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Abstract. This paper provides an introduction to the theory of rotation sys-

tems, a means of describing and computing with graphs embedded on surfaces.
Then, we define a direct connection as a pairing of a finite number of points
on opposite sides of a simple closed curve, according to some permutation.
We then compute the minimal genus of a surface which is bounded by this
curve and contains a set of non-intersecting curves which connect these pairs
of points.

This paper is devoted to a question of drawing a certain kind of diagram on
a surface without edge crossings. Specifically, one can visualize the action of a
permutation on n letters by writing two rows of those letters, and drawing a line
from each letter in the top row to its image in the bottom row; for example, the
permutation τ = [254361] yields the diagram:
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We will show that this diagram can be drawn on a genus 2 surface, and under
certain reasonable restrictions, it cannot be drawn on a lower genus surface without
crossing lines. In general, we find that one can draw the above diagram for a
permutation τ on a surface with genus g, where g is equal to the minimal number
of terms in a factorization of τ into block interchanges.

1. Introduction to Rotation Systems

Rotation systems are computational objects used to describe graphs embedded in
orientable surfaces. There are a number of differing definitions of rotation systems;
notably, Mohar (for example, in [7], denotes a rotation system π = {πv : v ∈ V (G)},
where πv is a cyclic permutation of the edges incident with v. The author finds the
following definition to be easier to deal with from a computational standpoint, and
we show equivalence to Mohar’s definition in Remark 1.9.

Definition 1.1. Let D be a finite set with even order, |D| = m = 2n, and let
ν, ε ∈ Sm, where ε and φ := νε are fixed-point free, ε is an involution, and 〈ν, ε〉
acts transitively on D. We call the ordered pair (ν, ε) a rotation system, and the
elements d ∈ D darts.

We denote the orbits of the cyclic groups generated by ν, ε, and φ

V = {v ⊂ D : 〈ν〉 acts transitively on v}

F = {f ⊂ D : 〈φ〉 acts transitively on f}

E = {e ⊂ D : 〈ε〉 acts transitively on e}

and refer to the elements in V , F , and E as vertices, faces, and edges respectively.
If an edge e is contained in a vertex, we call e a loop. Finally, we call a rotation
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system simple if it contains no loops, and if, when an edge e intersects vertices u
and v, it is the only such edge.

Using the terms edge, vertex, and face in this way may appear to be abuse of
notation, but we will promptly dissolve any ambiguity. For any rotation system,
we can construct a graph embedded upon a surface whose vertices correspond to
vertices in the rotation system; edges to edges, and faces to faces. Further, simple
rotation systems correspond to simple graphs.

Non-simple graphs, then, are looped multigraphs. If we relax the requirement
that ε is an involution, the correspondence is to hypergraphs. This is covered
extensively in [3], and not of interest for the purpose of this paper.

1.1. Constructing Embedded Graphs.

Proposition 1.2. Every edge intersects at most two vertices.

Proof. Since 〈ν, ε〉 acts transitively on D, each e ∈ E must intersect at least one
vertex. Also, since ε is a fixed-point free involution, e = {k, l} ⊂ D. Since the
vertices are mutually disjoint, e can intersect at most two of them. Note that if
(ν, ε) is a simple rotation system, every edge will intersect exactly two vertices. �

Proposition 1.3. Every edge intersects at most two faces.

Proof. Apply the the argument of Proposition 1.2, replacing ν with φ. �

Remark 1.4. Note that there exist seemingly degenerate cases in which an edge
intersects a single face, but this does not pose any significant problems to us. For
example, in Lemma 1.7, we associate a face with a “polygon with |f | sides”. The
reader is, no doubt, comfortable with this situation when |f | > 2, but for the case
when |f | = 2, we merely take the polygon to be a disc, and the “sides” to be halves
of the boundary circle. When this face intersects only one edge, we identify these
sides to construct a surface homeomorphic to the sphere.

Lemma 1.5. For each rotation system (ν, ε), we can construct a labelled graph G,

and the construction of G is well-defined.

Proof. Label D = {1, 2, . . . , m}, and order the vertices in V by vi < vj if min vi <
min vj , and label them in ascending order. Since V = {v1, . . . , vn} is a complete,
disjoint partition of a finite set, this ordering is well-defined.

Now, we construct an (n × n) matrix, X = (xij) by

xij = |{e ∈ E : e ∩ vi 6= ∅, e ∩ vj 6= ∅}| ,

and let G be the graph corresponding to the adjacency matrix X , and see that
this construction is well-defined. �

Corollary 1.6. In the case that an angle system (ν, ε) is simple, the associated

graph is simple.

Proof. By Proposition 1.2 and Lemma 1.5, it follows from our definition of a simple
angle system that G will neither have loops, nor multiple edges. �

The following assumes a certain level of comfort with constructing surfaces by
pasting pieces together. A detailed proof that this process works can be found in
Chapter 6 of [6]. We differ from Lee in that we are not concerned with any differ-
entiability. Specifically, we describe orientation as a concept of clockwise rotation –
if moving from any point on the surface continuously does not change the direction
of rotation, then the surface is orientable.

Lemma 1.7. Every simple rotation system corresponds to a graph embedded upon

a compact, orientable Riemann surface.
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Figure 1. Details of the construction used in Lemma 1.7 for (ν, ε)
where ν = (7396) · · · , ε = (17)(68)(95)(34) · · · , and φ = (274) · · · .
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(b) Polygons at a vertex before
identification.

Sketch of proof. Let F be the faces of a simple rotation system, and to each f ∈ F ,
associate an |f |-sided planar polygon Pf , homeomorphic to a closed disk, and choose
an orientation (that is, a direction of rotation to call clockwise). Now, separate
the boundary of the polygon into intervals bounded at the corners; open at the
counterclockwise end and closed at the clockwise end and label each by a dart in f
according to the action of φ on f . We draw these intervals as “match sticks” as in
Figure 2(a).

Then, we glue each side of Pf with label d to the side of the polygon Pg labeled
ε(d) ∈ g ∈ F , scaling either side to match the other (or equivalently, we can require
that each polygon is regular). Further, we require that the corners labelled d and
ε(d) are not identified. By Proposition 1.3, there is only one such g, and this
procedure is well-defined.

We claim that the surface constructed by this procedure is a 2 dimensional,
orientable compact topological manifold. The curious reader will find a detailed
proof of this claim in [6]; we will merely describe our construction at the corners.
As our goal is a natural correspondence between rotation systems and embedded
graphs, the reader will expect that corners will correspond to vertices.

Note now that ε is an involution, so ν = φε. So, let v be an orbit of ν, with
d ∈ v. Then, ν(d) = (φ ◦ ε)(d), the action of ε corresponds to crossing an edge, and
the action of φ corresponds to walking clockwise around a face. Since the sides of
a polygon agree with their clockwise corner, the corner labelled by ν(d) is on the
face one step counterclockwise from that of d. See Figure 2(b) for an illustration
of this

Next, we show orientability. Above, we defined the action of φ to be clockwise
rotation in each face, so we consider what happens on the boundaries between
faces. By requiring that the corners labelled by d and ε(d) are not identified, we
have forced consistency. If one looks at the sides of the polygon in Figure 2(a) as
matches, the head of each match points clockwise – and this stays consistent over
edges and vertices, as seen in Figure 2(b).

We conclude with an observation that our surface is the result of pasting polygons
together. Note that we have identified sides to sides, and corners to corners, so that
there is no boundary left over. The identified sides correspond to orbits of ε, and
the identified corners of the polygons correspond to orbits of ν – that is, edges
in the rotation system are realized as edges on our surface, and vertices in the
rotation system are vertices on the surface. Brief inspection shows that this graph
is precisely the one obtained in Lemma 1.5. �
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Remark 1.8. Though the correspondence between rotation systems and embedded
graphs is many-to-one, this procedure allows one to transfer between the objects
without loss of generality.

Proof. We can run the construction backwards easily – given a graph embedded
upon a surface, we slice the surface along edges, labelling darts as we go. We record
the label pairs that correspond to edges to find ε, and the labels around vertices (in
counterclockwise order!) to find ν. If we keep the original labels, we end up with
the same rotation system. Otherwise, we can easily permute the labels to find the
original. This leads to a strong notion of an isomorphism of rotation systems which
will not be further discussed in this paper. �

Remark 1.9. Finally, we note that we need not start with a surface. As in Remark
1.8, we can construct a rotation system from a graph merely by assigning labels to
coincident edge-vertex pairs, and picking an ordering of these labels at each vertex.
By Lemma 1.7, any rotation system obtained in this way yields an embedding of our
graph. When a graph is simple, this is equivalent to choosing a cyclic permutation
of the edges incident to each vertex.

Lemma 1.10. Let (ν, ε) be a rotation system, and R the surface constructed in

Lemma 1.7. Then, the genus of R is

g = 1 −
1

2
(|V | − |E| + |F |).

Proof. See Lemma 4.1.4 in [8]. �

2. Application of Rotation Systems

It is trivial to use rotation systems to compute the minimal genus of a graph.
That is, one generates all possible dart orderings around vertices, and applies
Lemma 1.10, whence the genus of a graph G is

g = min

{

1 −
1

2
(|〈ν〉| − |〈ε〉| + |〈νε〉|) : (ν, ε) a rotation system of G

}

.

A näıve implementation of this will require considering (deg(v) − 1)! orderings at
every vertex, so the expected runtime is a product of factorials.

In [7], Mohar presents an algorithm to determine if a graph G can be embedded
on a fixed surface of genus g in O(|V |) time. However, when the genus is unbounded,
runtime explodes. This algorithm is a vast improvement over the näıve, but one
cannot expect to sit down and implement it in an afternoon.

We present a family of graphs whose genus is sharply bounded between 0 and
|V |/4, and an algorithm to compute that genus in linear time.

Problem 2.1. Let D be a surface homeomorhpic to an open disc, and assign the

points on ∂D a circular ordering. Then, pick two distinct points x, y ∈ ∂D, and n
distinct points from each interval (x, y) and (y, x), and label them

{p1, p2, . . . , pn} ⊂ (x, y) and {q1, q2, . . . , qn} ⊂ (y, x)

such that

x > p1 > · · · > pn > y > qn > · · · > q2 > q1 > x.

Then, let τ ∈ Sn. If R is a compact, orientable Riemann surface such that D ⊂ R,

with mutually disjoint parametric curves γi : [0, 1] → R \ D,

γi(0) = pi and γi(1) = qτ(i),

what is the minimal genus that R can have?
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Figure 2. A näıve crossing diagram for τ = [4312]

From here on, we will avoid discussion of topology, since the author is fond of the
discrete calculation afforded by rotation systems. We call the collection of curves
{γ1, . . . , γn} a connection, and these curves together with ∂D will be called the
face graph. In [4], Curtis and Morrow discuss this situation when a (more general)
connection is planar, for the purpose of recovering the conductivities of an electrical
network based on the boundary response.

3. Definitions

Definition 3.1. A block interchange is a permutation which exchanges two con-
tiguous, non-overlapping sequences. For example,

[15674238] : 12345678 7→ 15674238,

[15672348] : 12345678 7→ 15672348,

etc., are block interchanges, as are transpositions. Therefore, every permutation
can be factored into block interchanges. We call the minimal number of terms in
any such factorization of a permutation ϕ the block interchange distance, denoted
dI(ϕ).

Note, we underline/overline blocks for clarity in the above example. We will not
continue to use this notation.

Computational biologists are commonly interested in genome rearrangements.
Typical edits performed on a genome are block interchanges, block transpositions,
and reversals. So, computational biology has recently emerged as a source of inter-
esting problems concerning symmetric groups Sn for very large n.

Definition 3.2 (bigraph). A bigraph is a pair of simple directed graphs which have
a common vertex set. We denote a bigraph G = (V, E0, E1) where E0, E1 ⊂ V ×V .
Loosely, we describe a bigraph as a graph whose edges are assigned one of two
colors, but in general, we want to allow a nonempty intersection of E0 and E1 and
avoid discussion of multigraphs (or edges assigned multiple colors).

Definition 3.3. We define a cycle in two ways. In general, we will denote c(·) as
the number of cycles of an object.

(1) For a bigraph G, an alternating cycle is a sequence of edges

(v0, v1), (v1, v2), . . . , (vn, v0)

whose edges alternate in color. Here, c(G) denotes the number of alternat-
ing cycles in G. Note, this is not generally a good definition. However, for
bigraphs discussed in this paper, the inbound and outbound degree is 1 for
both grey and black edges at every node. Hence, the edge sets uniquely
decompose into disjoint alternating cycles, so for our purposes, c(G) is well-
defined.

(2) For a permutation π ∈ Sn, we define a cycle as the orbit of an element i
under the permutation π. Then,

c(π) = |{s ⊂ {1, · · · , n} : 〈π〉 acts transitively on s}| ,
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the number of disjoint cycles under the action of π.

Definition 3.4. Given a permutation τ ∈ Sn, we define the cycle graph, as the
bigraph Gτ = (V, Eg, Eb) with vertices

V = {q0, q1, . . . , qn} ,

black edges

Eb = {(qτ(j), qτ(i)) : 0 ≤ i ≤ n, j = i + 1 mod n + 1}

where we define τ(0) = 0, and grey edges

Eg = {(qi, qj) : 0 ≤ i ≤ n, j = i + 1 mod n + 1}.

Bafna and Pevzner introduce a slightly different form of the cycle graph in [1],
which is also used in [2]. Later, Doignon and Labarre use the the form above in
[5]. The difference is that our vertex q0 is the result of merging vertices 0 and n+1
from the original, and doesn’t make or break cycles – so doesn’t invalidate our use
of Christie’s result.

Theorem 3.5. The block interchange distance, of τ ∈ Sn is given by

dI(τ) = (n + 1 − c(Gτ ))/2.

Proof. See Theorem 4 in [2]. �

Definition 3.6. Finally, we define the face graph of a permutation τ ∈ Sn, as the
bigraph Fτ = (V, Eg, Eb) with vertices

V = {p1, . . . , pn, q1, . . . qn},

black edges

Eb = {(pi, qτ(i)) : i = 0, . . . , n} ∪ {(qτ(i), pi) : i = 0, . . . , n},

and grey edges

Eg = {(pn, pn−1), . . . , (p2, p1), (p1, q1), (q1, q2), . . . , (qn−1, qn), (qn, pn)}.

In Theorem 4.1, we denote the set-theoretic graph of a function f : X → Y by

Γ(f) = {(x, f(x)) : x ∈ X} ⊂ X × Y.

In [5], Doignon and Labarre use the same notation for the looped graph with vertices
X and edges Γ(f) as defined here.

4. Tracing Faces

Now, we construct the rotation system of Fτ . We will refer to this as the pre-

ferred combinatorial embedding of Fτ , since we are interested in the genus of this
embedding. We assign the darts labels

B = {a1, b1, r1, a2, . . . , an, bn, rn} ∪ {c1, d1, s1, c2, . . . , cn, dn, sn},

where ai, bi and ri are associated to pi, and ci, di, si to qi (see Figures 4 and 4).
Then, we write ν and ε in cycle notation,

ν =

n
∏

i=1

(aibiri)(cidisi)

and

ε = (b1s1)(dnrn)

n−1
∏

i=1

(ribi+1)(disi+1)

n
∏

i=1

(aicτ(i)).
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Figure 3. The darts of a connection graph. Note, the crossings
are not shown.

Then, we compute φ = νε to act on B \ {ri, si : 1 ≤ i ≤ n} by

φ :































ai 7→ dτ(i),
bi 7→ ai−1, i 6= 1,
b1 7→ c1,
cτ(i) 7→ bi,
di 7→ ci+1, i 6= n,
dn 7→ an,

and the action on {ri, si : 1 ≤ i ≤ n} produces a single cycle, (s1s2 . . . snrn . . . r2r1).

Note that the face graph is merely a jazzed-up version of our diagram in Figure 2.
We’ve colored the edges corresponding to the connection black, those corresponding
to the boundary circle grey, and assigned directions for a nice correspondence to
Gτ . This correspondence to Gτ is the motivation for the name face graph – cycles
in the cycle graph correspond to faces in the embedded face graph.

Theorem 4.1. For τ ∈ Sn, the number of faces in the preferred combinatorial

embedding of Fτ is given by c(φ) = 1 + c(Fτ ).

Proof. Denote I = {1, 2, · · · , n}, and

X = {ai, ci : i ∈ I}, Y = {bi, di : i ∈ I}, Z = {ri, si : i ∈ I}

so B = X∪Y ∪Z, a disjoint union. Note that φ(Z) = Z, φ(X) = Y , and φ(Y ) = X .
Then, let ℓ : B → V (Fτ ) assigns darts to vertices; ai, bi, ri 7→ pi, ci, di, si 7→ qi, and
extend the map to ordered pairs accordingly:

ℓ(x, y) = (ℓ(x), ℓ(y)).

By this construction, we can formally write ℓ(x) ∈ V (Fτ ) for all x ∈ B.
Furthermore, for all 1 ≤ i ≤ n,

ℓ(ai, φ(ai)) = ℓ(ai, dτ(i)) = (pi, qτ(i)) ∈ Eb

and
ℓ(cτ(i), φ(cτ(i))) = ℓ(cτ(i), bi) = (qτ(i), pi) ∈ Eb.

Similarly,
ℓ(bi, φ(bi)) = (pi, pi−1) ∈ Eg if i 6= 1,

ℓ(b1, φ(b1)) = (p1, q1) ∈ Eg,

and
ℓ(di, φ(di)) = (qi, qi+1) ∈ Eg, if i 6= n,
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p1 q1 = q
τ(3) = q1

p2 q2 = q
τ(4) = q2

q0

p3 q3 = q
τ(2) = q3

p4 q4 = q
τ(1) = q4

Fτ Gτ

Figure 4. Fτ and Gτ for τ = [4312].

ℓ(dn, φ(dn) = (qn, pn) ∈ Eg.

Therefore, ℓ(Γ(φ|X)) = Eb and ℓ(Γ(φ|Y )) = Eg. Thus, since φ(X) = Y and
φ(Y ) = X , every cycle of φ|X∪Y corresponds to an alternating cycle in Fτ and by a
counting argument, all edges are covered by this correspondence. Finally, we have
one additional cycle from Z, so c(φ) = 1 + c(Fτ ). �

Remark 4.2. In Theorem 4.1, we construct ℓ to behave as a functor; taking objects
to objects and relations to relations in a cohesive manner. A stronger property
is that ℓ covers cycles in Fτ with orbits of φ. In the following, we rely on a
similar construction. However, there are not enough vertices in the target graph
for a bijection. So, we skirt this issue by mapping segments of cycles to segments
of cycles, taking care to only consider segments whose endpoints appear in both
graphs.

Theorem 4.3. For all τ ∈ Sn, c(Fτ ) = c(Gτ ).

Proof. Let ℓ map qi ∈ V (Fτ ) to qi ∈ V (Gτ ). We will proceed to extend ℓ to map
alternating paths between edges in Fτ to edges in Gτ such that color, direction,
and vertex labels match at the path boundaries. Denoting an alternating sequence
[e1e2 . . . en]; for 1 ≤ i < n let

ℓ([(qi, qi+1)]) := [(qi, qi+1)],

(here grey 7→ grey) and,

ℓ([(qτ(i+1), pi+1)(pi+1, pi)(pi, qτ(i))]) := [(qτ(i+1), qτ(i))],

(so black-grey-black 7→ black).
There are four edges in each Fτ and Gτ not covered by this mapping, so we map

them in the only way that makes sense,

ℓ([(qτ(1), p1)(p1, q1)]) := [(qτ(1), q0)(q0, q1)],

ℓ([(qn, pn)(pn, qτ(n))]) := [(qn, q0)(q0, qτ(n))].

where these sequences are grey-black and black-grey, respectively. Note that we
don’t explicitly map any vertex in Fτ to q0 in Gτ . However, by covering every
edge by nonoverlapping cycle segments such that the endpoints agree, we have
established a one-to-one correspondence of cycles in Fτ and Gτ as desired. �

Theorem 4.4. The preferred combinatorial embedding of Fτ has genus g = dI(τ).

Proof. By Corollary 1.10 and the above,

2g = 2 − (|V (Fτ )| − |E(Fτ )| + 1 + c(Gτ )) .



ROTATION SYSTEMS: THEORY AND APPLICATION 9

1

2

3

4

5

6

1

2

3

4

5

6

Figure 5. An embedding of [254361] on a genus 2 surface.

Since |V (Fτ )| = 2n and |E(Fτ )| = 3n,

2g = 2 − (2n − 3n + 1 + c(Gτ )) = 2 − (1 − n + c(Gτ ))

and finally, by Theorem 3.5, dI(τ) = (n + 1 − c(Gτ ))/2 so

2g = 2 − (2 − 2dI(τ)),

and g = dI(τ) as desired. �

5. An Example

Now, consider the permutation τ = [254361] = [143256] · [234561]. The rotation
system associated to this permutation is

ν = (a1b1r1) · · · (a6b6r6)(c1d1s1) · · · (c6d6s6),

ε = (r1b2) · · · (r5b6)(r6d6)(s6d5) · · · (s2d1)(s1b1)(a1c2)(a2c5) · · · (a6c1).

Then,

φ = νε = (s1s2s3s4s5s6r6r5r4r3r2r1)(a1d2c3b4a3d4c5b2)

(a2d5c6b5a4d3c4b3)(a5d6a6d1c2b1c1b6).

By the Euler characteristic, our diagram has genus

g = 1 −
1

2
(c(ν) − c(ε) + c(φ))

= 1 −
1

2
(2 · 6 − 3 · 6 + 4)

= 2.

Indeed, we can embed this connection on a surface with two handles, as in Figure
5. Furthermore, note that we have drawn the figure to “present” the factorization
of [254361] into block interchanges. One immediate corollary of Theorem 4.4 is
that we can embed a connection in a genus 1 surface if and only if it is a block
interchange.

Remark 5.1. By the above, we have reduced the problem of drawing a connection
on its minimal surface to drawing each block interchange in a minimal factorization
of the permutation.
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6. Extensions, Conclusion

In [5], Doignon and Labarre derive an explicit formula for Hultman numbers,
SH(n, k), the number of permutations in Sn whose cycle graph decomposes into k
alternating cycles. They apply Christie’s result to find that the number of permu-
tations τ in Sn whose block interchange distance is k to be SH(n, n + 1 − 2k). For
instance the number of permutations which require maximal genus for a fixed n arise
where Gτ has exactly one cycle. So, for even n, there are 2 n!

n+2 such permutations.
For odd n, there is only one, the reverse permutation.

Also, Christie describes an algorithm to explicitly compute a minimal factoriza-
tion of a permutation into block interchanges, which we will not reproduce here.
A careful implementation of this algorithm takes linear time in n. Hence, we can
compute the genus of Fτ in O(|V |), regardless of genus. Further, as in Remark 5.1,
we can draw a reasonably nice picture of a minimal embedding of Fτ with ease.
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