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§ 1. INTRODUCTION.

This talk is mainly a report on some joint work with J.T.Stafford
which appears in [6] . That paper examines the structure of QD (X) ,
the ring of differential operators on an irreducible affine curve X ,
defined over an algebraically closed field k of characteristic zero.
When X is non-singular the structure of P(X) is well understood,
and is but a particular case of a structure theory which applies to
non-singular affine varieties X of any dimension. However, when X
is singular the structure of H(X) is not well understood, and [6]
examines the easiest case viz. X 1is a (singular) curve. In all that
follows ¥ will denote an irreducible affine curve defined over an

algebraically closed field k of characteristic zero .

This paper begins by recalling in § 2 some of the main results of
[6]1 concerning the structure of D(X) . On the positive side, LX)
is a finitely generated k-algebra and right and left noetherian.
However, in contrast to the non-singular case, H{X) need not be a
simple ring if %® is singular. In Theorem 2.3 it is seen that the
simplicity of £{X} 1is equivalent to a number of other properties.
In particular, J(X) is simple if and only if the natural projection
m: X+ X from the normalisation is bijective. When (X} 1is not
simple, there is a unigue minimal non-zero ideal J(X) , and
H(X) :=P(X)/J(X) is a finite dimensional k-algebra. The ring of re-
gular functions &(X) need not be a simple (X)-module, but it has
a unique simple submodule J(X).8(X) , and C(X) := F(x) /T (X) . F(X)
is a finite dimensional k-algebra. Both H(X) and C(X) split as
a direct sum of finite dimensional algebras, MX and CX , one for
each singular point x € Sing X . The algebras H and Cx depend

X

only on the local ring O and § 3 examines how the structure of

X,x 7

Hy and CX depends on that of @% x ° We have no general theorem,
“xr

and it is clearly a key question to understand how the nature of the

singularity at x 1is reflected in the structure of Hx and CX .
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In Section 4 we provide some light relief and show how some of the
results in § 2 may be used to describe the space of polynomial solu-
tions of a (very restricted) class of differential equations. For

example, if D = ai—ai is viewed as a differential operator on

kix,yl and 5 = {1 & k[x,y]l|D{f) = 0} we show that 8 is a simple

2 defined by y2 = x3 .

LX) -module where X is the curve in A
Knowing generators of J£H{X) as a k-algebra, allows one to produce a

basis for S in an extremely simple way .

Section 5, shows how the results of § 2 may be used when
¥ : X -+ X is injective to solve the following problem. Let
R

0 # f € R be an irreducdble polynomial defining the curve C . It is

1l

klx,y] be the polynomial ring in two variables, and let

well known that the J(R)-action on R extends to the localisation
Re and that Rf/R is a P(R)-module of finite length with a unigue
simple submodule. When C is non-singular, it is not hard to show
that Rf/R is itself a simple JFH{R)-module (the proof of this is gi-
ven in § 5) ; this is well-known, but when C is singular it is dif-
ficult to describe the simple submodule of Rf/R . We prove that when
m:C - C is injective then Rg/R is a simple P (R) -module.

§ 2. STRUCTURE OF B (X) .

Let A be a commutative k-algebra and let M and N be
A-modules. The space J?A(M,N) of k~linear differential operators
fron M to N is defined to be &, (M,N) =

£ . .
Un:o{®€domk(M,N)]Lan[...[a ao,@]]...]]= 0 for aLLaO,a1,“.,an€A}

1

where [a,0] = a8 - Ga .

We are interested in JO(A) = &%(A,A) , the ring of differential
operators on A , when A 1is either % (X) , the co-~ordinate ring of
the curve X , or 6&,x ;, the local ring at the point x € X . We de-
note (@A) by LX) and éax,x in these two cases.

When X 1is a non-singular curve , (X} 1is a finitely generated
k~algebra, (right and left) noetherian [4, § 6], and a simple ring of
global homological dimension 1. For non-singular X , D(X) is gene-
rated by &(X) and Der, X , the module of k-linear derivations on

k
&1x) . Unfortunately when X 1is singular this is not true.
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EXAMPLE 1. Let X be the curve in /A3 defined by x5 = y3, x7 = z3 .

There is a unique singular point at (0,0,0} . The normalisation X ’

is isomorphic to A1 and the natural projection 7w : ¥ > X is given

by w(a) = (a3,0°,a”) . write &%) = k(t] and @(x) = kit3,£2,¢71 .

Since Der X is the free k {t] -module generated by 8= d/dt, and any

derivation on @{X) extends to &X) [5], it is easy to see that

Der X is the subspace of k[t]l3 with basis {£3,£3 0 (thaln > 4} .
set D = t ¢
k(t) , and it leaves &(X) stable. Hence D €£(X) , but D is not
in the subalgebra of Endy @(X) generated by &{(X) and Der X .

t8 - 2)(td - 7)3 . This is a differential operator on

This example illustrates the difficulty in trying to decide whe-

ther &(X) 1is a finitely generated k=~algebra. In fact, if one takes
‘:'+X3+X§=O, then F1(2)

is not finitely generated [2]. However, for curves one has the follo-

Z to be the surface in ct3 defined by X

wing.

THEOREM 2 [6] . Let X be a curve. Then f(X) is a finitely genera-
ted k-algebra and is right and left noetherian.

Although H(X) need not be a simple ring we have the following
(recall that w: X - X is the natural projection from the normalisa-

tion) .

THEOREM 3 [6] . The following are equivalent
(a) £(X) is a simple ring ;

(b) m : X » X is bijection ;

(c) @(X) 1is a simple ® (X)-module ;

(d) gl.dim F(X) = 1 ;

{e) &(X) is Morita eguivalent to P (X) .

As, perhaps, suggested by (e) , the key to understanding £(A) for
A=4X) , or A= (9; y 1is to compare D(a) and D(B) where A denotes
I
the integral closure of A in Fract A , its field of fractions. Define

DE,n) = {D e LAY D(E) € A for all £ € A .

This is a non-zero right ideal of .O(A) and a left ideal of $2(a) .
Since H(A) 1is a simple, hereditary ring ﬁ(ﬁ,A) is necessarily a

progenerator in Mod-_P{A) . Thus we have £(a) c Endo@(g)ﬁ(i,}\) =T,

where T is Morita eguivalent to H(A) . The relation between ﬁ(A)
and T depends on the fact that they have a common left ideal, name-
ly J£NA,R). A key lemma is that &(A) = T if and only if oD(A,A)¥A=h ,
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where @ (A,A)* A denotes the linear span of all D{(f) such that
D€ $(A,A) and f € A . It is these bbservations which are exploited

to obtain the above results.

Through part (e) of Theorem 3 we can, in a sense, say that we
understand & (X) completely when P(X) is simple. 8o from now on we
concentrate on what happens when £ (X) is not simple. However, there
is one question still of interest when @ (X) is simple ; give a pro-
cedure for obtaining generators forcﬂ(x) , or find the least n such
that (X} is generated by difféerential operators of order < n .

~
To understand JF(X) when T : X » X 1is not injective one is led

to prove.

THEOREM 4 [6]. $(X) constains a unigue minimal non-zero ideal J(X) .
The factor H(X) := P (X)/I(X) is a finite dimensional k-~algebra,

and H({X) = , H
— X €8ingX %
singular point x . The structure of HX depends only on the local

is a direct sum of algebras HX one for each

ring 8& % ° In fact 59X % has a unigue minimal non-zero ideal J
’ r

and HX :'f&,x/JX,x

X,x

The relationship between the ideal structure of H(X) and the
submodule structure of @&(X) is illustrated by

THEOREMS5 [ 6]. Consider € (X) as a HI(X)-module. Then
{(a) @(X) has finite length ;
(b) (@(X) _has a unique simple submodule, namely

Jx) . ox) = pE 06X ;

(c) If C(X) = @(X)/J(X). @(X) then C(X) is a faithful H(X)-module;

@ cx = @x SingXCX
each singular point of X ;

(e) CX 2 6§,X/JX,X' 9%,x and is a faithful Hx—module

is a direct sum of local algebras, one for

Clearly one would like to understand the structure of the finite
dimensional algebras Hx and CX , and so H(X) and C(X) . First
note that, since HX and C% depend only on 5% - it will follow

P; 7

from Theorem 3 that Hx and C are zero precisely when # ﬂ_l(x)=1.

x
It is not difficult to observe that if @(X) = Kty eeest ) /(6 40 )
then C(X) 1is a homomorphic imace of
k[tl,...,t& /(fl,...,fr,afi/atj) because J(X). & (X) contains the

conductor of @(X) in 9(%) and the image of each afi/8t~ belongs
to the conductor ’
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§ 3. THE ALGEBRAS HX AND CX
In this section X 1is a curve with a unigue singular point x ,

and we set A = 6; % and B = A . This section is a collection of
r

examples illustrating some of the possibilities for HX and CX . We

will give examples where HX may be either O , or Mn(k) , the ring
of n X n matrices over k , or (E i) the ring of lower triangular
k o

2 X 2 matrices , or ( ) . In these examples CX is respectively

K k
o, k[t]/(tn), kIt /(tz) , and kr_s,t]/(s,t)2 . We have no general re-
sult, but these examples do give some clues as to what should be expec-

ted in general.

We denote the maximal ideal of A by m . B is a semi-local
ring with Jacobson radical denoted r . The maximal ideals of B cor-

respond to the points U %) . Since HX = 0 if and only if

# "—1(x) = 1 , we may rephrase this as

PROPOSITION 1. H_ = O if and only if éx 4 is_a local ring.
14

Bv {B6, § 7.4] there exists t € r and QEEDerkB such that
3(t) = 1 . It is an easy exerciSe to see that this forces DerkB = Bo ,

and r = Bt . If b€ B we shall write b' = 3(b)

We shall assume in all the examples we construct that [ : ¥ - x
is unramified at all points. The reason for this restriction is becau-
se we can make use of the following result to simplify the calcula-

tions.

THEOREM 2 (W.C.Brown [3}) . Ifn X + X is unramified at all points
then D(x) € B

Thus we have , locally ©H(a) € H(B) = B[3] . First we construct

examples where HX S Mn(k) . The easiest case is n =1

PROPOSITION 3. Suppose that # U_l(x) > 1 . Let I denote the conductor

of é&lx in @y ,If T is a maximal ideal of 6§,x , then H_ =k

Proof. Since # M 1 (x) # 1, P and D(B) are not Morita equi-
valent , so JB(B,A)* B ¢ A . However, I SZéB(B,A) whence
I = 49(B,A) * B ., But k = A/I 1is now a faithful Hx—module. Hence

H =k . o
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This explains {6 , Theorem 4.4] since under the hypotheses of that
theorem one must have I a maximal ideal of ¢9X x ! since 9X X/I is
- r r
a local ring contained in G'X X/I which is a product of fields.
’

It is possible for Hx to equal k without the hypothesis of
Proposition 3 being satisfied. Indeed, if P{B,A)*B is a maximal
ideal of A then H = k . This is illustrated by the following

EXAMPLE 4 [6, § 5.7] Take X =’ , and &%) =kI[t]. Define X by
OxX) = k + kt%(t-1) + tT(t-1)k[t] . The conductor is t?(t-1)k[t)

which is not a maximal ideal of &(X) . It is shown in [6] that

& (B,A)*B =m , the unigue maximal ideal of & % (here x is the
unigue singular point of X )} . Again A/F{(B,A)* B is a faithful

Hx—module s0 Hx ~ k

This example may be understood as follows . Let X' be the curve
with @(X') = k + t2k[t] . We have a factorisation of 1 as

% v, x' £ X with W = 2P and Y injective. Hence
P&, x)* @ = @x') . However, Gxy = k+t2(t~1) F(X') and
Hx', 0 2 t2(t-1) @(x') . Thus HF, ) 2 HE,VHXx) 2 (-1 DE,x".

Herce £ (X,%) * ) 2 tz(t-l) &(X') =m . The point is that ¥ is injective, and
the conductor of & (X) in F(X') is a maximal ideal of &{(X)

PROPOSTTION 5. Suppose that # 11 '(x) > 1. Suppose that the Jacobson radical of

P : 3 _ n, n+ig .
Gy,x i8S t‘9x,x o and that & = k#ktt...4ke+t Oy . Then H = M
Proof. Let m be the maximal ideal of A=<9;(X.Then mB = tB , and by

Theorem 2,0 (a) C $(B) . The same argument as [ 6 ,'Larma 5.3]1 shows that
&®2) = 7 9®) , vhence c =2/t"'B isa faithful H -module. Thus , the
result will follow if we can show that A/tnﬂB is a simple Hx—module, or equiva-
lently is a simple 0 (a)-module. Notice that A/t™VB is generated by 1 , and that
kt" is an essential A-submodule . Thus, to show A/tnﬂB is a simple P (A)-module
it will suffice to show that there exists D €D (A) such that D(t") = 1 . We pro-
ceed to show that D := (8 - 1)...(td - n)3" belongs to H(A) ; since

(-1)n(n!)-2D(tn) =1 this will complete the proof of the Proposition.

Since £B)=B[3] we have DE O(B) . The action of D on A annihilates
k+kt+ ...+ k1, so it remains to show that D* (™)) ¢ pt™?
ce that " * (Bt™)) C Bt . Secondly, notice that, for all j €N,
(€3 - * @) BT | Hence (t3 - m)...(td -1) * B € B™' and thus

D* (Bth) c Btn+l and D E&?J:’(A) , as required. [

. First, noti-
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PROPOSITION 6 . Suppose that # l'l_l(x) > 1 . Suppose that the Jacob-

son radical of gx,,x is t&,  , and that Og x = K+ kt + ti fx,x

where vy € &X,x\ t@'X,X , and y 1is not a unit . Then HX ~ (k k).
Proof. The same arguments as usual show that Jf (B,A) = ty P (B)

and hence CX = A/tyB . Since dim CX = 2 and CX is a faithful

Hx—module, HX embeds in Mz(k) . The hypothesis implies that t € yB

(just use the fact that 9X,x is a ring, so contains t2 ) . Note that

t8€DerkA . It is now easy to show that the images of 1,t,td are li-

nearly independent in H = L 3B/ P B,A) .

Now & (A) C IL (&(B,A)) the idealiser of D (B,A) in H(B) . Since
IO (tyD (B)) /ty D(B) = Endﬁ(B) (P (B)/ty L (BY) it is straightforward
(after decomposing as a sum of simple modules) to see that
dim (I (ty D (B))/ty H(B)) = dim (B/tB) + 3 dim_(B/yB) . The next step
is to explicitly describe II(ty @ (B))

Write t = yz . Notice that =zy' =1 (mod yB) . It follows that
both y' and =zy' + 1 are units modulo yB . Thus there exists bE€B
such that 2y' - b(zy'+l) € yB . Now one computes to check that
(t3 - bz)3a € O(tydH(B)) . Thus II(tyL(B)) contains
B + Btd + B(t3 - bz)3 + ty&H(B) . It is straightforward to compute the
dimension of this modulo ty £(B) , and check that it is equal to
dimk(B/tB) + 3 dimk(B/yB) . It follows from the previous paragraph

that this subspace is in fact equal to o(ty P (B))

Recall that H(a) € mM(tyH(B)) . To show that
L(A) =k + kt + ktd + ty®(B) , it is enough to show that if
u,v € B with D = uty + v(t3 - bz)d is an element of $» (A) then one
must have D € k + kt + kty + ty&(B) . To see this first observe that

D* ACk + tB , and evaluating D on t this gives vbz € k + tB
However, vbz cannot be a unit since 2z 1is not (because vy € tB) .
Thus vbz € tB and vb € yB . But b 1is a unit modulo yB , so

v € yB . Thus D is a derivation modulo tyJ(B) . But

Der, (A) = kt3 + tyB3 , hence D€k + kt + ktd + tyP(B) .

k o
k k

Thus the images of 1,t,t? span HX , and therefore H, = ( ) .o

k

PROPOSITION 7. Suppose that # H_l(x) >1 . Suppose that the Jacobson

X — ) = — 2 —
radical of Gy,x is tﬂ’X'X , and that &X,x =k + kt +kty + 76, o

— _ . . . (ko
where Y€9x,x\t3x,x »and y 1is not a unit. Then H_ = (2,)
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Proof. The argument is very similar to that in Proposition 6. One
computes E(tzB) =B + Btd + B(ts -~ 1)3 + t2§9(B) ., checks that
1,t,ty,t3 €D(A) and that their images in HX are linearly indepen-
dent. And finally one shows that if D = v{y3 - 1}8 + uts belongs to

H(A) with u,v € B, then D € ktd + t2§9(B) ; where H_ is span-
ned by 1,t,ty,td and the result follows by considering the action of
these elements on A/tZB . o

This completes the list of examples stated at the beginning of

this section. Notice in the examples where Hx is Mz(k) , and Hx
ko
(k k

c, = GQ’X/I where I is the conductor of 9%,x . In particular, kno-

is ) , that Cx is isomorphic to k[t]/(tz) in both cases , and

wing CX and 6%'X/I does not determine HX .
In the above examples HX is always an indecomposable algebra, in

the sense that HX cannot be written a direct product of two non-zero

subalgebras. More generally we have

PROPOSITION 8. For any X , and any x€X , Hx is an indecomposable
algebra.

Proof. Suppose HX is a direct product of non-zero subalgebras.
Then there exist non-zero central orthogonal idempotents e,f &H,
with 1 =e + £ . Then C_ = H eC_ e H_fC_ . However, this decomposi-

X X X X" Tx

tion of Cx as a i& X—module is also a decomposition of C, as an
!

9% ymodule, and hence as a C -module . But C, is a local algebra,
’
hence indecomposable. Hence either eCX =0 or fCX = 0 . But, either

possibility contradicts the fact that Cx is a faithful Hx—module. o

§ 4.CONSTANT COEFFICIENT DIFFERENTIAL OPERATORS AND THE SPACE OF
POLYNOMIAL SOLUTIONS.

Let R = C€{x,yl] be the polynomial ring in two variables, and
b =HR) = C[X,y,ax,ay] the ring of differential operators on R

Let D € and set s = @EER[D(f) = 0} , the space of polynomial so-
lutions. Observe that if P,0 €D with DP = QD , and f € S then
P(f) € 5 also. Define, the idealiser of £D, I(PHD) = {P €H|DP €HD}.

This is a subring of £, containing £D as a two sided ideal. The
above observation says that S is a left I (#D)-module. Furthermore
it is annihilated by ®D , so S is a left T{(HD)/PD-module.
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Let ¢ :& -+ be the anti-automorphism given by

o(x) =93, , o(3_) =x , oly) = By ’ O(By) =y

Setting 6(D) = D , we have o(®p) = D°® , and o(I (HD)) = mw (D°H ).

Thus S can be given the structure of right ]I(DOOP)/D(TJ? -module by

defining £.Q' = Q(f) for Q'€ W (D’H) where Q = g(Q").

Now consider for example, the case where D = ayz - BX3 (resp.
D = 8y2 - 8X3 + BX) . Then DY = y2 - x3 (resp. pY = y2 - x3 + x)
and the space of polynomial solutions is a right I (g®)/gP -module

where g = y2 - x3 (resp. g = v2 - x3 + x) . But by [6, § 1.6] ,

T(gP)/gP = HR/GR) = LH(C) where C E/A2 is the curve defined by
gE€CTI[x,yl] . Thus 8§ is a right JH(C)-module . We will show below
(for both the given examples, and more generally whenever 0 : ga+c
is injective) that S 1is a simple right @ (C)-module . Thus to des-
cribe all of S we need know only one non-zero element of S and the

action of H(C) on S . In the given examples it is clear that 1€8,

whence S = 1.8£(C) . So the problem of describing all polynomial so-
lutions of the differential equation D(f) = 0 leads us naturally to
ask for a description of H(C) (for example, once we know by Theorem

2.2 , that H(C) 1is finitely generated, we want to know the genera-
tors) and a description of the action of £(C) on §

The procedure we shall adopt in order to describe all of S , will
be to first describe $(C) (through its relationship with (9(“6) as

outlined in Theorem 2.3 ) and thence to obtain a description of
T(PD)/PLD and so act on S . For example in the case D = 3y2 - ax3,
we have &(C) = d:[tz,t3] and as in [ 6, Remark 3.121 ,

3 2

D) ==¢ [t2,t ,E3,8£99 , (3 - 1)a,t_l(t3 - 2)3) and (after the detai-

17
led considerations below) , t2 9 gives rise to the element
)

Q = 2x8y + 3y8X2€ M(PD) , and t Y(£3 - 2)3 gives rise to the ele-
ment P = 4x23X + 12xy€5Y + 9y23X2 - 2x € I(LD) . It will be shown
that 8§ = CI[P].1 + QC[P]. 1 and thus we obtain all elements of §

by starting with 1 € S and acting by Q,P as follows. The diagram
indicates how solutions are obtained from previous ones by applying P

and Q (we ignore scalar multiples , so although Q(x3 + 3y2) = 24xy
we just write x3 + 3y2 £, Xy)
l—-P——»x—P—-sz—}z» x3+3yz—~P~+x4+12xy2—g—‘->x5+30x2y2 2,
e o o I
2

y  2.4% X"y XYY — ...
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One can continue to apply P and @ to obtain more solutions, and
Proposition 6 below shows that one will in this way obtain a basis for
{f € Clx,yl | (ayz -8, =0}

Two points should be observed. First , to find elements such as
P,0 € m(PD) simply by computing inside P seems an impossibly dif-
ficult task . Even if one can find elements of I(PD) one needs to
know whether one has found enough elements to generate all of
I(PD) /D (hence the importance of Theorem 2.2 saying that D(C) is
finitely generated , and hence the importance of trying to obtain a
procedure to find generators of HI(C)) . Secondly, to know that all
polynomial solutions belong to 1. 8(C) {in the case when Ili: CJ -+ C
is injective) one needs to show {(as we do below) that S is a simple
right & (C)-module

It is no problem to extend the above analysis to the more general
situation described in the following Proposition. First note that there
is a natural anti-automorphism ¢ on the ring

n .
D (A7) = lty,v.u,t ,3,,...,0, ] where 8y = a/atj , given by
o(t.) = 3. , o0(3.) =+, £ 1 9
( ]) 5 ( j) 3 or al j
PROPOSITION 1 . Let R = C|[ tl""’tn] , and let J be an ideal of R

contained in (ti""’tn) . Set A =R/J , and m = (tl"'"’tn)/J

Set H=HR) and let 0 : £+ P be the above anti-automorphism. Con-
sider R as a left £ -module and define S = {f € R|D(f) = 0 for all
DEG(IP)} . Then S is a left I(o (JP))-submodule annihilated by

0(J&P) . There is an anti-automorphism

¢ : Mo IP)) /o @P) — LWTPL)/IP =D

and thus S may be given the structure of a right & (A)-module. As a
right & (A)-module, S is isomorphic to P(A,A/m)

Proof. It is straightforward computation to see that S 1is an
I( 0o (JP))-submodule of R , annihilated by o(J§&) . The anti-isomor-
phism @ is of course induced by ¢ , and the fact that
LB = nIP)/IPis just {6, § 1.6] . Thus it remains to prove the
final asertion.

Apply the left exact functor $R( - R/(tl,...,tn)) to the short

exact sequence of R-modules O— J- R-» A— O to obtain the exact
sequence

o— $R(A,R/(tl, ceet ))— @R(R,R/(tl,.. crt))—> cﬁR(J,R/(tl, ceert e
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W
i

{0 E@/tlj% .. .+tn$1(} * J= 0}

Thus &, (A,A/m) = F (A,R/(t), ..., L))

I\

(0€D[Q1 € £, P+t D/t D+ 4t D
Now consider § C R :O‘D/i}al + e +(;Ban . By definition
s =1{pefoWa®)pr c E2X I $an}/ﬂ?al+.,.+$an.

Through the anti-isomorphism ¢ , 8 is made into a right P (nrmodule.
Let ¥ : § +EA{A,A/rp_) be defined by

VP 400 4.+ P 1) = Lo(P) + P re DY
It is clear that ¥ is a vector space isomorphism. To see that ¥
is a right & (A)-medule map , let s € S , and d € H(n) . suppose
that s = (P +$81+...+&98n] , and d@ =l[c(e) + JL] for
e € M{o(JP)) . Then

s.d = [P +ﬁal+...+$anl do(e) + JP]= [ eP +$)al+...+,f)an1 and ¥(s.d) =

[o(Plole) + t D+, ..+ t &)= lu(P) + t D+...+ tnﬁ)] Jotle) + dF=¥(s)
Thus S =2, (A,A/m) as required . o

Remark. It is easier to consider S as a left @(A)Op—module, and
this is what we shall do in practice. That is , P(2)°P will be iden-
tified with T(c(TJP))/ 0o (T ®) and the action of this ring on §
will be obtained through the restriction of the usual action of diffe-

rential operators on R = CTlx,y]

PROPOSITION 2. Let C be an irreducible affine curve, such that

~? Y . . N
T : C >+ C is injective. Let h be a maximal ideal of a = G(c)
Then £(A,A/m) is a simple right @P(A)-module.

Proof. Let A denote the integral closure of A in Fract A
By Theorem 2.3 , $(A) and WP(R) are Morita equivalent. The proge-
nerators giving the Morita equivalence are P(A,A) and P (a,B). con-
sider the following natural maps obtained by taking composition of
differential operators

(ilA - A 1 7 & A X
E2N /@@ﬁ(mﬁA(A,A>@Q(A)&JA<A,A> ~> (A, A/m) 9, (A,A) -» D, (A,A/m) .

% (n)°
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Since ‘Q(A'A)@@(A) H(A,n) » L(B) given by composition is an isomor-

phism, the above map is also an isomorphism. In particular,cﬁ(A,A/g)
corresponds to.ﬂ(K,A/m) under the Morita equivalence. Hence to prove
the result, it is enough to show that i%(ﬁ,A[g) is a simple right
D(B) -module.

However, by Proposition 4 below, J%(K,A/g) m<$i(§,§/g') where m'
is the unique maximal ideal of A containing m.By (6, § 1.3e 1,

HEA/m') =P(R)/m' P(R) , and this is a simple right P(A)-mcdule [6,
§1.4g9] . Hence the result. =

The next two results are required to complete the proof ¢f Proposi-
tion 4.2.

LEMMA 3. Let A = &(X) be the co-ordinate ring of an affine irreduci-

ble variety X . Let M and N be A-modules, and m a maximal
ideal of A . If mN = O , then for all n

£, MW = (0 € Hom 1, | 0 ™) = o).
Proof. Write J = ker(u : A«ak A > A) where u is the multipli-
cation map. As A =ke m , A is generated as a k-algebra by ele-

ments of m . Hence J is generated as an ideal by
{1®a-awel | a€ml . Inparticular, JCAge m+m @A , and also
A@mfg@]&+J.TManEA@mn+g$A and Amgngg®A+Jq

As mN =0 , if @€?Homk(M,N) then {(m® A).9 = O . Thus

Jh.emM) € (A e mM).oM) = A0(m™M), and also AO (™M) C J".6(M) . Thus

+
n 1M 1'H-1.G

0(m } = 0 if and only if J
dition that @eﬂAnm,N) . o

= 0 , which is precisely the con-

PROPOSITION 4. Let A = {"(C} be the co-ordinate ring of an affine ir-
reducible curve C , and set B = 9(8) . Let m be a maximal ideal of

A, and {gA[AEEA} the maximal ideals of B containing m . Then there

is an isomorphism of right S (B)-modules

o @A D

 (B/B/m,) > oD, (B,A/m)

Proof. For each A , fix an A-module isomorphism ¢y ¢ B/mx-»A/m
1f, for each 1, Ofiég(B,B/g_k) then write I, 0, for the element in

the direct sum. Define ®(Zk @A) = waXGX
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First @ is a map to é?A(B,A/g) because each

0, e D5 (B,B/m,) C é%(B,B/Q}} whence v, 6, € ii(BrA/E) . It is clear

X

that @ 1is a right & (B)-module map. However, a word of warning is re-
quired : J(B) means é?B(B,B) not J@A(B,B) , and one must observe
thatcﬁB(B,B) EJX(B,B) S0 ga(B,A/g) really is a right £ (B)-module.

To see that @ is injective, first observe that 65k‘$g(B,B/gk) is

a direct sum of non-~iscomorphic simple right & (B) -modules [ 6,Corolla-
ry 4.3 and § 1.4g7] . Hence if ker ® # O then some iaB(B,B/ggx ) is

contained in ker ® , But if OXG ker ® then vy Ox = (0 , which implies

GA = O since 3 is an isomorphism. Hence ker & = 0O

It remains to show that ¢ 1is surjective. Choose 0 € j%(B,A/§3 -
By Lemma 4.3 this forces B(gnB) = ¢ for some n>0 . But for r>>0,
{11, gx)r Cm" B .But B is a Dedekind domain so (TTA mk)r = nkmrk

Thus @ (M, mrx) =0 for some r >> O . Denote by & the map induced
by 6, 0 : B/fWA mrx+ A/m . However, B/ﬁxgrx = ®A B/mrx and hence

there are maps §A: B/grk + A/m for each X . Now define GA : B~ A/m

by 8, (b) = 51([b + QIX]) . Finally, consider @A_IGK : B<>B/gk . By
construction , vx_l OXE ﬁaB(B,B/m ) . It is clear that
¢(ZX¢X"16A) = 2,0,=0 . 80 % is surjective. o

This completes the proof of Proposition 4.2. The module i%(A,A/m)
seems to play a rather special role (when m is the maximal ideal cor-
responding to a singular point on the curve). For example, it plays a
key role in the results in (8] . Also the following is an interesting

consequence of Lemma 3.

COROLLARY 5. Let A = @(X) be the co-ordinate ring of an irreducible
affine variety X . Let m be a maximal ideal of A . Then as a
right A-module <£%(A,A/§):r E,(a/m) , the injective hull of A/m .

Proof. Lemma 3 shows that

Dn

(A,A/m) ={66Homk<A,A/r3)|O(m“) =0 for n>>0 }
That this is now the injective envelope of
A/m = HomA(A,A/Q) = ﬁ%O(A,A/Q) follows from [ Bourbaki, Algébre Homo-

logique, § 1, Ex. 29-32 ]. That an earlier proof of this result could
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be replaced by this reference was pointed out in {8]. o

We now return to the examples at the beginning of this section. In
fact we will first discuss the example where D = Syz - BX3 (the other
example is somewhat simpler since the corresponding curve is non-singu-

lar, and we shall comment on that in the remarks at the end of this

section)
Set P = 4x23 + 12xys_ + 9y23 3. 2x and Q = 2x3 + 3y? 2
x Y ToX y X
PROPOSITION 3. Set D = ay2 - 5> and s ={f€ e(x,yl|D(E) = 0}.

Then S =CI[Pl. 1 + QCI[P]. 1

Proof. Set g = y2 - x3 , so g = o(D) , and let

A = C[x,y]l/gClx,y] . By Proposition 1 , the structure of S as a left
I(PD)/PD-module transfers to make S a right $ (A)-module isomor-
phic to $(A,A/m) where m = Ax + Ay . A careful analysis of the proof
of Proposition 1 shows that 1€8S corresponds to the natural algebra

map € : A > A/m which is an element of P(A,A/m)

Set ; = t_l(ta - 2)9 , é = tza . We view i,é as elements of
P(m) with A =ce(t?,t3% ¢ ¢lt]. Since D(a) = T(gP)/gP we can find
elements P',Q' € IU(gP) which map to ﬁ and é respectively. Such
elements are

v o 2 2, 2
P' = 4x Bx + 12y8x3y + 9x ay - ZBX

2
] -
Q' = 2y8X + 3x By

Notice that P = o(P'), Q = 6(Q")

Hence to prove the Proposition it is sufficient to show

P (A,A/n) = e.clP] + s.cc[ﬁlé . Recall that
P@,am = v & (a,a/m) = U::O{OEHomm(A,A/r_g)]O(mnﬂ) = o} .

We identify H" (A,A/m) with Homg(a/m”"',A/m) . set
n+1

B = (tdo ¢3j ¢2n+1, § # 1} . This is a basis for A/m Set
. n i
B - {EPJIOijin} ] {8P3Q|2_<_j_<_n+1} . Check that (up to a non-zero
scalar multiple) ePk(tJ) = 67k 3 and sﬁkQ(tj) = 62k-1 j Hence
0k, k-1,

B' < Homm(A/gn+1,A/g) is (up to non-zero scalar multiples) the dual

basis to B. In particular, it follows that

P (B,A/m) = e.@[P] + e.C(B1G . o
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Remarks (1}). Proposition 6 allows one to routinely produce a basis

for S ; in fact the proof essentially shows that

{P3(1)Ij_i0} U {QPJ(1)lj > 2} gives a basis for S ; this verifies

the claims made at the start of this section.

(2) . The elements P' and Q' of the proof are obtained
as follows. We have in A = E[tz,t3] that y = £3 , X = t2. Now
td € P(A) satisfies (td)(y) = 3y , (td)(x) = 2x . The derivation on
€lx,y] that has this effect is precisely 3yd, + 2x3, . So t3 € £1a)

"lifts" to 3yd, + 2xd, € H. since t - yx1, t23 "lifts" to

2

yx_1(3y8y + Zxax) = 3x 8y + 2yd_ (using the fact that in A, y2 = x3h

this gives Q' . To obtain P' , re-write P = t 2(td -3)(t3) , and
this "1lifts" to x~1(3yay + 2xax - 3)(3y8y + 2x8x) . Expanding this,
using the fact that y2 = x3 in A , gives P' .

{3}. The other example was to describe S , the space of

polynomial solutions to D = Byz - 8X3 + 3, . Here g = o(D} = y2~x3+x

defines a non-singular curve C < Az . Thus é?(c} is generated by
@(Cc) and Der C . It is easy to compute that Der C is free on &
defined by &(x) = 2y , 8(y) = 3x°-1. Lifting 6 back to Der @[x,y]

we have § = 2yax + (3x2--1)3y . Applying o , we have

P=o(s) = 2xa, + 3ys,® -y . Since o(x) = 3, oly) = d, the carlier

X 1
analysis shows that § = m[ax,ay,P].1 . In fact the analogue of Propo-

sition 6 gives S = C¢[P].1 . The action of P on 1 is as follows

p P 3

P 3 P
1T =y = 2x—y2 Eﬁ-6xy+y E-*-12x2+y4 — 60x2y—20xy -48y+y5 Y

and one continues applying P +to obtain a basis for S .

§ 5. on THE D;®) -MobuLe  O(a%)

Let R = Qlx,y] = @QAz) , and let O #% f € R be an irreducible po~
lynomial defining a curve ¢C ¢ aZ . By a celebrated theorem of
Bernstein [1] , Rf = 9%A2 ~C}) 1is a d@(&?)—module of finite length. It
is not difficult to show that Rf/R contains a unigue simple §9(A2)—
module {(we give the proof below) . The problem we consider here is that
of determining this simple submodule. We will show that if C is a
non-singular curve then Rf/R is a simple JD(AZ)—module. This is not
difficult and is well known. It will be clear from the procf that a new

idea is required to cope with the case when C is singular. The reason



173

is that the proof relies on the fact that, if € 1is non-singular, then
the ideal of R generated by £ , 3f /9x, 3f/dy eguals R itself,
The main result in § 5 is to show that if T : 8 + C is injective,
then Rf/R is a simple §3MA2)— module. The details of the proof will

appear elsewhere [7] and we only give a rough outline.

The reason for the interest in determining the simple submodule of
Rf/R is as follows. Let X be a non-singular variety and Y <« X a
closed irreducible subvariety (possibly singular) of codimension 1 in
%X , defined by 0 % £ € &(X) . Then &#{X~Y)/&{X) = 91X)f/9(X) has a
unigue simple &7 (X) -submodule, which we denote by £(Y,X) . Under the
equivalence of categories between regular holonomic <9X~modules, and
the category of perverse sheaves on X , L(Y,X) {which is regular ho-
lonomic) corresponds to IC.(Y) the intersection homology complex as-
sociated to Y « X

The main result in this section, namely Theorem 4, can be proved
in a quite different (and less algebraic way) through using the
Riemann~Hilbert correspondence. I would like to thank J.-L.Brylinski

for showing me how to do this.

PROPOSITION 1. The @ (A%)-module M =& (a°) /6(a”) has a unique simple
submodule , for any O # f € @1@2) .

Proof. Observe that if N1,N < M are non-zero §%ﬂ2)-subm0dules

2

then N, N N, # O . It follows that the same is true of any two non-

1 2
zero(ﬁdkz)—submodules. Because M is of finite length as a §9«A2)—

module it contains some simple submodule S , say . By the first ob-
servation, S nmust be contained in every non-zero ;@0A2)—submodule of

M. Hence the conclusion. o

We will next show that when € , the curve defined by an irreduci~
ple £ ¢ @@%) , is non-singular, the module @a?) ./ &m?) is simple
(this is certainly well known, but we cannot find a proof to refer the
reader to} . To do this, first observe that f-1R/R < R is an I PE)-
submodule, is annihilated by Hf , and is therefore an I {PF) /Hf-
module. However, there is an isomorphism of k-algebras
B(PF)/PEf ~ n(EH /P ; this isomorphism is obtained from
v : IWPE) + IM(fH given by w(D) = D' where D €8His the unique ele-
ment satisfying £D = D'f for D & IL(HF) . Thus, as ~I(£H) /£ D(C)
by [6, § 1.61, it follows that £ 'R/R is a left f(C)-module. The

point is
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PROPOSITION 2. As a left H(C)-module f_1R/R is isomorphic to
@c) = R/fR with its natural @ (C)-module structure.

Proof. Easy. o

THEOREM 3. Let O # £ € &(®%) be an irreducible polynomial defining

a curve C . If C is non-singular then Q(Az)f/ 19(/A2) is a simple
H(a%) -module.

Proof. First we show that M = &(Az)f/ 9(A2) is generated by et

Clearly .,9(A2).f—1 contains Bx(f—1) = —fxf_2 , ay(f—1) = - fyf-2 and
£7! = ££7% . since C is non-singular, 1 € Oa%)E, + BN, + o) £.
Thus we obtain f_2 € 09(A2) .f_1 . An induction argument applying BX
and 8y to £ ™ for each n > O completes the proof of the fact
that Pa?) .71 = m .

Now to see that M is simple, we need only show that every non-
zero submodule of M contains f_1 . Pick O # m € M , and consider

ég(Az) .m . Clearly this contains an element of the form af™! with

a € & @%~ &(Az)f . Thus O + af | € £ 1 &(a%)/ B(nr% . consider

£V g@a?)y 9‘(1\2) as a left JF(C)-module. As such it is isomorphic to
&(c) . However, (C) is a simple P(C)-module because C is non-sin-

-1 1

gular. Therefore f € %) . a1 . o

Remark. (1) The above proof gives a very explicit argument as to

why £

generates G'(Az)f/ 9(A2) . Later we shall show that
@’(ﬂ\z)f/ G’(AZ) is a simple ﬁ(/Az)—module whenever T : C + C is injec-
tive. Hence in that case also f_1 generates &(Az)f/ (9(A2) . However,

our proof will not explain in such an explicit manner, why

£ ¢ @(A2) .f_1 . Hence it is an interesting question (interesting for

this author, anyway) to find in some explicit cases (for example ,

£=y2 - x3) operators D, such Dn.f_1 = £% in 9‘(A2)f/ oa?) .
(2) It is clear that all the above arguments work in grea-

ter generality. That is, if X 1is a non-singular variety and

0+ f € B(X) an irreducible polynomial defining a hypersurface YcX,
then similar considerations (to the above) apply to 0’(X)f/ &F(X) as a
& (X) -module.
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THEOREM 4. Let O # f € @’UAZ) be an irreducible polynomial defining
a curve C . Suppose that T : T » C is injective. Then

9'(/A2) f/ 9‘(/A2) is a simple P (ﬂxz) ~-module.

Sketch of Proof. The goal is to show that each f "R/R, R = om?) ,

is a simple left II(£f")-module, where 99=09(/A2) . It will then fol-
low at once that Rf/R is a simple left &£ -module.

It is clear that for n€N, f "R/R is a left I (Df")/HLf -module.
However, I[(@fn)/o@fn ~ DR/EPR), the ring of differential operators
on R/EPR , and it is easy to see that as a left & (R/£7R) -module,
£ OR/R is isomorphic to R/fPR . Hence the aim is to show that

R/fPR  is a simple BI(D/fPR)-module for all n € N . The case n = 1

is precisely Theorem 2.3 above. For n > 1 we must extend the results
in [6] . This is done in [7] , and here we just sketch the main steps
of the argument.

There is an inclusion of algebras
R/E'R < R/fRek[z]/(z") = @(Cle.k(z]/(z") = OO eklal /(2 ) cFract (R/ER),
such that R/fPR is of finite codimension in Q(E)ank[z]/(zn) , and
the induced map on the spectra is bijective. One observes that

DEEr 0xl2]/(z™) ~ D@ o, Diklz]/ (2" =DV oM (k) ,

and this latter algebra is Morita egquivalent to H(C) . One therefore
can apply the same ideas as in [6 , §§2,3] to show that, if

(+) D(@(&) o, k[21/(z") ,R/E'R) * (O (@)oyklz]/(2"))=R/E"R

then S (R/fPR) is Morita equivalent to B(OT) & k(z]/(z™)) . Because
of the bijectivity of the map on the spectra , (%) can be established
by imitating the proof of {6 , Theorem 3.4 . Then, from the Morita
equivalence it follows that eB(R/fnR) is a simple ring, and hence
R/fPR  is a simple F(R/EVR) -module. o

Theorem 4 has been obtained independently by van Doorn and van den
Essen [8].
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