THE HEAT EQUATION ON DISCRETE DOMAINS

JUSTIN TITTELFITZ

ABSTRACT. In this paper, we will explore the properties of the Heat Equa-
tion on Discrete Networks, laying out groundwork and giving general forms
for solutions, and then exploring the inverse problem. We will also focus on
comparisons of Heat Networks with Electrical and Random-Walk Networks.
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1. INTRODUCTION

Author’s note: throughout this paper, we will use u; as well as d;u to indicate
the derivative of v with respect to t. The d;u notation is mainly used when addi-
tional subscripts become cumbersome.

In this paper, we will explore the Heat Equation on graphs. First, however, we
must give a definition of a Heat Network.

Definition 1.1. Let H = (V, 0, 1) be a set of vertices V= {v;}, connected by a
set of directed edges o, with weight . We will designate a set of boundary vertices
OV C V as well as a set of interior vertices int(V) =V — 0V. An edge from v; to
v; will be indicated by o0;;; we will also allow edges to begin and end at the same
node, which we will designate o;;, and refer to as loops. Further, we will require
wij =ty if v, v; € int(V) (this requirement will not be enforced if one of the
vertices is in the boundary). By convention, we will say p;; = 0 if there is no edge
connecting v; and v;. If there is an edge from v; to v;, we will say v; ~ v;, or ‘v;
is a neighbor of v;’. Note that under this definition, if v; has a loop, then v; ~ v;.
The boundary vertices will then be further divided into two types

(1) Absorbing vertices: The only edges leaving these vertices are loops; ie. for
v; € V4 z7éj:>u”:0
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(2) Non-Absorbing vertices: These vertices can have edges to other vertices, as
well as loops.

These two types of nodes correspond to Dirichlet and Neumann conditions, re-
spectively (more discussion will come later). Additionally, boundary nodes of the
non-absorbing type behave more or less identically to interior nodes.

At this point, it will also be convenient to define the quantities o; = Y f;;

Vi~V

and 7;; = p;; /o;. In this sense, 7 is just a normalization of p.

In the continuous case, the Heat Equation is given as
up = div(yVu) = Ayu
In the discrete case, we will interpret A, in the same manner as we would for the
Electrical Conductivity Equation on a graph; that is, as a matrix which acts on a
vector u(t) such that:
Avui = Z 'Yij (ui — Uj)
Vi~

where v;; can be thought of as a weight (or in the case of a random walk, the
transition probability) from v; to v;. This is similar to conductances of edges in
the Electrical Conductivity Equation, with two exceptions

(1) These weights are normalized; in other words, " ~;; =1, and
Vi~V

(2) Weights are not necessarily symmetric; in other wojrds7 Yij F Vii-
From this point on, we will let the matrix K encode the behavior of A, so that
our equation becomes

uy = —Ku

At this point, it should be noted that we are choosing to use the symbol K, however
this is not a Kirchoff matrix (though it bears some similarities).

Definition 1.2. Construct K as follows: Given a Heat Network H, with n vertices,
number the vertices, starting with boundary nodes, from 1 < i < n.
Form the ‘Weight Matrix’ A of H by setting

—[Lig, if i # j and there is an edge connecting v; and v;
aij = ;flija ifi=j

i#]

0, otherwise

Form the ‘Normalization Matrix” T of H by setting

{1/01, ifi=j
tij =

0, otherwise

Then K = TA. Under this construction, the entries k;; are equal to —v;; if ¢ # j

and k; = — ) ki;. It is relatively straightforward to show that the rows of K will
i

each sum to zero under this construction.

Another important property of this construction is revealed by considering the

following partitioning of K

M P T 0|4, A
o[ 2 [ Al )
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Then the submatrix R is the product of a diagonal matrix 75 and a symmetric
matrix Ag.

Additionally, if oy = ... =0; = ... = 0, = 0 then R = (1/0) I A4, and is itself
symmetric. It is always possible, given a set of weights on ‘non-loop’ edges, to choose
weights of loops so that the above condition holds, though this is a more restrictive
construction. We will refer to this special case as the ‘Symmetric Construction’.

Theorem 1.3. If there exists a solution to the Boundary Value - Initial Value
Problem (BV-IVP)

up = —Ku; w(0) = f; ulogv =g

then it is unique.

Proof. Assume another solution, w exists. Let z = u — w; we want to show z is
identically zero. Note that z satisfies our PDE by linearity, and z(0) = 0; z|ay = 0.
Then #,(0) = —Kz(0) = 0 implies z is identically zero.

Theorem 1.4. If a steady-state solution to the Heat Equation ezists, it is also
a solution to the Dirichlet problem for the Electrical Conductivity Equation, with
temperature interpreted as potential.

Proof. This fact follows almost trivially. If we let v be our steady-state solution;
that is u — v as t — oo, then clearly v; = 0. Then

-Aw=v = Ayw=0

And v satisfies the Electrical Conductivity Equation. (]

2. TIME AS A DISCRETE VARIABLE

First, we will consider time as a discrete variable. We will always take At =
t;+1 —t; = 1. In this case, our equation becomes

up = u(tiv1) —u(t;) = —K u(t;)
A simple rearrangement yields
u(tiyr) = (I — K) u(t;)
As long as the values of K are independent of time, we can attain the closed form
u(tn) = (I = K)" u(to)
Lemma 2.1. If we write
o[t

Then (I — K)™ converges as n — oo, and has a closed form

lim (1 — K)" — [é 8}

Where B= (I —Y)"'X

Proof. By construction, (I — K) has all of the properties of the transition matrix
for an absorbing Markov chain. A proof can be found in most elementary texts on
Markov chains, as well as in Timothy DeVries paper [3]. O
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FIGURE 1. A heat network on the “Top-Hat” graph

If we then allow n — oo, the result will describe the steady-state solution of the
Heat Equation, which is a direct analog of the solution to the Dirichlet problem
for the Electrical Conductivity Equation, as well as the absorbtion probability for
a Random Walk.

2.1. Time-Independent Boundary Conditions. At this point, it may be pro-
ductive to consider a pair of examples. Consider figure 1 on page 4. We will, for
our first example, set the weight of interior loops to be zero, and also set all paths
leading out of a vertex to be equally weighted. In this case, the relevant matrices
are

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
E=1 0 0 0 0 0
-1/3 —1/3 0 0 1 -1/3
0 0 -1/3 -1/3 —-1/3 1
1 0 0 0 0 0
o 1 0 0 0 0
o 0 1 0 0 0
I -K)= 0 0 0 1 0 0
1/3 1/3 0 0 0 1/3
0 0 1/3 1/3 1/3 0
1 0 0 0 00
0O 1 0 0 00
. n |0 0 1 0 00
Jn (I—K)"=1,"¢ o 1 ¢ o
3/8 3/8 1/8 1/8 0 0
[1/8 1/8 3/8 3/8 0 0

The lower left submatrix of the final result can be used to find equilibrium temper-
ature distributions given a fixed boundary temperature. In other words, if ug is



THE HEAT EQUATION ON DISCRETE DOMAINS 5
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FIGURE 2. A heat network on the simple line graph

given as (1,0,0,0)T, then the equilibrium temperature will be 3/8 at vs, and 1/8
at vg. At this point, we encourage the reader to verify that, for an Electrical Con-
ductivity Network, this is the same result one would obtain by setting the potential
to 1 at v1, 0 at all other boundary vertices, and then finding the resulting potential
at the interior vertices.

It can be shown that the weight of interior loops will not change the values in
our limiting matrix (see [3] or a text discussing Markov chains for details). As
a demonstration, let us consider instead the weights of our interior loops being 7
times more than the other edges leaving the vertex. The resulting matrix is

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
(- K)= 0 0 0 1 0 0
1/10 1/10 0 0 7/10 1/10
0 0 1/10 1/10 1/10 7/10

While this present example will converge to its limit slower than the previous exam-
ple, calculating the limit produces the same result. This certainly introduces some
concerns if we ultimately become interested in an inverse problem; the steady-state
solution seems to "hide” information about interior loops.

2.2. Time-Dependent Boundary Conditions. Another interesting situation to
look at is one where boundary conditions change as a function of time. Consider the
simple-line graph in figure 2 on page 5. In this case, we will use 1/20 as the value
of edges leading from an interior vertex to any other vertex. We will also require
that the temperature at vy be a function of time, in this case f(t) = cos(¢/10) + 1.
The relevant matrix will be a function of time, and will be indicated by A(t) rather
than the usual (I — K).

f(tip)/f(t:) 0 0 0

Alt) = 1/20 9/10 1/20 0
0= 0 1/20 9/10 1/20
0 0 1/20 19/20

The construction of this matrix, in particular the top-left entry, may benefit from
some explanation. At each time step, we will obtain our updated temperatures
by multiplying this matrix by a vector containing our present temperatures. The
entry in the first element of u will contain f(¢;), and thus, multiplication under this
construction will properly update the temperature at that vertex. In this scenario,
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FIGURE 3. Fourier’s Wine Cellar

we must express u(t) recursively
£(0)

w(O)= | o |5 ult) = Alticy) ultir)
0

A plot of the results of this process, can be found on page 6. The most interesting
aspect is that each vertex in the chain is successively more damped, as well as out of
phase with the source vertex. In fact, the value of 1/20 was chosen because it results
in the 4th vertex being more or less m radians out of phase with the source. One
could certainly appreciate the usefulness of this physical property if one were, for
instance, trying to keep wine warm in the winter and cool in the summer. Finally,
it should be noted that, while this technique produces some interesting results, it
also has some flaws. For instance, if the value of f is ever zero, then A is poorly
defined.

3. TIME AS A CONTINUOUS VARIABLE

While valuable insights can be gained by thinking of time as a discrete variable,
it is certainly more natural to consider it as a continuous one. Returning to our
original equation, u; = —Kwu, we will partition our vector v and our matrix K as

follows
) up| _ o M P up
“lur| | Q R |ur
If we have n boundary nodes, and m interior nodes, then ug and wu; are vectors of
length n and m, respectively, M isn xn, Rism xm, Pisn xm, and Q is m x n.

Additionally, if we have time-independent Dirichlet boundary conditions, then M
and P are zero matrices.

Theorem 3.1. Using the above partitioning, the solution to the BV-IVP

up = —Ku; w(0) = f; ulov =g
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is given by
t

ur(t) = expl(~Rt) f ~ [ Eapl-R(t 9] @ g ds
0

Proof. Carrying out the matrix multiplication defined above yields the following
differential equations

atuB = —MUB — Pul
atU,] = —QUB - RUJ

Since we assume we already have our boundary information, we will only concern
ourselves with the second equation. We can solve this differential equation us-
ing the method of an integrating factor. In this case, the factor we need is the
exponentiation of the matrix R times the scalar ¢, exp(Rt). Then

8,51” = —QUB — Ruy

Oyur + Rur = —Qup

exp(Rt) Ozus + exp(Rt) R uy = —exp(Rt) Q up
Oy (exp(Rt) ur) = —exp(Rt) Q up

exp(Rt) ur(t) = ur(0) — /exp(Rs) Q up ds
ur(t) = exp(—Rt) ur(0) — /exp(—R(t —3)) Qup ds
0

ur(t) = exsp(~Rt) 1 - [ exp(~R(t - 5) Q g ds
0

Claim 3.2. The fundamental solution for our BV-IVP is
G = exp(—Rt)

We will not seek to extensively defend this claim. We will, however, motivate it
by comparing the form of our solution to the integral from of the solution to the
heat equation in the continuous case

¢
u(a:,t)z/Gfdx—i—//Vngdsdx
Q

0 o
The matrix @) encodes the relationship between interior and boundary vertices, thus
multiplying by it is the discrete analog of the normal derivative. The integration
with respect to time remains, and spatial integration is effectively replaced by
matrix multiplication. This argument is similar to that presented by Karen Perry
for the Green’s Function for the Electrical Conductivity Equation [4].
We can also express the solution in the form of an eigenvector expansion.
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Theorem 3.3. Consider the submatriz R of K. In the introduction, we discussed
the fact that R is the product of a diagonal matriz Ty and a symmetric matriz Ay.
Now let

MLl <\,

be the eigenvalues of Ay, and {¢;} be the corresponding eigenvectors, chosen
orthonormally; ie

i#j=¢i-¢;=0and [¢] =1
Then, if there exists an equilibrium temperature distribution (steady-state solution)
ug, the solution to the BV-IVP defined by

up = —Ku; u(0) = f; ulov =g

can also be stated as

n

ur(t) =ug — Z(UE —9) - ¢i exp(=Ta\it) ¢;

i=1

Proof. We expect u to eventually reach a steady state; we will then assume we can
solve for u as the difference between this equilibrium state and another function
with homogeneous boundary conditions; that is

u(t) =up —w(t)
Thus, we must first solve the BV-IVP defined by
w(t) =up —u(t); wy = —Kw; w0)=ug — f; wlogy =0

Now we assume that w;(t) can be written in the form

n

wi(t) = Z ai(t)pi

i=1
Then

Orwr + Rwp =Y yai(t)di + ai(1) T2 Aad

i=1

—Qup = Z 0ra; (1) i + ai(t) T Asd

i=1

n
0= dha;(t)p; + a;(t)Todih;
i=1
We then take an inner product of this sum with ¢;. Since we have chosen our
eigenvectors to be orthonormal, only one term of this sum survives.
0= ('9taj (t) + ai(t)TQAj
ataj (t) = —Tg)\jai(t)
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The solution of this differential equation is a;(t) = a;(0) exp(—T2A;t). To solve for
a;(0), we apply our initial condition.

wl(o) = Zai(0)¢i

(up — f) = Zai(o)(bi

Again, we use an inner product
(ug — )6 = (> ai(0)¢:) - ¢;
i=1
(up — f) - ¢; = a;(0)

And thus

wy(t) = Z(UE = 9) - ¢ exp(=ToAit) &
i=1
finally yielding
ur(t) =ug — Y (up —g)- ¢i exp(~TeAit) ¢;
i=1

d

Corollary 3.4. If we are using a symmetric construction, then Ty = (1/0)I and
n

ur(t) =ug — Y (ug —g)- ¢; exp(=Ait/o) ¢

=1
4. INVERSE PROBLEMS FOR THE HEAT EQUATION

Previously, papers (see [2] and [3]) have been written on recoverability of random-
walk networks, which are extremely similar to heat networks. Through this work,
various sufficient and/or necessary conditions for recoverability of the probability
matrix have been stated

(1) If loops are allowed on interior nodes, the probabilities are unrecoverable.

(2) If a random walk network is recoverable, then all of the edges leaving any
interior vertex can be simultaneously extended to vertex- disjoint paths to
the boundary.

Our analysis will focus mostly on ways around the first condition, and, as such, our
statement of the second condition is brief, and the discussion is non-existant. We
highly encourage the reader to look at [2] for an in-depth analysis of the second
condition, as well as a sufficiency condition. In both the case of a random-walk
or heat network, the absorption matrix effectively hides information about interior
loops, and only produces the ratio between edges leading out of a vertex. It seems,
however, to be a reasonable intuition that the eigenvalues of the matrix are in
some way linked to the weights of these loops, because “heavier” loops will lead
to smaller eigenvalues. As seen in the previous section, the time-dependent part
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FIGURE 4. Recoverability Example

of our solutions are directly tied to the eigenvalues, or spectrum, of K. Originally,
we had conjectured that, given a heat network H, possibly with interior loops, and
which satisfies the revised Card Conjecture outlined in [2], then knowledge of the
steady-state solution, in addition to the spectrum of K will lead to recoverability.
Through exploration, however, this was found to be false. Consider the line graph
in figure 4, we can write the Kirchoff matrix as

0 0 0 0
0 0 0 0
K o —kl 0 S1 —kg
O 7]63 *k4 S2
where s; = k1 + ko and sy = k3 + k4. It is clear that two of the eigenvalues are

zero. We can find the other two by calculating the characteristic polynomial. This
yields

A= %(31 + 59 /(51 + 52)2 — 4(s182 — koka))
Then simple calculation shows
My =ky +ky+ ks +ky
A X Ao = (k1 + ko) (ks + ka) — kaka

From the absorbtion matrix, we know how to express the ratio between ki and ko,
and between k3 and k4. Combining these relationships will yield a quadratic equa-
tion. In many cases, we can find two solutions which satisfy this equation, meaning
our recovery process is non-unique (though finitely so). In fact, the situations where
the roots of this polynomial coincide (and thus give a unique solution) happen when
the weights of the loops being equal to each other. This assertion can be proved by
examining the discriminant. Furthermore, the analysis only gets worse for larger
graphs; if we assume that symmetric polynomials will give the needed relationships,
a graph with n interior vertices will eventually produce n polynomials, from a linear
function to an n-th degree polynomial, and yield n! solutions, at worst (see Bezout’s
theorem). In the case with three interior vertices, the equations would be

Pr=X+ X+ A3

Py = M Ao+ Aadg + M As

P3 =X A23
These equations, along with the ratios, should provide enough relationships to solve
for all the interesting quantities. However, the expansions of these polynomials,

even in this case, became somewhat daunting. Even with the use of Mathematica,
the calculation became nearly impossible in some cases. We can see it only gets
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worse with more and more interior vertices. There may well be another approach
that avoids these gruesome polynomials, but we have been unable to unearth it.
We have included a copy of our Mathematica code in the Appendix.

5. FUTURE WORK

Results for the inverse problem were less than thrilling; however someone with an
affinity for polynomials may find a way to plow through the recovery process. The
interpretation and meaning of the boundary of these graphs has been dealt with in
a manner which leads to some problems with symmetry. The normalizing of the
edge weights also leads to some symmetry issues. While it may be unavoidable,
this is a bit troublesome, because the Laplacian used in the continuous version of
this problem is a symmetric operator.
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6. APPENDIX

This is some of the Mathematica code used to explore recoverability for a network
with three interior vertices.

Off[General::spelll]

kl=1/2;
k2 =1/4;
k3 =1/8;
kd =1/4;
k5 =1/4;
k6 = 3/8;
k7 =3/8;
k8 = 3/8;
k9 = 1/8;

ol =kl +k2+k3;
02 =k4 + k5 + k6;
03 =k7+ k8 + k9;
71 =x1 4+ x2 4+ x3;
72 = x4 + x5 + x6;
73 = x7 + x8 + x9;

0o 0 0 0 0 0
0 0 0 0 0 0
k| 0 0o o o o o |
k1 0 0 o1 -k2 —k3 |’
0 —-ki 0 —kb o2 —k6

0 0 -k7 —-k8 -k9 o3
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0 0

0 0 0 0
0 0 0 0 0 0
o= 0 0 0 0 0 0 .
—x1 0 0 71 —=x2 —=x3 |’

0 x4 0 —=xb 12 —x6
0 0 —=x7 —x8 —x9 13
Y= Ta'ke[Ka {4a 6}a {4a 6}]a
X = Take[K, {4, 6}, {1,3}];
B = Inverse[-Y].X;
R = Solve[{B[[1,1]] ==r1 +r2 x B[[2,1]] + 3 % B[[3,1]],
B|[1,2]] ==r2* BJ[2,2]] + 13 * B[[3,2]],
B([1,3]] == r2* B[[2,3]] + 3 B[3,3]],
B([2,1]] ==r5* B([1,1]] + r6 * B[3,1]],
B|[2,2]] ==r4 + 15 * B[[1,2]] + r6 = B[[3,2]],
B[[2,3]) == 15 * B[[1, 3] + 16 + B3, 3]},
B{[3,1]] == 18 * BI[1, 1] + 19 % B[[2, 1]},
B([3,2]] ==18* B[1,2]] + r9 * B[[2,2]],
B|[3,3]] ==r7 + 18 % BJ[[1, 3]] + r9 * BJ[[2, 3]]}];
cl =r1/.R[[1]];
¢2 =r2/.R[[1]];
c¢3 =r3/.R[[1]];
c4 =r4/.R[[1]);
c5 =r5/.R[[1]];
c6 =r6/.R[[1]];
c7 =r17/.R[[1]];
c8 =r8/.R[[1]];
c9 =r9/.R[[1]];

Null

Off[General::spelll]
Eigenvalues[K];

A1 = Eigenvalues[K][[1]];
A2 = Eigenvalues[K][[2]];
A3 = Eigenvalues[K][[3]];

Eigenvalues[H];

AA = Eigenvalues[H][[4]];
AB = Eigenvalues[H][[5]];
AC = Eigenvalues[H|[[6]];

31 = A1+ A2+ A3;
Y2=A1* A2+ A2x A3+ Al x \3;
II1 = A1 % A2 % \3;

x2=x1%c2/cl
x3 =x1*¢c3/cl
x5 =x4xch/cd
x6 = x4 * c6/c4
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x8 = X7 * c8/c7
x9 = x7*c9/c7

YA = XA+ AB+ XG;
YB = AA*AB + AB* AC + MA % \C;
ITA = M « AB % \C;

Simplify[A]
Simplify[¥B]
ToRadicals[Simplify[ITA]]

soln = Solve[{X1 == XA,

¥2 ==1%B,

I11 == ToRadicals[Simplify[ITA]]}];
Needs["MiscellaneousRealOnly™]
ToRadicals[Simplify[soln]]

UNIVERSITY OF OREGON
E-mail address: jtittelfitz@gmail.com

13



