
This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Algebra 353 (2012) 249–260

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

An equivalence of categories for graded modules over
monomial algebras and path algebras of quivers

Cody Holdaway ∗, S. Paul Smith
Department of Mathematics, Box 354350, Univ. Washington, Seattle, WA 98195, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 October 2011
Available online 4 January 2012
Communicated by Michel Van den Bergh

MSC:
05C20
16B50
16G20
16W50
37B10

Keywords:
Monomial algebras
Ufnarovskii graph
Directed graphs
Representations of quivers
Quotient category

Let A be a finitely generated connected graded k-algebra defined
by a finite number of monomial relations, or, more generally, the
path algebra of a finite quiver modulo a finite number of relations
of the form “path = 0”. Then there is a finite directed graph, Q ,
the Ufnarovskii graph of A, for which there is an equivalence of
categories QGr A ≡ QGr(kQ ). Here QGr A is the quotient category
Gr A/Fdim of graded A-modules modulo the subcategory consisting
of those that are the sum of their finite dimensional submodules.
The proof makes use of an algebra homomorphism A → kQ that
may be of independent interest.

 2011 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Throughout k is a field.
Let A be an N-graded k-algebra.
The category of Z-graded right A-modules with degree-preserving homomorphisms is denoted by

Gr A and Fdim A is its full subcategory consisting of modules that are the sum of their finite dimen-
sional submodules. Since Fdim A is a Serre subcategory of Gr A (it is, in fact, a localizing subcategory)
we may form the quotient category
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QGr A := Gr A
Fdim A

.

We are interested in the structure of QGr A for monomial algebras.

1.2. A connected graded monomial algebra is a free algebra modulo an ideal generated by words
in the letters generating the free algebra. More explicitly, if w1, . . . , wr are words in the letters
x1, . . . , xg , then

A = k〈x1, . . . , xg〉
(w1, . . . , wr)

(1.1)

is a finitely presented monomial algebra.
Our main result applies to a more general class of monomial algebras, namely those of the form

kQ ′/I where Q ′ is a finite quiver (Section 2.1) and I an ideal generated by a finite set of paths in Q ′ .
Such algebras can be described without mentioning quivers: let K be a finite product of copies of k,
TK V the tensor algebra of a K -bimodule V that has a finite k-basis a1, . . . ,ag , and

A = TK V
(p1, . . . , pr)

(1.2)

where each p j is a word in the ai ’s.

1.3. The main result

Theorem 1.1. Let A be a monomial algebra of the form (1.2). There is a quiver Q and an equivalence of cate-
gories

QGr A ≡ QGrkQ .

The structure and properties of QGrkQ are described in [5].
The proof of Theorem 1.1 uses result of Artin and Zhang, Proposition 2.1 below, in an essential

way.
When A is of the form (1.1) we can take Q to be its Ufnarovskii graph (Section 3) and there

is then a homomorphism f : A → kQ such that the functor −⊗
A kQ induces the equivalence in

Theorem 1.1. This is proved in Section 4.1; see Theorem 4.2 for a precise statement.
In Section 4.2, Theorem 1.1 is proved for algebras of the form (1.2): if A is of the form (1.2) its

subalgebra generated by k and A1 is of the form (1.1) and has finite codimension in A so, by Artin
and Zhang’s result and Theorem 1.1 for algebras of the form (1.1), Theorem 1.1 holds for algebras of
the form (1.2).

1.4. Quadratic monomial algebras

If A is monomial algebra of the form (1.1) with degwi = 2 for all i we call A a quadratic monomial
algebra. The proof of Theorem 1.1 for quadratic monomial algebras is much simpler than the general
case. We give that proof in Section 6.1.

Let A be an arbitrary finitely presented connected graded monomial algebra. By Backelin and
Fröberg [2], the Veronese subalgebra A(n) ⊂ A is quadratic for n ) 0; by Verevkin [9], QGr A ≡
QGr A(n) , so Theorem 1.1 holds for A if it holds for A(n) . However, if Theorem 1.1 is proved for A
by first proving it for A(n) the quiver Q is the Ufnarovskii graph for A(n) which is more complicated
than that for A (see Section 6.3 for an example illustrating this).

That is why we prove Theorem 1.1 directly in Section 4.1, i.e., without passing to a Veronese
subalgebra.
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2. Preliminaries

2.1. Notation

The letter Q will always denote a directed graph, or quiver, with a finite number of vertices and
arrows—loops and multiple arrows between vertices are allowed.

We write kQ for the path algebra of Q . The finite paths in Q , including the trivial paths at each
vertex, form a basis for kQ and multiplication is given by concatenation of paths. If a is an arrow that
ends where the arrow b begins we write

ab := the path “a followed by b”.

We set ab = 0 if b does not begin where a ends. Likewise, if a path p ends where a path q begins, pq
denotes the path first traverse p then q.

We make kQ an N-graded algebra by declaring that a path is homogeneous of degree equal to its
length.

2.2. Throughout, modules are right modules.

Proposition 2.1. (See [1, Prop. 2.5].) Let φ : A → B be a homomorphism of graded k-algebras. If kerφ and
cokerφ belong to Fdim A, then −⊗

A B induces an equivalence of categories QGr A → QGr B.

Lemma 2.2. Let A and B be N-graded k-algebras generated by A0 + A1 and B0 + B1 respectively. Let φ :
A → B be a homomorphism of graded k-algebras. If B0φ(Am) ⊂ φ(Am) and B1φ(Am) ⊂ φ(Am+1) for some
m ∈ N, then cokerφ belongs to Fdim A.

Proof. We can replace A by its image in B so we will do that; i.e., without loss of generality, A is a
graded subalgebra of B and φ is the inclusion map.

If n � 2 and Bn−1Am ⊂ Am+n−1, then

Bn Am = B1Bn−1Am ⊂ B1Am+n−1 = B1AmAn−1 ⊂ Am+1An−1 = Am+n.

It follows that Bn Am ⊂ Am+n for all n � 0. Thus B/A is annihilated on the right by Am and therefore
belongs to Fdim A. !

3. The Ufnarovskii graph of a connected graded monomial algebra

Throughout this paper G is a fixed finite set of letters or generators, 〈G〉 is the free monoid
generated by G , and k〈G〉 is the free k-algebra generated by G . Elements of 〈G〉 are called words.
Throughout, F denotes a fixed finite set of words and

A := k〈G〉
(F )

(3.1)

is the quotient by the ideal (F ) generated by F . Such A is called a monomial algebra.
There is no loss of generality in assuming that G ∩ F = ∅. We will make that assumption.
We make A a graded algebra by placing G in degree one. Thus A1 = kG .
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3.1. Words

The words in F are said to be forbidden. A word is illegal if it belongs to (F ) and legal otherwise.
The set of legal words is denoted by L, and Lr := L ∩ Gr is the set of legal words of length r. The
image of Lr in A is a basis for Ar ; see, for example, [3, Lem. 2.2].

Throughout we use the notation

" + 1 := the longest length of a forbidden word

= max
{
" + 1

∣∣ F ∩ G"+1 -= ∅
}
, and

L�r := {legal words of length � r}.

3.2. Notation

The letters s, t , u, v , w , will always denote words.
If u and w are words we write

u " w

if w = uv for some word v .
The symbols x, y, and xi , will always denote elements of G . The notation xi " w therefore means

that xi is the first letter of w .

3.3. The Ufnarovskii graph

The Ufnarovskii graph of A is the directed graph Q , or Q (A) if we need to specify A, defined as
follows (see [3, Sect. 12.2], [7,8]).

The set of vertices of Q is

Q 0 = L".

The set of arrows of Q is in bijection with the set L"+1 as follows,

Q 1 = {aw | w ∈ L"+1}.

If w ∈ L"+1, then there are unique s, t ∈ Q 0 and unique x, y ∈ G such that w = sy = xt ∈ L and we
declare that the arrow aw corresponding to w goes from s to t .

Given s, t ∈ Q 0, there is at most one arrow from s to t .
Suppose n > 0. If x1 . . . xn+" is a legal word of length n + " there is a length-n path

x1 . . . x" −→ x2 . . . x"+1 −→ · · · −→ xn+1 . . . xn+" (3.2)

in Q . This provides a bijection between legal words of length n + " and paths of length n (see the
proof of [7, Thm. 3] and the remark at [3, p. 157]).



Author's personal copy

C. Holdaway, S.P. Smith / Journal of Algebra 353 (2012) 249–260 253

3.4. Labeling arrows and paths

We write aw for the arrow corresponding to w ∈ L"+1. The path in (3.2) is therefore
ax1...x"+1ax2...x"+2 · · ·axn ...xn+" .

Suppose there is an arrow u → v . Then uy = xv for unique x and y in G , and we attach the label

x to the arrow u → v . We denote this by u
x−→ v . The following facts will be used often:

• The label attached to the arrow aw is the first letter of w .
• The existence of an arrow u

x−→ v implies that x" u and u " xv .

We extend the labeling to paths: the label attached to a concatenation of arrows is the concatena-
tion of the labels attached to the arrows in the path—for example, the label attached to the path in
(3.2) is x1 . . . xn . In general, there will be different paths with the same label: for example, the labels
on the Ufnarovskii graph for A = k〈x, y〉/(y3) are

x2x

x

y2

y

xy

x

x

yx.

y

y

(3.3)

The Ufnarovskii graph for k〈x, y, z〉/(z2, zy) appears in Section 5.
The following observation is surely known to the experts.

Lemma 3.1. Suppose there is a path with the label x1 . . . xr , say

v0
x1−→ v1

x2−→ · · · xr−→ vr . (3.4)

Let vr = xr+1 . . . xr+" .

(1) vi−1 = xi . . . xi+"−1 for all i = 1, . . . , r + 1.
(2) x1 . . . xr vr is a legal word.
(3) x1 . . . xr /∈ (F ).

Proof. The hypothesis implies vi−1 " xi vi and xi " vi−1 for all i = 1, . . . , r. An induction argument, or
simply noticing the pattern in the equalities

vr = xr+1 . . . xr+",

vr−1 = xr . . . xr+"−1,

vr−2 = xr−1 . . . xr+"−2, etc.

proves (1).
(2) To prove x1 . . . xr vr is legal it suffices to show its subwords of length " + 1 are legal. Such a

subword is of the form xi . . . xi+"−1xi+" for some i in the range 1 � i � r; this subword is equal to
vi−1xi+" = xi vi and is legal because there is an arrow vi−1 → vi .

(3) Since a subword of a legal word is legal, (3) follows from (2). !
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The contrapositive of part (3) of Lemma 3.1 is useful so we record it separately.

Lemma 3.2. If x1 . . . xr is an illegal word, then there are no paths labeled x1 . . . xr .

The converse of Lemma 3.2 is false. For example, x is a legal word when A = k〈x, y〉/(xy, x2) but
the Ufnarovskii graph of A is

Q = yayy
ayx

x

with labels

yy
y

x. (3.5)

3.5. The homomorphism k〈G〉/(F ) → kQ

Let f : k〈G〉 → kQ be the unique algebra homomorphism such that for all x ∈ G ,

f (x) = the sum of all arrows labeled x

or 0 if there are no arrows labeled x.
Hence, if x1 . . . xr ∈ Gr ,

f (x1 . . . xr) = the sum of all paths labeled x1 . . . xr (3.6)

or 0 if there are no such paths. More formally,

f (x) = 0 if xL" ∩ L"+1 = ∅, and

f (x) =
∑

w∈Q 1
x!w

aw if xL" ∩ L"+1 -= ∅.

Since f (G) ⊂ Q 1, f is a homomorphism of graded k-algebras.

Proposition 3.3. The homomorphism f : k〈G〉 → kQ induces a homomorphism of graded algebras from A
to kQ .

Proof. Lemma 3.2 and (3.6) imply f (w) = 0 for all w ∈ F . !

Lemma 3.4. Let x1 . . . xr ∈ Gr . There is a path labeled x1 . . . xr if and only if x1 . . . xr L" ∩ L -= ∅.

Proof. (⇒) Suppose there is a path

v0
x1−→ v1

x2−→ · · · xr−→ vr .

Write vr = xr+1 . . . xr+" . Since xi vi is legal for all i = 1, . . . , r and xi vi = xixi+1 . . . xi+"−1 all subwords
of x1 . . . xr vr of length " + 1 are legal. It follows that x1 . . . xr vr is legal.
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(⇐) Suppose x1 . . . xr L" ∩ L -= ∅. Let vr = xr+1 . . . xr+" be a vertex such that x1 . . . xr vr is legal. For
i = 1, . . . , r, define

vi−1 := xi . . . xi+"−1.

This is a legal word, of length ", because it is a subword of the legal word x1 . . . xr vr . Since vi−1 " xi vi

there is an arrow vi−1
xi−→ vi . Concatenating these arrows produces a path labeled x1 . . . xr . !

Lemma 3.5. Let x1 . . . xr be a legal word of length r � ". There is a path labeled x1 . . . xr if and only if there is
a path labeled xr−"+1 . . . xr .

Proof. The lemma is true for r = " so suppose r > ".
(⇒) This is obvious.
(⇐) Suppose there is a path

vr−"
xr−"+1−→ vr−"+1 −→ · · · −→ vr−1

xr−→ vr .

Write vr = xr+1 . . . xr+" .
By Lemma 3.4, x1 . . . xr is legal if x1 . . . xr vr is. The word x1 . . . xr vr is legal if all its subwords of

length " + 1 are legal. The proof of Lemma 3.4 showed that xr−"+1 . . . xr vr is legal. All subwords of
xr−"+1 . . . xrxr+1 . . . xr+" are therefore legal so it only remains to show that xi . . . xi+" is legal for all
i � r − ". If i � r − ", then xi . . . xi+" is a subword of x1 . . . xr and therefore legal. !

3.6. The kernel of f

The homomorphism f need not be injective: for example, by looking at the labels on the quiver
(3.5) above one sees that f (x) = 0 when A = k〈x, y〉/(xy, x2).

Lemma 3.6. Let w1, . . . , wn be pairwise distinct legal words. If f (wi) -= 0 for all i, then { f (w1), . . . , f (wn)}
is linearly independent.

Proof. Since f preserves degree we can assume that w1, . . . , wn have the same length, say r. By defi-
nition, f (wi) is the sum of the paths labeled wi ; hence if i -= j no path that appears in f (wi) appears
in f (w j). But the paths of length r are linearly independent elements of kQ so { f (w1), . . . , f (wn)}
is linearly independent.

Theorem 3.7. The kernel of the homomorphism f : k〈G〉 → kQ is equal to (F ) + I where I is the left ideal
generated by the set

S :=
{
x1 . . . xs ∈ Gs

∣∣ s � " and there is no path labeled x1 . . . xs
}
.

Proof. By Proposition 3.3, ker f contains the ideal (F ). Since f (x1 . . . xr) is the sum of all the paths
labeled x1 . . . xr , S ⊂ ker f . Hence (F ) + I ⊂ ker f .

Since (F ) is spanned by words, Lemma 3.6 implies ker f is spanned by (F ) and various legal
words. Suppose x1 . . . xr is a legal word such that f (x1 . . . xr) = 0. This implies there is no path labeled
x1 . . . xr so, if r � ", x1 . . . xr is in S and therefore in I . On the other hand, if r � " + 1, Lemma 3.5
implies xr−"+1 . . . xr is in S , whence x1 . . . xr ∈ I . !

Information about the cokernel of f is given in Proposition 4.1.
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4. The proof of Theorem 1.1

4.1. The proof of Theorem 1.1 when A is as in (1.1)

Let A be as in (1.1) and adopt the notation in (3.1). We will prove Theorem 1.1 by applying Propo-
sition 2.1 to the induced homomorphism f̄ : A → kQ . Before doing that we must check that the
hypotheses of Proposition 2.1 hold: we must show that the kernel and cokernel of f̄ belong to Fdim A.

Proposition 4.1. Let f̄ : A → kQ be the homomorphism induced by f . Then ker f̄ and coker f̄ belong to
Fdim A.

Proof. Let I and S be as in Theorem 3.7 and write Ī and S̄ for their images in A. Thus, Ī = ker f̄ and
ker f̄ is generated as a left ideal by S̄ .

Given the description of ker f in Theorem 3.7, it suffices to show that Ī A" = 0.
Let x1 . . . xs ∈ S . By Lemma 3.4, x1 . . . xr L" ∩ L = ∅; in other words, x1 . . . xr L" ⊂ (F ). Taking the

image of this equality in A we conclude that S̄ A" = 0. It follows that Ī A" = 0. Thus ker f belongs to
Fdim A.

By Lemma 2.2, to show coker f̄ belongs to Fdim A it suffices to show that

(kQ 0) f̄ (A") ⊂ f̄ (A") and (kQ 1) f̄ (A") ⊂ f̄ (A"+1).

To do this it suffices to show that Q 0 f (L") ⊂ f (L") and Q 1 f (L") ⊂ f (L"+1).
Let x1 . . . x" ∈ L" . By Lemma 3.1(1), every path labeled x1 . . . x" begins at the vertex v0 = x1 . . . x" .
Let e be a trivial path and p a path labeled x1 . . . x"; since p begins at v0, ep = p if e is the trivial

path at v0, and ep = 0 if e is some other trivial path. Hence ef (x1 . . . x") is either 0 or f (x1 . . . x"). It
follows that Q 0 f (x1 . . . x") = { f (x1 . . . x")} and Q 0 f (L") = f (L").

Let a be an arrow and p a path labeled x1 . . . x" . If a does not end at v0, then ap = 0 because p
begins at v0; thus, if a does not end at v0, then af (x1 . . . x") = 0.

We now assume a ends at v0; i.e., v−1
a−→ v0 and the arrow a is labeled by the first letter of

v−1, say x0. The path ap is therefore labeled x0x1 . . . x" . Since v0 " x0v1, a is the only arrow labeled
x0 that ends at v0. Therefore

af (x1 . . . x") = f (x0) f (x1 . . . x")

= f (x0x1 . . . x").

In particular, af (x1 . . . x") ∈ f (L"+1).
This completes the proof that Q 1 f (L") ⊂ f (L"+1) and, as explained before, this implies coker f̄

belongs to Fdim A. !

Theorem 4.2. Let A be a connected graded monomial algebra as in (1.1) and/or (3.1). Let Q be its Ufnarovskii
graph and view kQ as a left A-module through the homomorphism f̄ : A → kQ . Then −⊗

A kQ induces an
equivalence of categories QGr A ≡ QGrkQ .

Proof. This follows from Propositions 2.1 and 4.1. !

4.2. The proof of Theorem 1.1 when A is as in (1.2)

Let Q ′ be a finite quiver and A = kQ ′/I the quotient of its path algebra by an ideal generated by
a finite number of paths. (Thus A is a more general kind of monomial algebra.) The subalgebra

A′ = k ⊕ A1 ⊕ A2 ⊕ · · ·
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is of finite codimension in A so A/A′ ∈ Fdim A′ . Proposition 2.1 therefore implies that −⊗
A′ A in-

duces an equivalence of categories

QGr A′ ≡ QGr A. (4.1)

Since A′ is a monomial algebra of the form (1.1), Theorem 4.2 gives an equivalence

QGr A′ ≡ QGrkQ (4.2)

where Q is the Ufnarovskii graph of A′ . By (4.1) and (4.2),

QGr A ≡ QGrkQ .

This completes the proof of Theorem 1.1 for kQ ′/I .

5. An example

Let A = k〈x, y, z〉/(z2, zy). Since " = 1, Q 0 = {x, y, z}. The arrows for Q (A) correspond to the legal
words of length two, namely

{
x2, xy, xz, y2, yx, yz, z2, zx, zy

}
−

{
z2, zy

}
.

The Ufnarovskii graph of A is therefore

Q (A) = y

y2

yz

yx

xx2

xz

xy

z
zx

(the arrows are denoted by w rather than aw ) with labels

y

y

y

y

xx

x

x

z.
z

Thus, the homomorphism f is
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f (x) = ax2 + axy + axz,

f (y) = ay2 + ayx + ayz,

f (z) = azx.

6. Connected graded quadratic monomial algebras

Section 6.1 contains a short proof of Theorem 4.2 for connected graded monomial algebras with
quadratic relations. Section 6.2 shows that Theorem 4.2 for an arbitrary finitely presented connected
graded monomial algebra A can be deduced from the quadratic case.

6.1. Let A be a quadratic monomial algebra and Q its Ufnarovskii graph.
The defining relations for A have length 2 so " = 1. The set of vertices for Q is therefore in

bijection with G . There is an arrow axy from vertex x to vertex y if and only if xy /∈ F and that arrow
is labeled x if it exists. It follows that the map f : k〈G〉 → kQ defined in Section 3 can be defined as
follows:

f (x) = the sum of all arrows that start at x.

Thus, if r � 2, then

f (x1 . . . xr) =






pf (xr) where p is the unique path labeled
x1 . . . xr−1 that ends at vertex xr;

0 if there is no such p.

In particular, if xy ∈ F , there is no arrow from x to y so f (xy) = 0. Thus f (F ) = 0 and there is an
induced map f̄ : A → kQ .

The lemmas in Section 3 are either trivial or unnecessary in the quadratic case. The proof that
ker f̄ belongs to Fdim A is also much simpler.

6.2. Let n be a positive integer. The nth Veronese subalgebra of a Z-graded algebra B is

B(n) :=
⊕

i∈Z
Bin.

Theorem 6.1 (Backelin–Fröberg). (See [2, Prop. 3].) If A is a connected graded k-algebra with defining relations
of degree � d + 1, then A(n) is a quadratic algebra for all n � d.

Theorem 6.2 (Verevkin). (See [9, Thm. 4.4].) Let A be a connected graded algebra generated by A1 . Then
QGr A ≡ QGr A(n) for all positive integers n.

Proposition 6.3. If Theorem 1.1 holds for connected graded quadratic monomial algebras it holds for all con-
nected graded monomial algebras.

Proof. Let A be a monomial algebra and give ", F and G the meanings they have in Section 3.
By Theorem 6.1, A(") is a quadratic algebra. Because A is a monomial algebra so is A(") . By The-

orem 6.2, QGr A ≡ QGr A(") . Hence if Theorem 1.1 holds for A(") , then QGr A ≡ QGrkQ ′ where Q ′ is
the Ufnarovskii graph for A(") . !
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6.3. The Ufnarovskii graph for A(") is more complicated than that for A. For example, the Uf-
narovskii graph for A = k〈x, y〉/(y3) is

Q := x2x3

x2 y

y2

y2x

xy

xyx

xy2

yx

yx2

yxy

(6.1)

where the arrows are denoted by w rather than aw . The homomorphism f̄ : A → kQ is given by

f̄ (x) = ax3 + ax2 y + axyx + axy2 ,

f̄ (y) = ayx2 + ayxy + ay2x.

The 2-Veronese subalgebra of A is generated by s = x2, t = xy, u = yx, and v = y2. We have

A(2) ∼= k〈s, t,u, v〉
(vu, tv, v2)

so its Ufnarovskii graph is

v

vt
vs

Q ′′ = tt2

tu

ts

s

s2

st

su

sv

u u2

uv

ut

us

The homomorphism f : k〈s, t,u, v〉/(vu, tv, v2) → kQ ′′ is given by

f̄ (s) = as2 + ast + asu + asv ,

f̄ (t) = at2 + ats + atu,

f̄ (u) = au2 + aus + aut + auv ,

f̄ (v) = avs + avt .
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7. A remark

The results in [5] and [6] show that many different Q give rise to the equivalent categories
QGrkQ . Thus, given a finitely presented connected graded monomial algebra A, the Ufnarovskii graph
is not the only Q for which QGr A is equivalent to QGrkQ .

Consider, in particular,

A = k〈x, y〉
(y3)

.

The Ufnarovskii graphs for A and A(2) appear in Section 6.3. Since A(") is quadratic for all " � 2,
QGrkQ (A) ≡ QGrkQ (A(")) for all " � 2.

Furthermore, by [4], QGr A is also equivalent to QGrkQ ′ where

Q ′ = 0 1 2 (7.1)

There is a direct proof of the equivalence QGrkQ (A) ≡ QGrkQ ′ .

Theorem 7.1. (See [6].) Let L and R be N-valued matrices such that LR and RL make sense. Let Q LR be the
quiver with incidence matrix LR and Q RL the quiver with incidence matrix RL. There is an equivalence of
categories

QGrkQ LR ≡ QGrkQ RL .

The equivalence QGrkQ (A) ≡ QGrkQ ′ follows from Theorem 7.1 because Q (A) = Q LR and Q ′ =
Q RL where

L =





1 0 0
1 0 0
0 1 0
0 1 1



 and R =
(1 0 0 1
0 1 0 0
0 0 1 0

)

.
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