

Figure 6: Voltage Pattern to Recover γ12.

λ21 = (v2 − v1) γ12 = γ12. (13)

In similar fashion, the conductance γ13 can also be recovered.
Suppose we now delete the boundary pendant 12. This is equivalent to adjoining

a boundary pendant at node 1, with conductance −γ12, without internalizing node 1.
The effect of this on the response matrix Λ is documented in [CM-2] (pages 104-105)
and is not reproduced here. Hence, if G′ denotes the graph with pendant 12 deleted,
the response matrix Λ′ for G′ can be expressed in terms of Λ. Similarly, we can then
form the graph G′′ with the pendant 13 deleted and obtain the response matrix Λ′′ for
G′′.
Since edge 14 has now become a boundary spike, we can recover the conductance

γ14. To do so, we can impose a voltage of 1 at node 1 and voltage 0, as well as current
0, at node 6. These conditions imply voltage 0 at node 4 and some voltage α at node 5
(figure 7). Then the current at node 6 must satisfy

λ61 + αλ65 = 0, (14)
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Figure 7: Voltage and Current Pattern to Recover γ14.

which implies α = −λ61/λ65. Note that λ65 6= 0, since there is a connection between
nodes 5 and 6. Now let x denote the current at node 1. Then x must satisfy

x = λ11 + αλ15 = λ11 −
λ61λ15

λ65

=
λ11λ65 − λ61λ15

λ65

= γ14 (1− 0) = γ14, (15)

and thus γ14 has been determined.
Finally, suppose we contract the boundary spike 14. This is equivalent to adjoining

a boundary spike at node 4, with conductance −γ14. The effect of this on the response
matrix Λ′′ is documented in [CM-2] (pages 106-107) and is not reproduced here. Hence,
if G′′′ denotes the graph with spike 14 deleted, then we can obtain a response matrix
Λ′′′ for G′′′.
At this point, the remaining fishbone network resembles the original, modulo the

edges 12, 13, 14 (figure 8). By induction then, the above algorithm results in the recovery

10cm3.5cmA:/Pic8.bmp

Figure 8: Fishbone Network after First Application of Algorithm.

of all conductances on the fishbone network.

5 Infinite Ladder Network

5.1 Description of the Network

We consider a ladder network that extends infinitely in the eastward direction (figure
9). The network is considered to have four boundary nodes, two on the West end, and
two at infinity. The vertical conductances are designated {di}, those on the top are
designated {bi}, and those on the bottom are designated {ci}, where i ≥ 1. Analogous
to the fishbone network, we seek conditions on the bi, ci, di that allow us to define a
response matrix for the infinite ladder.
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Figure 9: Infinite Ladder Network.

5.2 Inverse Response Submatrices

Let V denote a vector of boundary potentials, I a vector of boundary currents, and
Λ a response matrix. Since Λ maps from boundary voltages to boundary currents by
definition, we can write ΛV = I. Since the row sums of the response matrix are zero,
any constant vector V lies in the null space of Λ. Thus Λ is not invertible.
Consider, however, the matrix Λ̃, obtained from Λ by deleting the nth row and nth

column. Since Λ̃ is a proper submatrix of the positive semi-definite matrix Λ, Λ̃ is
positive definite and hence invertible. And since Λ has row and column sums equal to
zero, Λ is completely determined by the (n − 1) × (n − 1) submatrix Λ̃. In order to
have a legitimate Dirichlet problem, we can specify either potential or current at every
boundary node. Let us prescribe values for i1, . . . , in−1 and set vn = 0. Define the vectors
Ṽ = (v1, . . . , vn−1)

T , which contains the unknown potentials, and Ĩ = (i1, . . . , in−1)
T .

Then we can write Λ̃Ṽ = Ĩ, which implies Ṽ = Λ̃−1Ĩ. For the infinite ladder (where
n = 4), we can specify the boundary conditions as in figure 10.

10cm3.5cmA:/Pic10.bmp

Figure 10: Boundary Conditions at nth Stage.

Our goal is to find Λ̃−1
n at every stage (i.e. after having added a new rung to the

ladder) and obtain a recursion formula relating Λ̃−1
n+1 to Λ̃

−1
n . We would then like to

establish convergence of Λ̃−1
n to some limit Λ̃−1 and show that this matrix is invertible.

From this we can obtain Λ̃ and thus the limiting response matrix Λ.
Let us assume that we have Λ̃−1

n (satisfying Ṽ = Λ̃−1
n Ĩ) at the nth stage. Suppose we

add a boundary spike at node 4; we want to determine how Λ̃−1
n is affected by this first

update step.

Claim 5.1 Let Λ̃−1

n+1/3 denote the inverse response submatrix after the first update step.

Then Λ̃−1

n+1/3 is related to Λ̃
−1
n by

Λ̃−1

n+1/3 = Λ̃
−1
n +

1

cn





1 1 1
1 1 1
1 1 1



 . (16)
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Proof. At the nth stage, we specify the boundary conditions as in figure 10: current
1 at node 1, current 0 at nodes 2 and 3, and voltage 0 at node 4. Adjoin a boundary
spike with conductance cn to node 4. The node that was previously node 4 is now an
interior node, and the endpoint of the boundary spike is now the new boundary node
4 (figure 11). Before adjoining the spike, current could only exit the network at old
boundary node 4, which had potential 0 (figure 10). The same must be true now for
the new boundary node 4, implying that the potential at 4 is some negative voltage v4

(figure 11). Applying Ohm’s Law to the boundary spike, we have

11cm3.5cmA:/Pic11.bmp

Figure 11: Voltage at New Boundary Node 4.

cn (0− v4) = −1, (17)

or

v4 = −
1

cn
. (18)

We want the same boundary conditions after the first update step as before. To
achieve potential 0 at node 4, while maintaining current 1 at node 1 as well as current
0 at nodes 2 and 3, we subtract v4 from each boundary node. This identical potential
change at each boundary node does not change potential differences between boundary
nodes, and thus does not change current flow out of the network. Therefore, the inverse
response submatrix Λ̃−1

n+1/3 corresponding to the network after the first update step must
satisfy





v1

v2

v3



−





v4

v4

v4



 = Λ̃−1

n+1/3





i1
i2
i3



 , (19)
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where i1 = 1, i2 = 0, i3 = 0. From this, it is straightforward to verify the claim:

Λ̃−1

n+1/3





i1
i2
i3



 =



Λ̃−1
n +

1

cn





1 1 1
1 1 1
1 1 1













i1
i2
i3





= Λ̃−1
n





i1
i2
i3



+
1

cn





1
1
1





=





v1

v2

v3



−





v4

v4

v4



 . (20)

2

We can now invert Λ̃−1

n+1/3 to get Λ̃n+1/3, and fill in the missing row and column to
obtain Λn+1/3. Suppose we add a boundary spike at node 3 now; we want to determine

how Λ̃−1

n+1/3 is affected by this second step. A difficulty now arises in that we want
to impose the following boundary conditions at nodes 1, 2, 3, 4: current 1, current 0,
voltage 0, and current 0, respectively. Since node 3 now has zero potential, Λ̃ is not
the appropriate tool to use. Rather, we are interested in the inverse response submatrix
formed by removing the third row and third column of Λ. We will denote this submatrix

by ˜̃Λ.

Thus, after adding a boundary spike at node 3, we want to determine how ˜̃Λ−1

n+1/3 is
affected.

Claim 5.2 Let ˜̃Λ−1

n+2/3 denote the inverse response submatrix after the second update

step. Then ˜̃Λ−1

n+2/3 is related to
˜̃Λ−1

n+1/3 by

˜̃Λ−1

n+2/3 =
˜̃Λ−1

n+1/3 +
1

bn





1 1 1
1 1 1
1 1 1



 . (21)

Proof. The proof is analagous to that for the above claim. 2

We can now invert ˜̃Λ−1

n+2/3 to get
˜̃Λn+2/3 and fill in the missing row and column to

obtain Λn+2/3. The final step in completing the next rung of the ladder is to adjoin a
boundary edge between nodes 3 and 4. It is rather simple to determine how Λn+2/3 is
affected.
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Claim 5.3 Let Λn+1 denote the response matrix after the third and final update step.
Then Λn+1 is related to Λn+2/3 by

Λn+1 = Λn+2/3 +









0 0 0 0
0 0 0 0
0 0 dn+1 −dn+1

0 0 −dn+1 dn+1









(22)

Proof. The claim follows from arguments laid out on page 100 of [CM-2]. 2

Finally, we can remove the last row and last column of Λn+1 to obtain Λ̃n+1, which
we can invert to get Λ̃−1

n+1. The schematic at the end of this paper summarizes the steps
of the above algorithm (figure 18).

Remark 5.4 The relationship between Λ̃−1
n+1 and Λ̃

−1
n has thus been established via the

three recursions (16),(21), and (22) above. Taken alone, each step is remarkably simple.
But we do not know how to combine these three recursions into one relationship between
Λ̃−1

n+1 and Λ̃
−1
n , which we ultimately need in order to address the convergence of Λ̃

−1
n . With

the schematic in figure 18 as a guide, we wrote a short Matlab routine to combine these
three recursions into one, but the ouput was extremely complicated and a relationship
was not discernable. If such a relationship can be found, the algorithm detailed in this
section would be an elegant way to address the issue of the existence of a limiting response
matrix for infinite networks in general.

5.3 From Effective Conductances to a Response Matrix

In this section, we present a method for constructing the response matrix given the
effective conductances for a network. This method differs from the usual procedure
of constructing the response matrix as the Schur complement of the Kirchhoff matrix.
Moreover, we will see that our method motivates a condition under which the response
matrix has finite entries. Suppose we are given all of the effective conductances between
boundary nodes for a network (we will show, in the next section, how to derive two
of the six equivalent conductances for the ladder network). Then we show that it is
possible to reconstruct the response matrix.
Consider a generic electrical network with n boundary nodes. Recall that the effective

conductance between boundary nodes i and j is obtained by setting a potential of 1 at
node i and 0 at node j, and by insulating all other boundary nodes (i.e. imposing
0 current at these other boundary nodes). Then the current I emanating from node i
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must exit the network at node j. We can solve for σij, the effective conductance between
nodes i and j, from the equation

(vi − vj) σij = I. (23)

From this equation, it is clear that we can normalize the current I to 1, by dividing
both sides by I, and in what follows, we will always take I = 1.

Notation 5.5 Let ∆ij
k` = vij` − vijk , which represents the potential difference between

nodes ` and k, given that there is current 1 emanating from node i and current −1
exiting at node j.

Then the above equation can be rewritten as

∆ij
ijσij = 1⇒ σij =

1

∆ij
ij

. (24)

Since we are given σij, the quantities ∆
ij
ij are always known and can be thought of as

effective resistances. We now state and prove an important claim about the symmetry
of the quantities ∆ij

k` :

Claim 5.6 For i, j, k, ` ∈ [1, n], i 6= k and j 6= `,

∆ij
k` = ∆

k`
ij . (25)

Proof. Suppose f and g are functions defined on the boundary nodes. For each
boundary node p, let ϕf (p) be the boundary current due to the function f . As defined
in [CM-2], the bilinear form 〈g,Λf〉 defined by the response matrix Λ satisfies

〈g,Λf〉 =
∑

p∈∂V

g (p)ϕf (p) . (26)

Furthermore, as shown in [CM-1],

〈g,Λf〉 =
∑

p∈∂V

g (p)ϕf (p) =
∑

p∈∂V

f (p)ϕg (p) = 〈f,Λg〉 . (27)

We define the functions ψ1 and ψ2 (which can be thought of as boundary currents)
as follows:

ψ1 =







1 at node k
−1 at node `
0 elsewhere

, ψ2 =







1 at node i
−1 at node j
0 elsewhere

. (28)
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Also let ϕ1 and ϕ2 (which can be thought of as boundary voltages) satisfy the relations

Λϕ1 = ψ1, Λϕ2 = ψ2. (29)

Now consider the expression 〈ψ1,Λ
−1ψ2〉. We know that Λ−1 is not well-defined and

so there is not a unique ϕ corresponding to Λ−1ψ2. Despite this ambiguity, however,
the expression 〈ψ1,Λ

−1ψ2〉 is well-defined, since it represents the difference between the
k and ` entries of some potential function ϕ corresponding to Λ−1ψ2. Regardless of
which ϕ we choose, this potential difference must remain the same (since the associated
boundary currents ψ2 have not changed), and so we have attributed meaning to the
expression 〈ψ1,Λ

−1ψ2〉. Moreover, we can write
〈

ψ1,Λ
−1ψ2

〉

= 〈Λϕ1, ϕ2〉 . (30)

Using equation (27), we obtain the equality

〈Λϕ1, ϕ2〉 = 〈ϕ1,Λϕ2〉 . (31)

Since Λϕ2 = ψ2 and since ϕ1 is a potential function corresponding to Λ
−1ψ1, we arrive

at
〈ϕ1,Λϕ2〉 =

〈

Λ−1ψ1, ψ2

〉

, (32)

and so we have shown that

〈

ψ1,Λ
−1ψ2

〉

=
〈

Λ−1ψ1, ψ2

〉

. (33)

But since 〈ψ1,Λ
−1ψ2〉 = ∆ij

k` and 〈Λ−1ψ1, ψ2〉 = ∆k`
ij , we have established the claim. 2

We now show that, given ∆ij
ij, and using the symmetry condition (25), we can find

all of the ∆ij
k`. Suppose we have a current of 1 emanating from node 1 and a current

of −1 exiting at node 2, and 0 current at other boundary nodes (figure 12a). Then the

13cm7cmA:/Pic1314.bmp

Figure 12: Current Patterns on an Arbitrary Network.

voltage drop between nodes 1 and 3 is the sum of the drops between nodes 1 and 2, and
between nodes 2 and 3. Symbolically,

∆12
13 = ∆

12
12 +∆

12
23. (34)
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Likewise, if we have current 1 at node 2 and −1 at node 3, and 0 current at other
boundary nodes (figure 12b), we obtain the identity

∆23
13 = ∆

23
12 +∆

23
23. (35)

A superposition of these two sets of boundary current patterns yields a current of 1 at
node 1, −1 at node 3, and 0 at node 2. This implies that

∆13
13 = ∆

12
13 +∆

23
13, (36)

or,
∆13

13 = ∆
12
12 +∆

12
23 +∆

23
12 +∆

23
23. (37)

But since ∆13
13, ∆

12
12, and ∆

23
23 are known, and since ∆

12
23 = ∆

23
12, we can solve for ∆

12
23.

Similarly, focusing on the set of boundary nodes {2, 3, 4} instead of {1, 2, 3}, we can
write

∆24
24 = ∆

23
23 +∆

23
34 +∆

34
23 +∆

34
34, (38)

and since ∆24
24, ∆

23
23, and ∆

34
34 are known, and since ∆

34
23 = ∆

23
34, we can solve for ∆

34
23.

Having solved for ∆12
23 and ∆

34
23, we can broaden our scope to nodes {1, 2, 3, 4} and

obtain the equation

∆14
14 = ∆

12
12 +∆

12
23 +∆

12
34 +∆

23
12 +∆

23
23 +∆

23
34 +∆

34
12 +∆

34
23 +∆

34
34, (39)

from which we can solve for ∆12
34. Continuing in such a manner, we can determine all of

the ∆ij
k`.

We now reconstruct the response matrix column by column. From the above proce-
dure, we know that we can determine the potential differences

∆1n
12 ,∆

1n
23 , . . .∆

1n
n−1,n. (40)

From these differences, it is straightforward to determine the potentials v1n
1 , v1n

2 , . . . v1n
n :

WLOG, we can set v1n
n = 0 and use the differences ∆1n

k` to determine the potentials
themselves. It follows from the relation ΛV = I that

Λ















v1n
1

v1n
2

...
v1n
n−1

0















=















1
0
...
0
−1















. (41)
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From arguments laid out in §5.2, we can rewrite this as

Λ̃











v1n
1

v1n
2

...
v1n
n−1











=











1
0
...
0











, (42)

where we have omitted the current in = −1. If we invert Λ̃ we can determine the first
column of Λ̃−1: Λ̃−1

∗1 =
(

v1n
1 , v1n

2 , . . . , v1n
n−1

)T
.

If we then repeat the above procedure with differences ∆2n
k` instead of ∆

1n
k` , we can

obtain the second column Λ̃−1
∗2 . Continuing for ∆

3n
k` , . . . ,∆

n−1,n
k` , we have a procedure for

constructing the inverse response submatrix Λ̃−1 which we can invert to obtain Λ̃. Since
row and column sums of the response matrix Λ are zero, Λ̃ uniquely determines Λ.

5.4 Effective Conductances

From the above method, we see that elements of the response matrix are finite only
if the potential differences ∆ij

k` are finite. This is equivalent to requiring all effective
conductances σij to be finite.

5.4.1 The Conductance σ12

Let us first take up the issue of finding the effective conductance between nodes 1 and
2. To find σ12, we can set the voltages at nodes 1 and 2 to 1 and 0, respectively, and the
currents at nodes 3 and 4 to zero (figure 13). The zero current condition at boundary

12cm3.5cmA:/Pic15.bmp

Figure 13: Voltage and Current Pattern to Find σ12.

nodes 3 and 4 implies that there is no current flowing through the edges marked with
an X, in figure 13. Consider the ladder subnetwork that starts at nodes 5 and 6 (which
are boundary nodes for the subnetwork) and extends eastward to infinity. Suppose for
the moment that we know the effective conductance between nodes 5 and 6; call it σ56.
Then the ladder network of figure 13 can be redrawn as in figure 14.
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Figure 14: An Equivalent Ladder Network.

From this diagram, it is clear that d1 is in parallel with the conductances b1, c1, σ56,which
are in series themselves. It follows that

σ12 = d1 +
1

(

1

b1
+
1

c1

)

+
1

σ56

. (43)

A similar argument can be made to find σ56, which is given by

σ56 = d2 +
1

(

1

b2
+
1

c2

)

+
1

σ78

. (44)

This implies that

σ12 = d1 +
1

(

1

b1
+
1

c1

)

+
1

d2 +
1

(

1

b2
+
1

c2

)

+
1

σ78

. (45)

Proceeding in this manner, we generate an infinite, simple continued fraction for the
effective conductance between nodes 1 and 2 of the ladder network that is of the form

σ12 = a0 +
1

a1 +
1

a2 +
.. .

, (46)

where the an are given by

a2n = dn+1, n ≥ 0 (47)

a2n+1 =

(

1

bn+1

+
1

cn+1

)

, n ≥ 0. (48)

Remark 5.7 All partial denominators of the continued fraction are positive, real num-
bers, since they arise from conductances on the network.
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We now see that the effective conductance σ12 is finite if and only if the continued
fraction (46) converges. The following theorem, taken from [W], provides us with con-
ditions on the elements ap of the continued fraction that are sufficient to ensure its
convergence.

Theorem 5.8 If the series
∑

a2p+1 (49)

and
∑

a2p+1sp
2, where sp = a2 + a4 + · · ·+ a2p, (50)

converge, and
lim sp =∞, (51)

then the continued fraction (46) converges.

Proof. The proof is contained in [W]. The curious reader will soon be satisfied, for
we will supply a non-trivial adaptation of Wall’s proof in the sequel. 2

For the ladder network then, these convergence conditions translate as follows:

∑

(

1

bi+1

+
1

ci+1

)

<∞ and (52)

∑

(

1

bi+1

+
1

ci+1

)

(d2 + d3 + · · ·+ di+1)
2 <∞, while (53)

lim
i→∞

(d2 + d3 + · · ·+ di+1)
2 =∞. (54)

Example 5.9 We present this brief example to emphasize that these convergence con-
ditions for σ12 are sufficient but not necessary. Consider the infinite ladder network with
the conductance pattern indicated in figure 15. Then

12cm3.5cmA:/Pic17.bmp

Figure 15: Conductances on the Ladder.

σ12 = 1 +
1

(

1

2
+
1

2

)

+
1

1 +
1

(

1

2
+
1

2

)

+
. . .

= 1 +
1

1 +
1

1 +
. . .

, (55)
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which converges to the golden ratio. However,

∞
∑

i=1

(

1

bi+1

+
1

ci+1

)

=
∞
∑

i=1

1 =∞. (56)

5.4.2 The Conductance σ34

Let us now take up the issue of finding the effective conductance between nodes 3 and
4. To find σ34, we can set the voltages at nodes 3 and 4 to 1 and 0, respectively, and
the currents at nodes 1 and 2 to zero. The zero current condition at boundary nodes 1
and 2 implies that there is no current flow across b1, c1, d1 (figure 16). Analogous to the

12cm3.5cmA:/Pic18.bmp

Figure 16: Voltage and Current Pattern to Find σ34.

σ12 case, we can obtain what we will call a reverse continued fraction (RCF) expression
for σ34, given by

σ34 =
.. . +

1

dn + · · ·+
1

d3 +
1

(

1

b2
+
1

c2

)

+
1

d2

, (57)

which can be put in the form

. . . +
1

an +
.. .

1

a3 +
1

a2 +
1

a1

, (58)

if we let

a2n+1 = dn+2, n ≥ 0 (59)

a2n+2 =

(

1

bn+2

+
1

cn+2

)

, n ≥ 0. (60)
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Remark 5.10 The RCF is different from the standard continued fractions found in the
literature. There is no good intuition, at the present time, for how to rearrange the terms
of a standard continued fraction in order to show convergence of an RCF. Consequently,
we will develop convergence theory for the RCF from scratch, paralleling Wall’s [W]
development for standard continued fractions.

We are concerned with the problem of finding conditions on the elements ap of the
RCF that are sufficient to ensure its convergence.

Notation and Machinery Consider the transformations of the variable w given by

F1(w) = a1 + w, Fp (w) = ap +
1

w
, p > 1. (61)

Evaluating n compositions of this transformation at zero gives

(Fn ◦ Fn−1 ◦ · · · ◦ F1) (0) = an +
.. .

1

a3 +
1

a2 +
1

a1

(62)

which we call the nth convergent of an RCF.
Let Tn (w) = (Fn ◦ Fn−1 ◦ · · · ◦ F1) (w). By mathematical induction, we can rewrite

the Tn (w) as the linear fractional transformation

Tn (w) =
αnw + βn

αn−1w + βn−1

, n > 0, (63)

where the quantities αn, βn, αn−1, βn−1 are independent of w and can be determined from
the following recurrence relations and initial conditions:

α0 = 0, β0 = 1, α1 = 1, β1 = a1;

αp+1 = ap+1αp + αp−1, p > 0, (64)

βp+1 = ap+1βp + βp−1, p > 0. (65)

For the base case, take n = 1. We see that

T1 (w) =
α1w + β1

α0w + β0

= a1 + w = F1 (w) , (66)
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as desired. Now assume that (63) is true for n = k. Then

Tk+1 (w) = Fk+1 (Tk (w)) = ak+1 +
αk−1w + βk−1

αkw + βk

=
(ak+1αk + αk−1)w + (ak+1βk + βk−1)

αkw + βk

=
αk+1w + βk+1

αkw + βk

, (67)

and so (63) is true for n = k + 1 and thus for all n.
From this, it follows that the nth convergent can be written as

Tn (0) =
βn

βn−1

. (68)

We also define the nth even convergent to be

T2n (0) =
β2n

β2n−1

(69)

and the nth odd convergent to be

T2n+1 (0) =
β2n+1

β2n

. (70)

Sufficient Condition for Convergence Although the requirement that the RCF
converge is rather opaque, it can be better understood in terms of conditions on an
infinite series whose terms are the partial denominators of the continued fraction. The
following theorem is the first step in making this relationship precise.

Theorem 5.11 If the series
∑

ap converges, then the sequences of even and odd nu-
merators and denominators, {β2p} , {β2p+1} of the reverse continued fraction

. . . +
1

a3 +
1

a2 +
1

a1

(71)

converge to finite, non-zero limits F0, F1, respectively.
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Proof. We prove that the sequence {β2p} converges; the proof that the other se-
quence converges can be made in the same way. From the recurrence relation (65), we
have

β2p = a2pβ2p−1 + β2p−2

= a2pβ2p−1 + a2p−2β2p−3 + β2p−4

= a2pβ2p−1 + a2p−2β2p−3 + · · ·+ a2β1. (72)

Thus each β2p is the sum of the first p terms of the infinite series
∑

a2rβ2r−1. Since
the series

∑

ar was convergent by hypothesis, it follows that
∑

a2r is convergent. If
we can now show that β2p−1 ≤ C, where C is a constant independent of p, we can use
the comparison test to show that the series

∑

a2rβ2r−1, and hence the sequence {β2p},
converges.
We use induction to find the value of C. Let M = max {β0, β1}. Then, we can

rewrite (65) to obtain

β2 ≤ a2M +M =M (1 + a2)

β3 ≤ a3β2 +M ≤Ma3 (1 + a2) +M

= M (1 + a2) (1 + a3) . (73)

By induction then,
βn ≤M (1 + a2) (1 + a3) · · · (1 + an) , (74)

for n ≥ 2. We may then take

C =M

∞
∏

p=1

(1 + ap) . (75)

This infinite product converges because the series
∑

ap converges by hypothesis (this
is a standard but non-trivial result of complex analysis; see [Cop] for a proof). Thus
∑

a2rβ2r−1 < C
∑

a2r < ∞, and so convergence of {β2p} is established. Since ap > 0
for all p,

∑

a2rβ2r−1 > 0, and so {β2p} converges to some finite, non-zero limit F0.
As indicated earlier, convergence of {β2p+1} to the finite, non-zero limit F1 can be

shown similarly. 2

Now that we have shown that the even and odd numerators and denominators con-
verge, we want to show that the even and odd convergents of the RCF converge to the
same value. This would establish the analog of Theorem 5.8 for the RCF.
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Theorem 5.12 If the series
∑

a2p+1 (76)

and
∑

a2p+1s
2
p, where sp = a2 + a4 + · · ·+ a2p, (77)

converge, and if lim sp =∞ for a certain subsequence of the indices p, then

lim
p→∞

β2p

β2p−1

=
F0

F1

= lim
p→∞

β2p+1

β2p

=
F1

F0

= 1, (78)

and thus the continued fraction (71) converges.

Proof. Since the series
∑

a2p+1 and
∑

a2p+1s
2
p converge, it follows that the series

∑

a2p+1sp (79)

converges. Therefore, there exists an index n ≥ 1 such that
a2p+1sp < 1 for p ≥ n. (80)

Hence the quantities

πk =
k
∏

p=1

(1 + a2n+2p+1sn+p) (81)

are different from zero, and the infinite product

lim
k→∞

πk =
k
∏

p=1

(1 + a2n+2p+1sn+p) (82)

converges (to a non-zero value), because the sum
∑

a2p+1sp converges.

Lemma 5.13 Let

U2k =
β2n+2k+1

πk

, V2k =
β2n+2k

πk

, (83)

U2k+1 = (β2n+2k+2 − sn+k+1β2n+2k+1)πk, (84)

V2k+1 = (β2n+2k+1 − sn+k+1β2n+2k)πk, k > 0; (85)

c2k =
a2n+2k+1

πk−1πk

, c2k+1 = −a2n+2k+1s
2
n+kπk−1πk, k ≥ 1. (86)

Then

Uk = ckUk−1 + Uk−2, k ≥ 2, (87)

Vk = ckVk−1 + Vk−2, k ≥ 2. (88)
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Assume for the moment that the lemma is true. Since the series
∑

a2p+1 and
∑

a2p+1s
2
p converge, and from the convergence of

πk =
k
∏

p=1

(1 + a2n+2p+1sn+p) ,

we can conclude that the series
∑

cp converges. As in the proof of the previous theorem,
it follows that the sequences {U2k} , {V2k} , {U2k+1} , {V2k+1} converge to finite, non-zero
limits. Therefore the limits

lim
p→∞

β2p+1 = F1 and lim
p→∞

β2p = F0 (89)

are finite and non-zero.
From the equations for U2k+1 and V2k+1, we can substitute k = p− 1 to get

β2n+2p

β2n+2p−1

=

sn+pβ2n+2p−1 +
U2p−1

πp−1

sn+pβ2n+2p−2 +
V2p−1

πp−1

=

β2n+2p−1 +
U2p−1

sn+pπp−1

β2n+2p−2 +
V2p−1

sn+pπp−1

. (90)

Then as p→∞, we have shown that
β2p

β2p−1

=
F0

F1

=
β2p−1

β2p−2

=
F1

F0

. (91)

Hence, under these conditions, the RCF must converge to a value of 1. 2

We now establish the proof of the lemma so as to complete the proof of the above
theorem.
Proof. [of Lemma] The proof of the lemma deviates very little from Wall’s [W]

corresponding proof. From the recurrence relation (65), we have

β2n+2p+1 = a2n+2p+1β2n+2p + β2n+2p−1

= a2n+2p+1 (β2n+2p − sn+pβ2n+2p−1) + (1 + a2n+2p+1sn+p) β2n+2p−1. (92)

We can rewrite this using equations (83) through (86) to get

πpU2p = a2n+2p+1

U2p−1

πp−1

+ πpU2p−2, (93)

or
U2p = c2pU2p−1 + U2p−2. (94)
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This establishes equation (87) with k = 2p. Equation (88) results, with k = 2p, if we
replace β2n+2p+1 with β2n+2p above.
To establish equation (87) for odd values of k, we proceed as follows:

(1 + a2n+2p+1sn+p) (β2n+2p+2 − sn+p+1β2n+2p+1)

= (1 + a2n+2p+1sn+p) (β2n+2p+2 − a2n+2p+2β2n+2p+1 − sn+pβ2n+2p+1)

= (1 + a2n+2p+1sn+p) (β2n+2p − sn+pβ2n+2p+1)

= β2n+2p − sn+p (β2n+2p+1 − a2n+2p+1β2n+2p)− a2n+2p+1s
2
n+pβ2n+2p+1

= −a2n+2p+1s
2
n+pβ2n+2p+1 + (β2n+2p − sn+pβ2n+2p−1) . (95)

Thus,
U2p+1

πp−1

= −a2n+2p+1s
2
n+pπpU2p +

U2p−1

πp−1

, (96)

or
U2p+1 = c2p+1U2p + U2p−1. (97)

This establishes equation (87) with k = 2p+ 1. Equation (88) results, with k = 2p+ 1,
if we replace β2n+2p+1 with β2n+2p above. 2

Remark 5.14 We believe that under appropriate modifications, the results of this sec-
tion can be modified so that the RCF converges to a value other than 1. It seems plausible

that the RCF should converge to the limiting value of the sequence

{

1

bn+2

+
1

cn+2

}

, which

would be the same as the limiting value of {dn+2}. Perhaps it is necessary to redefine
the transformations Fp (w) and the convergents so that the odd and even convergents
are not reciprocals of each other. Perhaps other theorems on continued fractions can be
better adapted to the RCF. It may even be the case that we want the RCF to diverge in
order to have appropriate meaning for the infinite ladder network. We regret not having
more time to explore these issues.

5.4.3 Another Result for the Conductance σ34

The problem of the convergence of σ34 can be made more tractable by imposing the fol-
lowing symmetry conditions on the conductances of the infinite ladder network. Suppose
that

di = d and
1

bi
+
1

ci
= d for all i > 1, (98)
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where d ∈ R+. Under these conditions, the effective conductance σ34 is given by

σ34 =
.. . +

1

d+
.. .

1

d+
1

d+
1

d1

, (99)

which can be generated by iterating the transformation

F (υ) = d+
1

υ
, (100)

starting at some initial point x0 = d1 > 0 (note that x0 cannot be arbitrary; it will have
to be contained in some neighborhood of the limit ξ, which will be specified later).
Let F (x0) = x1, F (F (x0)) = F (x1) = x2, . . . , F (xn) = xn+1. Then if the RCF

approaches some limit ξ, the sequence {xn} must approach ξ, or equivalently, F (ξ) = ξ.
Hence we are interested in the fixed point ξ of F . Assume for the moment that the fixed
point exists. Then it satisfies

d+
1

ξ
= ξ, (101)

which implies
ξ2 − dξ − 1 = 0. (102)

The roots of this equation are
d±

√
d2 + 4

2
, (103)

one being positive and the other being negative. Since all of the partial denominators
are greater than zero, the limiting value of the continued fraction cannot possibly be
negative, and so we discard the negative root above. Thus ξ is given by

ξ =
d+

√
d2 + 4

2
, (104)

which is greater than 1 (indeed, ξ = 1 if and only if d = 0, which is a contradiction).
We now show that ξ is an attractive fixed point. Observe that

|F ′ (ξ)| = 1

ξ2
< 1, (105)

since ξ > 1. The following lemma establishes that our fixed point ξ is indeed attractive.
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Lemma 5.15 The fixed point ξ is attractive if |F ′ (ξ)| < 1.

Proof. Choose k ∈ (|F ′ (ξ)| , 1). From the definition of the derivative
∣

∣

∣

∣

F (x)− F (ξ)

x− ξ

∣

∣

∣

∣

→ |F ′ (ξ)| as x→ ξ.

Hence we can choose a symmetric interval I around ξ such that for x ∈ I, we have

0 <

∣

∣

∣

∣

F (x)− F (ξ)

x− ξ

∣

∣

∣

∣

< k,

or, equivalently,
|F (x)− F (ξ)| < k |x− ξ| .

We begin the iteration with some x0 = d1 ∈ I. Then

|x1 − ξ| = |F (x0)− F (ξ)| < k |x0 − ξ| ,
|x2 − ξ| =

∣

∣F 2 (x0)− F 2 (ξ)
∣

∣ < k |F (x0)− F (ξ)| < k2 |x0 − ξ|
...

|xn − ξ| < kn |x0 − ξ| .

Since 0 < k < 1, we conclude that |xn − ξ| → 0 as n→∞. Thus ξ is an attractive fixed
point. 2

Thus by imposing certain symmetry conditions on the infinite ladder network, we
have caused the RCF representing the conductance σ34 to converge to some arbitrary
ξ > 1.

Example 5.16 For the infinite ladder network of figure 15, d = 1, and thus

σ34 =
d+

√
d2 + 4

2
=
1 +

√
5

2
= σ12, (106)

as expected.

5.4.4 The Other Four Effective Conductances

At this point, little is known about how to obtain expressions for the effective conduc-
tances σ13, σ14, σ23, σ24. Finding these effective conductances is straightforward if the
ladder has up to 4 vertical conductances, since paths in series and in parallel can be
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Figure 17: Y −∆ Transform?

clearly identified. As more rungs are added however, paths between the boundary nodes
have significant overlaps, and it is difficult to begin computing one of the above four
effective conductances. One possibility is to Y −∆ transform all ladder networks with
5 or more vertical conductances into a ladder with 4 vertical conductances (figure 19).
Such a sequence of Y −∆ transformations can be shown to exist, but it requires many
steps and the conductances become difficult to obtain very quickly.

16cm17cm//Borg/MSCC/home1/saksena/Pic12.bmp

Figure 18: Diagram Illustrating Steps of the Algorithm.
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