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An Introduction to Boundary Value Problems

on Finite Networks

A. Carmona and A.M. Encinas

We aim here at introducing the basic terminology and results on self-adjoint

boundary value problems on finite networks. Firstly we define the discrete analogue

of a manifold with boundary, which includes the concept of outer normal field.

Then, we prove the Green Identities in order to establish the variational for-

mulation of boundary value problems. Moreover, we prove the discrete version

of the Dirichlet Principle.

1. Green Identities

Throughout these notes we follow the notations and definitions given in the notes An Introduction to
Discrete Vector Calculus on Finite Networks. From now on we suppose fixed the weighted network (Γ, c, ν)
and also the associated inner products on C(V ) and X (Γ).

Given a vertex subset F ⊂ V , we denote by F c its complement in V and by χ
F

its characteristic
function. Moreover, we define the sets

◦
F = {x ∈ F : {y ∼ x} ⊂ F} interior of F

δ(F ) = {x ∈ F c : exists y ∈ F such that y ∼ x} (vertex) boundary of F

F̄ = F ∪ δ(F ) closure of F .

d(F)
F

Figure 1. Blue: F , Green: δ(F ), Circle:
◦
F
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If F ⊂ V is a proper subset, we say that F is connected if for any x, y ∈ V there exists a path joined x
and y whose vertices are all in F . It is easy to prove that F̄ is connected when F is. In the sequel we always
assume that F is a connected set. Moreover, if F ⊂ V , C(F ) denotes the subspace of C(V ) formed by the
functions whose support is contained in F .

We are also interested in the Divergence Theorem and the Green’s Identities, that play a fundamental
role in the analysis of boundary value problems. These results are given on a finite vertex subset, the discrete
equivalent to a compact region, so we need to define the discrete analogous of the exterior normal vector
field to the set.

The normal vector field to F is defined as n
F

= −dχ
F

. Therefore, the component function of n
F

is given
by n

F
(x, y) = 1 when y ∼ x and (x, y) ∈ δ(F c)× δ(F ), n

F
(x, y) = −1 when y ∼ x and (x, y) ∈ δ(F )× δ(F c)

and n
F

(x, y) = 0, otherwise. In consequence, n
Fc

= −n
F

and supp(n
F

) = δ(F c) ∪ δ(F ).

hF

F

Figure 2. Normal vector field to F

Corollary 1.1. (Divergence Theorem) For any f ∈ X (Γ), it is verified that∫
F

div f dν =

∫
δ(F )

(
fa, n

F

)
dx,

where
(
f, g
)
(x) =

∑
y∈V

f(x, y)g(x, y), denotes the standard inner product on Tx(Γ).

Proof. Taking u = χ
F

in the definiton of div we get∫
F

div (f) dν =

∫
V

χ
F
div (f) dν = −1

2

∫
V

〈fa,∇χ
F
〉 dx =

1

2

∫
V

(
fa, n

F

)
dx

=
1

2

∫
δ(F )

(
fa, n

F

)
dx+

1

2

∫
δ(F c)

(
fa, n

F

)
dx.

The result follows taking into account that∫
δ(F c)

(
fa, n

F

)
dy =

∑
y∈δ(F c)

∑
x∈δ(F )

fa(y, x)n
F

(y, x) =
∑

x∈δ(F )

∑
y∈δ(F c)

fa(x, y)n
F

(x, y) =

∫
δ(F )

(
fa, n

F

)
dx. �

Recall that the Laplacian of Γ is the linear operator L : C(V ) −→ C(V ) that assigns to each u ∈ C(V )
the function

(1) L(u)(x) =
1

ν(x)

∫
V

c(x, y)
(
u(x)− u(y)

)
dy, x ∈ V.

Given q ∈ C(V ) the Schrödinger operator on Γ with potential q is the linear operator Lq : C(V ) −→ C(V )
that assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu.
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For each u ∈ C(F̄ ) we define the normal derivative of u on F as the function in C(δ(F )) given by

(2)

(
∂u

∂n
F

)
(x) =

1

ν(x)
〈∇u, n

F
〉(x) =

1

ν(x)

∫
F

c(x, y)
(
u(x)− u(y)

)
dy, for any x ∈ δ(F ).

The normal derivative on F is the operator
∂

∂n
F

: C(F̄ ) −→ C(δ(F )) that to any u ∈ C(F̄ ) assigns its

normal derivative on F .

The relation between the values of the Schrödinger operator with potential q on F and the values of
the normal derivative at δ(F ) is given by the following identities.

Proposition 1.2. Consider the function c
F

= c · χ
(F̄×F̄ )\(δ(F )×δ(F ))

. Then, given u, v ∈ C(F̄ ) the
following properties hold:

(i) First Green Identity∫
F

vLq(u)dν =
1

2

∫
F̄×F̄

c
F

(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy +

∫
F

quvdν −
∫
δ(F )

v
∂u

∂n
F

dν.

(ii) Second Green Identity∫
F

(
vLq(u)− uLq(v)

)
dν =

∫
δ(F )

(
u
∂v

∂n
F

− v ∂u

∂n
F

)
dν.

(iii) Gauss Theorem ∫
F

L(u)dν = −
∫
δ(F )

∂u

∂n
F

dν.

Proof. Taking into account that for any x ∈ F , c(x, y) = 0 for each y /∈ F̄ , we get that∫
F

vL(u) dν =

∫
F

∫
V

c(x, y)v(x)
(
u(x)− u(y)

)
dydx =

∫
F

∫
F̄

c(x, y)v(x)
(
u(x)− u(y)

)
dydx

=

∫
F̄

∫
F̄

c(x, y)v(x)
(
u(x)− u(y)

)
dydx−

∫
δ(F )

∫
F̄

c(x, y)v(x)
(
u(x)− u(y)

)
dydx

=

∫
F̄

∫
F̄

c(x, y)v(x)
(
u(x)− u(y)

)
dydx−

∫
δ(F )

∫
δ(F )

c(x, y)v(x)
(
u(x)− u(y)

)
dydxx

−
∫
δ(F )

v
∂u

∂n
F

dν =

∫
(F̄×F̄ )\(δ(F )×δ(F ))

c(x, y)v(x)
(
u(x)− u(y)

)
dydx−

∫
δ(F )

v
∂u

∂n
F

dν

=

∫
F̄×F̄

c
F

(x, y)v(x)
(
u(x)− u(y)

)
dydx−

∫
δ(F )

v
∂u

∂n
F

dν

=
1

2

∫
F̄×F̄

c
F

(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dydx−

∫
δ(F )

v
∂u

∂n
F

dν

and the First Green Identity follows. The proof of the Second Green Identity and the Gauss Theorem are
straightforward consequence of (i). �

2. Self-adjoint boundary value problems

Given δ(F ) = H1 ∪H2 a partition of δ(F ) and functions q ∈ C(F ), p ∈ C(H1), g ∈ C(F ), g1 ∈ C(H1),
g2 ∈ C(H2), a boundary value problem on F consists in finding u ∈ C(F̄ ) such that

(3) Lq(u) = g on F,
∂u

∂n
F

+ pu = g1 on H1 and u = g2 on H2.
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The associated homogeneous boundary value problem consists in finding u ∈ C(F̄ ) such that

(4) Lq(u) = 0 on F,
∂u

∂n
F

+ pu = 0 on H1 and u = 0 on H2.

It is clear that the set of solutions of the homogeneous boundary value problem is a vector subspace of
C(F ∪H1) that we denote by V. Moreover if Problem (3) has solution and u is a particular one, then u+ V
describes the set of all its solutions.

Problem (3) is generically known as a mixed Dirichlet-Robin problem, specially when p 6= 0, and
H1, H2 6= ∅, and summarizes the different boundary value problems that appear in the literature with the
following proper names:

(i) Dirichlet problem: ∅ 6= H2 = δ(F ) and hence H1 = ∅.
(ii) Robin problem: p 6= 0, ∅ 6= H1 = δ(F ) and hence H2 = ∅.
(iii) Neumann problem: p = 0, ∅ 6= H1 = δ(F ) and hence H2 = ∅.
(iv) Mixed Dirichlet-Neumann problem: p = 0 and H1, H2 6= ∅.
(v) Poisson equation on V : H1 = H2 = ∅ and hence F = V .

Applying the Second Green Identity, we can show that the raised boundary value problem has some
sort of symmetry. In addition, we obtain the conditions that assure the existence and uniqueness of solutions
of the boundary value problem (3).

Proposition 2.1. The boundary value problem (3) is self–adjoint, that is, for any u, v ∈ C(F ∪H1)

such that
∂u

∂n
F

+ pu =
∂v

∂n
F

+ pv = 0 it is satisfied that∫
F

vLq(u)dν =

∫
F

uLq(v)dν.

Proposition 2.2. (Fredholm Alternative) The boundary value problem (3) has solution iff∫
F

gv dν +

∫
H1

g1v dν =

∫
H2

g2
∂v

∂n
F

dν, for each v ∈ V.

In addition, when the above condition holds, then there exists a unique solution u ∈ C(F̄ ), such that∫
F̄

uv dν = 0, for any v ∈ V.

Proof. First, observe that problem (3) is equivalent to the boundary value problem

Lq(u) = g − L(g2) on F,
∂u

∂n
F

+ pu = g1 −
∂g2

∂n
F

on H1 and u = 0 on H2

in the sense that u is a solution of this problem iff u+ g2 is a solution of (3).

Consider now the linear operator F : C(F ∪H1) −→ C(F ∪H1) defined as

F(u) =


L(u) + qu, on F,

∂u

∂n
F

+ pu, on H1.

Then, kerF = V and moreover, by applying Proposition 2.1 for any u, v ∈ C(F ∪H1) it is verified that∫
F∪H1

vF(u) dν =

∫
F

vLq(u) dν +

∫
δ(F )

v

(
∂u

∂n
F

+ pu

)
dν

=

∫
F

uLq(v) dν +

∫
δ(F )

u

(
∂v

∂n
F

+ pv

)
dν =

∫
F∪H1

uF(v) dν.
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Therefore the operators F is self-adjoint with respect to the inner product induced in C(F ∪ H1) by the
weight ν and hence ImgF = V⊥ by applying the classical Fredholm Alternative. Consequently problem (3)

has a solution iff function g̃ ∈ C(F ∪H1) given by g̃ = g−L(g2) on F and g̃ = g1 −
∂g2

∂n
F

on H1 verifies that

0 =

∫
F∪H1

g̃v dν =

∫
F

gv dν +

∫
H1

g1v dν −
∫
F

vL(g2) dν −
∫
H1

v
∂g2

∂n
F

dν

=

∫
F

gv dν +

∫
H1

g1v dν −
∫
F

g2L(v) dν −
∫
δ(F )

g2
∂v

∂n
F

dν

=

∫
F

gv dν +

∫
H1

g1v dν −
∫
H2

g2
∂v

∂n
F

dν,

for any v ∈ V.

Finally, when the necessary and sufficient condition is attained there exists a unique w ∈ V⊥ such that
F(w) = g̃. Therefore, u = w + g2 is the unique solution of Problem (3) such that for any v ∈ V∫

F̄

uv dν =

∫
F∪H1

uv dν =

∫
F∪H1

wv dν = 0,

since v = 0 on H2 and g2 = 0 on F ∪H1.

Observe that as a by-product of the above proof, we obtain that uniqueness is equivalent to existence
for any data.

Next, we establish the variational formulation of the boundary value problem (3), that represents
the discrete version of the weak formulation for boundary value problems. Prior to describe the claimed
formulation, we give some useful definitions. The bilinear form associated with the boundary value problem
(3) is B : C(F̄ )× C(F̄ ) −→ IR given by

(5) B(u, v) =

∫
F

vLq(u) dν +

∫
δ(F )

v
∂u

∂n
F

dν +

∫
H1

p uv dν,

and hence, from the Second Green Identity, B(u, v) = B(v, u) for any u, v ∈ C(F̄ ), that is B is symmetric. In
addition by applying the First Green Identity, we obtain that

(6) B(u, v) =
1

2

∫
F̄×F̄

c
F

(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy +

∫
F

q uv dν +

∫
H1

p uv dν.

Associated with any pair of functions g ∈ C(F ) and g1 ∈ C(H1) we define the linear functional

` : C(F̄ ) −→ IR as `(v) =

∫
F

gv dν +

∫
H1

g1v dν, whereas for any function g2 ∈ C(H2) we consider the convex

set Kg2
= g2 + C(F ∪H1).

Proposition 2.3. (Variational Formulation) Given g ∈ C(F ), g1 ∈ C(H1) and g2 ∈ C(H2), then
u ∈ Kg2

is a solution of Problem (3) iff

B(u, v) = `(v), for any v ∈ C(F ∪H1)

and in this case, the set u+
{
w ∈ C(F ∪H1) : B(w, v) = 0, for any v ∈ C(F ∪H1)

}
describes all solutions

of (3).

Proof. A function u ∈ Kg2
satisfies that B(u, v) = `(v) for any v ∈ C(F ∪H1) iff∫
F

v(Lq(u)− g) dν +

∫
H1

v

(
∂u

∂n
F

+ pu− g1

)
dν = 0.

Then, the first result follows by taking v = εx, x ∈ F ∪H1. Finally, u∗ ∈ Kg2
is another solution of (3) iff

B(u∗, v) = `(v) for any v ∈ C(F ∪H1) and hence iff B(u− u∗, v) = 0 for any v ∈ C(F ∪H1).
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Observe that the equality B(u, v) = `(v) for any v ∈ C(F ∪H1) assures that the condition of existence
of solution given by the Fredholm Alternative holds, since for any v ∈ C(F̄ ) it is verified that∫

F

gv dν +

∫
H1

g1v dν = B(u, v) = B(v, u) =

∫
F

uLq(v) dν +

∫
δ(F )

u
∂v

∂n
F

dν +

∫
H1

p uv dν.

In particular if v ∈ V we get that ∫
F

gv dν +

∫
H1

g1v dν =

∫
H2

g2
∂v

∂n
F

dν.

On the other hand, we note that the vector subspace{
w ∈ C(F ∪H1) : B(w, v) = 0, for any v ∈ C(F ∪H1)

}
is precisely the set of solutions of the homogeneous boundary value problem associated with (3). So, Problem
(3) has solution for any data g, g1 and g2 iff it has a unique solution and this occurs iff w = 0 is the unique
function in C(F ∪H1) such that B(w, v) = 0, for any v ∈ C(F ∪H1). Therefore, to assure the existence (and
hence the uniqueness) of solutions of Problem (3) for any data it suffices to provide conditions under which
B(w,w) = 0 with w ∈ C(F ∪H1), implies that w = 0. In particular, this occurs when B is positive definite
on C(F ∪H1).

The quadratic form associated with the boundary value problem (3) is the function Q : C(F̄ ) −→ IR
given by Q(u) = B(u, u); that is,

(7) Q(u) =
1

2

∫
F̄×F̄

c
F

(x, y)
(
u(x)− u(y)

)2
dxdy +

∫
F

q u2dν +

∫
H1

p u2dν.

Next we establishes an easy sufficient condition to assure that B is positive semi-definite.

Proposition 2.4. Assume that q ≥ 0 on F and p ≥ 0 on H1. Then Q(u) ≥ 0 for any u ∈ C(F ∪H1).
Moreover, Q(u) > 0 for u 6= 0 except when q = 0 on F , p = 0 on H1 and H2 = ∅ simultaneously, in which
case Q(u) = 0 iff u is constant on F̄ .

Proof. From Identity (7) we get that Q(u) ≥ 0 for any u ∈ C(F ∪H1). Moreover, Q(u) = 0 iff

0 =
1

2

∫
F̄×F̄

c
F

(x, y)
(
u(x)− u(y)

)2
dxdy =

∫
F

q u2dν =

∫
H1

p u2dν.

The first equality implies that u is constant, since F̄ is connected. So u = 0 except when q = 0 on F , p = 0
on H1 and H2 = ∅, simultaneously. �

Corollary 2.5. (Dirichlet Principle) Assume that Q is positive semi-definite. Let g ∈ C(F ), g1 ∈
C(H1), g2 ∈ C(H2) and consider the quadratic functional J : C(F̄ ) −→ IR given by

J (u) = Q(u)− 2`(u).

Then u ∈ Kg2
is a solution of problem (3) iff it minimizes J on K

g2
.

Proof. Firstly note that when u ∈ Kg2
, then Kg2

= u+ C(F ∪H1).

If u is a minimum of J on Kg2
then for any v ∈ C(F ∪H1) the function ϕv : IR −→ IR given by

ϕv(t) = J (u+ tv) = J (u) + t2Q(v) + 2t[B(u, v)− `(v)]

attains a minimum value at t = 0 and hence 0 = ϕ′v(0) = B(u, v)− `(v). Therefore, from Proposition 2.3, u
is a solution of Problem (3). Conversely if u ∈ Kg2

is a solution of Problem (3), then B(u, v) = `(v) for any
v ∈ C(F ∪H1) and hence we get that

J (u+ v) = J (u) +Q(v) + B(u, v)− `(v) = J (u) +Q(v) ≥ J (u);

since Q is positive semi-definite; that is u is a minimum of J on Kg2
. �


