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§ I. INTRODUCTION. 

This talk is mainly a report on some joint work with J.T.Stafford 

which appears in [6] . That paper examines the structure of ~(X) , 

the ring of differential operators on an irreducible affine curve X , 

defined over an algebraically closed field k of characteristic zero. 

When X is non-singular the structure of ~(X) is well understood, 

and is but a particular case of a structure theory which applies to 

non-singular affine varieties X of any dimension. However, when X 

is singular the structure of ~(X) is not well understood, and [6] 

examines the easiest case viz. X is a (singular) curve. In all that 

follows X will denote an irreducible affine curve defined over an 

algebraically closed field k of characteristic zero . 

This paper begins by recalling in § 2 some of the main results of 

~] concerning the structure of ~(X) . On the positive side, ~(X) 

is a finitely generated k-algebra and right and left noetherian. 

However, in contrast to the non-singular case, ~(X) need not be a 

simple ring if ~ is singular. In Theorem 2.3 it is seen that the 

simplicity of ~(X) is equivalent to a number of other properties. 

In particular, ~(X) is simple if and only if the natural projection 

n : ~ ÷ X from the normalisation is bijective. When ~(X) is not 

simple, there is a unique minimal non-zero ideal J(X) , and 

H(X) := ~(X)/J(X) is a finite dimensional k-algebra. The ring of re- 

gular functions ~(X) need not be a simple ~(X)-module, but it has 

a unique simple submodule J(X).~(X) , and C(X) := ~(X)/J(X) . ~(X) 

is a finite dimensional k-algebra. Both H(X) and C(X) split as 

a direct sum of finite dimensional algebras, H x and C x , one for 

each singular point x 6 Sing X . The algebras H x and C x depend 

only on the local ring OX, x , and § 3 examines how the structure of 

and C x depends on that of ~X,x " We have no general theorem, H x 

and it is clearly a key question to understand how the nature of the 

singularity at x is reflected in the structure of H x and C x 



159 

In Section 4 we provide some light relief and show how some of the 

results in § 2 may be used to describe the space of polynomial solu- 

tions of a (very restricted) class of differential equations. For 

example, if D = ~2 ~3 is viewed as a differential operator on 
y x 

k[x,y] and S = {~ ~ k[x,y]ID(f) = O} we show that S is a simple 

~(X)-module where X is the curve in A 2 defined by y2 = x 3 

Knowing generators of ~(X) as a k-algebra, allows one to produce a 

basis for S in an extremely simple way 

Section 5, shows how the results of § 2 may be used when 

: X + X is injective to solve the following problem. Let 

R = k[x,y] be the polynomial ring in two variables, and let 

O ~ f 6 R be an irreducible polynomial defining the curve C It is 

well known that the ~(R)-action on R extends to the localisation 

Rf , and that Rf/R is a ~(R)-module of finite length with a unique 

simple submodule. When C is non-singular, it is not hard to show 

that Rf/R is itself a simple ~(R)-module (the proof of this is gi- 

ven in § 5) ; this is well-known, but when C is singular it is dif- 

ficult to describe the simple submodule of Rf/R . We prove that when 

: ~ ~ C is injective then Rf/R is a simple ~(R)-module. 

§ 2. STRUCTURE OF ~(X) 

Let A be a commutative k-algebra and let M and N be 

A-modules. The space ~(M,N) of k-linear differential operators 

from M to N is defined to be ~A(M,N) = 

. . . .  6A} U~=o{06HOmk(M,N ) l[an[ . [a I ao,@]]. ]] = 0 for all ao,a ] ..... a n 

where [a,0] = a@ - @a . 

We are interested in ~(A) = ~A(A,A) , the ring of differential 

operators on A , when A is either ~(X) ~, the co-ordinate ring of 

the curve X , or ~X , the local ring at the point x 6 X . We de- 
vx 

note ~(A) by ~(X) and ~X,x in these two cases. 

When X is a non-singular curve , ~(X> is a finitely generated 

k-algebra, (right and left) noetherian [4, § 6], and a simple ring of 

global homological dimension I. For non-singular X , ~(X) is gene- 

rated by ~(X) and DerkX , the module of k-linear derivations on 

~(X) . Unfortunately when X is singular this is not true. 
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EXAMPLE 1. Let X be the curve in ~3 defined by x 5 = y3, x7 = z3 

There is a unique singular point at (0,O,O) . The normalisation X , 

is isomorphic to 2A I and the natural projection ~ : X ÷ X is given 

by n(~) = (~3, 5, 7) . Write 8(~) = kit] and ~'(X) = k[t3,t5,t 7] 

Since Der ~ is the free kit-J-module generated by ~ = d/dt, and any 

derivation on ~(X) extends to ~) [5], it is easy to see that 

Der X is the subspace of k[t]~ with basis {tZ,t~} ~ { tn ~In > 4} . 
-i 

Set D = t (t~ - 2)(t~ - 7)~ . This is a differential operator on 

k(t) , and it leaves ~(X) stable. Hence D C~(X) , but D is not 

in the subalgebra of End k ~(X) generated by ~(X) and Der X • 

This example illustrates the difficulty in trying to decide whe- 

ther ~(X) is a finitely generated k-algebra. In fact, if one takes 

3 3 + 3 = 0 , then ~(z) Z to be the surface in {3 defined by X I + X 2 X 3 

is not finitely generated [2]. However, for curves one has the follo- 

wing. 

THEOREM 2 [6] . Let X be a curve. Then ~(X) 

ted k-algebra and is right and left noetherian. 

is a finitely genera- 

Although ~(X) need not be a simple ring we have the following 

(recall that ~ : ~ ~ X is the natural projection from the normalisa- 

tion) 

THEOREM 3 [6j . The following are equivalent : 

(a) ~(X) is a simple ring ; 

(b) ~ : ~ ÷ X is biOection ; 

(c) ~(X) i@ a simple ~ (X)-module ; 

(d) gl.dim~(X) = I ; 

(e) ~(X) is Morita equivalent to ~(X) 

As, perhaps, suggested by (e) , the key to understandingS(A) for 

A = ~(X) , or A = ~. is to compare ~(A) and ~(~) where denotes ,x 
the integral closure of A in Fraet A , its field of fractions. Define 

~(A,A) : {D 6 ~(A) ID(f) 6 A for all f 6 A} . 

This is a non-zero right ideal of ~(A) and a left ideal of ~(A) 

Since ~(A) is a simple, hereditary ring ~(A,A) is necessarily a 

progenerator in Mod-~(A) . Thus we have ~(A) _c End~(~)~(A,A) = T , 

where T is Morita equivalent to ~9(A) • The relation between ~(A) 

and T depends on the fact that they have a common left ideal, name- 

ly ~(A,A) . A key lamina is that ~(A) = T if and only if ~(A,A),A=A , 
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where .~(~,A)*-A denotes the linear span of all D(f) such that 

D 6 ~(A,A) and f ( A . It is these bbservations which are exploited 

to obtain the above results. 

Through part (e) of Theorem 3 we can, in a sense, say that we 

understand ~9 (X) completely when ~(X) is simple. So from now on we 

concentrate on what happens when ~(X) is not simple. However, there 

is one question still of interest when ~(X) is simple ; give a pro- 

cedure for obtaining generators for ~(X) , or find the least n such 

that ~(X) is generated by differential operators of order < n 
I 

To understand ~(X) when ~ : ~ ÷ X is not injective one is led 

to prove. 

THEOREM 4 [ 6]. ~(X) constains a uniaue minimal non-zero ideal J(X) 

The factor H(X) := ~(X)/J(X) is a finite dimensional k-alqebra, 

and H(X) = ~x ESingxHx is a direct sum of algebra 9 H x one for each 

si___ngular pOint x . The structure of H depends only on the local 
X 

ring ~X,x " in fact ~X,x has a unique minimal non-zero ideal Jx,x 

= ~ /Jx, x and H x X,x 

The relationship between the ideal structure of ~(X) and the 

submodule structure of ~(X) is illustrated by 

THEOREM5 [6]. Consider ~(X) as a ~(X)-module. Then 

(a) ~(X) has finite length ; 

(b) ~(X) has a unique simple submodule, namel[ 

J(X) . @(X) = ~(~,X)*~(~) ; 

(C) If C(X) : ~(X)/J(X) . ~(X) then C(X) is a faithful H(X)-modu~; 

(d) C(X) = ~x SingxCx is a direct sum of local algebras, one for 

each singular point of X ; 

(e) Cx = ~X,x/Jx,x" ~X,x and is a faithful Hx-module . 

Clearly one would like to understand the structure of the finite 

dimensional algebras H x and C x , and so H(X) and C(X) . First 

note that, since H x and C x depend only on ~X , it will follow 
iX 

from Theomem 3 that H x and C X are zero precisely when # u-l(x)=l. 

It is not difficult to observe that if ~(X) = k[t], .... t~ /(fl .... 'fr ) 

then C(X) is a homomorphic image of 

kit I .... ,t~ /(fl .... '[r'~fi/~tj ) because J(X) . ~(X) contains the 

conductor of @(X) in ~(~) and the image of each D fi/$tj belongs 
to the conductor 
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§ 3. THE ALGEBRAS H AND C 
X X 

In this section X is a curve with a unique singular point x , 

and we set A = ~ and B = A . This section is a collection of 
X,x 

examples illustratin~ some of the possibilities for H x and C x . We 

will give examples where H may be either 0 , or M (k) , the ring 
x n 

k o 
of n × n matrices over k , or (k k ) the ring of lower triangular 

O 
2 x 2 matrices , or (k2 k ) . In these examples C x is respectively 

O, kit] /(tn), kit] /(t 2) , and k~_s,t]/(s,t) 2 . We have no general re - 

sult, but these examples do give some clues as to what should be expec- 

ted in general. 

We denote the maximal ideal of A by m . B is a semi-local 

ring with Jacobson radical denoted r . The maximal ideals of B cor- 
-i 

respond to the points U (x) . Since H = O if and only if 
X 

# ff-l(x) = 1 , we may rephrase this as 

PROPOSITION i. H x = O if and only if ~X,x is a local ring. 

By [ 5, § 7.4] there exists t E r and 0 • DerkB such that 

~(t) = 1 . It is an easv exerciSe to see that this forces DerkB = B~ , 

and r = Bt . If be B we shall write b' = ~(b) 

We shall assume in all the examples we construct that H : ~ ÷ X 

is unramified at all points. The reason for this restriction is becau- 

se we can make use of the following result to simplify the calcula- 

tions. 

THEOREM 2 (W.C.Brown [3]) 

then ~9(X) c_~(~) 

If ~ : ~÷ X is unramified at all points 

Thus we have , locally ~(A) C_~(B) = B[D] . First we construct 

examples where H x -- Mn(k) . The easiest case is n = 1 

-i 
PROPOSITION 3. Suppose that # ~ (x) > 1 . Let I denote the conductor 

of ~X in OX ' If I is a maximal ideal of ~X then H ~ k 
-- tX -- X tX i X 

Proof. Since # H-l(x) ~ 1 , ~(A) and ~(B) are not Morita equi- 

valent , so o~(B,A)* B # A . However, I C~(B,A) whence 

I = ~(B,A) * B . But k = A/I is now a faithful H -module. Hence 
x 

H =k. 
X D 
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This explains [6 , Theorem 4.4] since under the hypotheses of that 

theorem one must have I a maximal ideal of ~X,x , since ~X,x/I is 

a local ring contained in ~X,x/I which is a product of fields. 

It is possible for H x to equal k without the hypothesis of 

Proposition 3 being satisfied. Indeed, if ~(B,A) * B is a maximal 

k This is illustrated by the following : ideal of A then H x 

EXAMPLE 4 [6, § 5.7] Take X =/A 1 , and ~(~) = ki[t] • Define X by 

~(X) = k + ~t2(t-l) + t4(t-l)k[t] . The conductor is t4(t-l)k[t] 

which is not a maximal ideal of ~(X) . It is shown in [6] that 

~(B,A) * B = m , the unique maximal ideal of ~X (here x is the 
-- tX 

unique singular point of X ) Again A/~(B,A) * B is a faithful 

H -module so H -~ k . 
x x 

This example may be understood as follows . Let X' be the curve 

with ~(X') = k + t2k[t] . We have a factorisation of ~ as 

~-~ X' ~-~ X with H = ~ and ~ injective. Hence 

(~,X')* ~(~) = ~(X') . However, ~(X) = k+t 2(t-l) ~(X') and 

~(X' ,X) D_ t2(t-l) ~(X') . Thus ~(~,X)_D~(X',X)~(X,X') D t2(t-l)~(~,X'). 

Hence ~ (X,X) * ~(~) D t 2(t-l) ~(X') = m . The point is that ~ is injective, and 

the conductor of ~ (X) in ~(X') is a maximal ideal of ~(X) 

PROPOSITION 5. Suppose that # H-I (x) > I. Suppose that the Jacobson radical of 

~X,x i_ss t~-X,x, and that ~X,x = k+kt+...+ktn+tn+l~x, x Then Hx = Mn+l(k) . 

Proof. Let m be the maximal ideal of A = ~X . Then mB= tB , and by 
-- ,X -- 

Theorem 2,~(A) C ~(B) . The s~ne argument as[ 6 , Lemma 5.3] shows that 

= A/tn+iB is a faithful Hx-module. Thus the ~(B,A) = tn+l~(B), whence C x 

result will follc~ if we can show that A/tn+~ is a simple Hx-module , or equiva- 

lently is a simple ~(A)-mcdule. Notice that A/tn+~ is generated by 1 , and that 

kt n is an essential A-suh~odule . Thus, to show A/tn+iB is a simple ~(A)-module 

it will suffice to show that there exists D e2(A) such that D(t n) = 1 . We pro- 

ceed to show that D := (t~ - i)... (t~ - n)~n belongs to ~(A) ; since 

(-l)n(n!)-2D(t n) = 1 this will ~mr~lete the proof of the Proposition. 

Since ~(B) =B [% ] we have D 6 ~(B) . The action of D on A annihilates 

k + kt + ... + kt n-I , so it remains to show that D* (Bt n+l) C Bt n+l . First, noti- 

ce that ~n, (Bt n+l) c_ Bt . Secondly, notice that, for all j e I~ , 

(t~ -j)* (Bt j) c Bt j+l . Hence (t~ - n)...(t~ -i) * (Bt) C Bt n+l and thus 

D* (Bt n+l) C Bt ~+I and D 6 ~(A) , as required, o 



164 

PROPOSITION 6 . Suppose that # H-l(x) > 1 . Suppose that the Jacob- 

son radical of ~X~x i__ss t ~X,x ' a_nd ~ha_t ~X,x = k + kt + ty ~X x 

\ t~ and y is not a unit . Then H x (k o ' where Y • ~X,x X,x ' = k k ) " 

Proof. The same arguments as usual show that 6~ (B,A) = ty~9(B) 

and hence C x = A/tyB . Since dim C x = 2 and C x is a faithful 

Hx-module, H x embeds in M2(k) . The hypothesis implies that t • yB 

(just use the fact that ~X,x is a ring, so contains t 2 ) . Note that 

t~ • DerkA . It is now easy to show that the images of l,t,t~ are li- 

nearly independent in H x =@9(A)/~(B,A) 

Now ~(A) • ~ (~(B,A)) the idealiser of ~(B,A) in ~(B) . Since 

(ty~(B))/ty~(B) = End~(B) (~(B)/ty~(B)) it is straightforward 

(after decomposing as a sum of simple modules) to see that 

dimk(n(ty~(B))/tyo~(B)) = dimk(B/tB) + 3 dimk(B/yB) . The next step 

is to explicitly describe ~(ty~(B)) 

Write t = yz . Notice that zy' = 1 (mod yB) . It follows that 

both y' and zy' + 1 are units modulo yB . Thus there exists b• B 

such that 2Y' - b(zy'+l) • yB . Now one computes to check that 

(t~ - bz)~ • Z (ty~(B)) Thus Z(ty~(B)) contains 

B + Bt~ + B(t$ - bz)~ + ty~(B) It is straightforward to compute the 

dimension of this modulo ty~(B) , and check that it is equal to 

dimk(B/tB) + 3 dimk(B/yB) It follows from the previous paragraph 

that this subspace is in fact equal to Z(ty~(B)) 

Recall that ~(A) c ]I(ty~(B)) . To show that 

~(A) = k + kt + kt~ + ty~ (B) , it is enough to show that if 

u,v 6 B with D = ut~ + v(t~ - bz) ~ is an element of ~ (A) then one 

must have D 6 k + kt + kt~ + ty~(B) . To see this first observe that 

D * A c k + tB , and evaluating D on t this gives vbz 6 k + tB 

However, vbz cannot be a unit since z is not (because y g tB) 

Thus vbz E tB and vb • yB . But b is a unit modulo yB , so 

v • yB . Thus D is a derivation modulo ty~(B) . But 

Derk(A) = kt8 + tyB~ , hence Dek + kt + kt~ + ty~(B) 

Thus the images of l,t,t% span H x , and therefore Hk _- (kk k )° D 

PROPOSITION 7. Suppose that # H -I (x) > 1 . Suppose that the Jacobson 

radical of ~X,x ---is t~x, x , ~nd that ~X,x = k + kt + kty + t2~X,x 

-- k o 
where yeSx,x\t~X,x , ~nd y is not a unit. Then H x = (kak) 
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Proof. The argument is very similar to that in Proposition 6. One 

computes Z(t2B) = B + Bt~ + B(t$ - i)~ + t2~(B) , checks that 

l,t,ty,t~ E D(A) and that their images in H x are linearly indepen- 

dent. And finally one shows that if D : v(y~ - I)~ + ut$ belongs to 

~(A) with u,v 6 B , then m E kt~ + t2~(B) ; where H x is span- 

ned by l,t,ty,t~ and the result follows by considering the action of 

these elements on A/t2B a 

This completes the list of examples stated at the beginning of 

this section. Notice in the examples where H x is M2(k) , and H x 

is (kk k)O , that C x is isomorphic to k[t] /(t 2) in both cases , and 

C x = ~X,x/I where I is the conductor of ~X,x " In particular, kno- 

wing C x and ~X,x/I does not determine H x 

In the above examples H x is always an indecomposable algebra, in 

the sense that H cannot be written a direct product of two non-zero 
x 

subalgebras. More generally we have 

PROPOSITION 8. For any X , and any xE X , H 
x 

algebra. 

is an indecomposabl 9 

Proof. Suppose H is a direct product of non-zero subalgebras. 
x 

Then there exist non-zero central orthogonal idempotents e,f e H x 

with I = e + f . Then C x = HxeC x ® HxfC x . However, this decomposi- 

tion of C x as a ~X,x-mOdule is also a decomposition of C x as an 

6~X,x-mOdule, and hence as a Cx-mOdule . But C x is a local algebra, 

hence indecomposable. Hence either eC x = O or fC x = 0 . But, either 

possibility contradicts the fact that C x is a faithful Hx_module . D 

§ 4.CONSTANT COEFFICIENT DIFFERENTIAL OPERATORS AND THE SPACE OF 

POLYNOMIAL SOLUTIONS. 

Let R = {[x,y] be the polynomial ring in two variables, and 

~=~(R) = C[x,Y,~x,$y] the ring of differential operators on R . 

Let D E~ and set S = If 6RID(f) = O} , the space of polynomial so- 

lutions. Observe that if p,Q E~ with DP = QD , and f E S then 

P(f) 6 S also. Define, the idealiser of~gD, II(~D) : {P 6~91DP 6~D}. 

This is a subring of ~, containing ~gD as a two sided ideal. The 

above observation says that S is a left II(~D)-module. Furthermore 

it is annihilated by49D , so S is a left ]I(~D)/~D-module. 
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Let ~ :~+~ be the anti-automorphism given by 

(x) = ~x ' ~( ~x ) = x , ~ (y) = ~y , ~ (~y) = y . 

Setting o(D) = D d , we have o(~D) = Do~ , and d(]I (~D)) = ]I (Ddo~) . 

Thus S can be given the structure of right ]I(Dd~)/D~-module by 

defining f.Q' = Q(f) for Q' • rr(DC~) where Q = o(Q') . 

Now consider for example, the case where D = ~ 2 _ 3 3 (resp. 
y x 

2 ~x 3 + ~x ) Then D ° 2 3 D ° 2 3 D = ~y - . = y - x (resp. = y - x + x) 

and the space of polynomial solutions is a right E(g~)/g~-module 
2 3 2 3 

where g = y - x (resp. g = y - x + x) . But by [6, § 1.6] , 

~(g~)/g~ = ~(R/gR) = ~(C) where C c ~2 is the curve defined by 

g e ~ [x, y] . Thus S is a right ~(C)-module . We will show below 

(for both the given examples, and more generally whenever H : ~ ÷ C 

is injective) that S is a simple right ~(C)-module . Thus to des- 

cribe all of S we need know only one non-zero element of S and the 

action of ~(C) on S . In the given examples it is clear that 1 • S, 

whence S = I.~(C) . So the problem of describing all polynomial so- 

lutions of the differential equation D(f) = 0 leads us naturally to 

ask for a description of ~(C) (for example, once we know by Theorem 

2.2 , that ~(C) is finitely generated, we want to know the genera- 

tors) and a description of the action of ~(C) on S 

The procedure we shall adopt in order to describe all of S , will 

be to first describe ~(C) (through its relationship with ~(C) as 

outlined in Theorem 2.3 ) and thence to obtain a description of 
2 3 

~(~D)/~D and so act on S . For example in the case D = 3 - 3 
y x' 

we have ~(C) = ~[t2,t 3] and as in [ 6, Remark 3.12] , 

~(C) = • [ t2,t3,t3,t23 , (t~ - l)~,t-l(t~ - 2)3 ] and (after the detai- 

led considerations below) , t 2 3 gives rise to the element 

+ 3Y~x 2 e Z(~D) and t-l(t~ - 2)3 gives rise to the ele- Q = 2X~y 

4X23x x " = + 12Xy~y + 9y2~ 2 _ 2x E Z(~D) It will be shown ment P 

that S = ~|P] .i + Q~[P]. 1 and thus we obtain all elements of S 

by starting with 1 E S and acting by Q,P as follows. The diagram 

indicates how solutions are obtained from previous ones by applying P 

and Q (we ignore scalar multiples , so although Q(x 3 + 3y 2) = 24xy 

we just write x 3 + 3y 2 Q-~ xy) 

1 ~ +x P~x 2-~P x3+3y 2 P+x4+12xy 2 P ÷x5+3Ox2y 2 ~ .... 

I0 I0 I0 I0 
Y ~xy--÷x2y ~x3y+y 3 ~ .... 
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One can continue to apply P and Q to obtain more solutions, and 

Proposition 6 below shows that one will in this way obtain a basis for 

{f e ~[x,y] ] (~y 2 - ~x 3) (f) = O} 

Two points should be observed. First , to find elements such as 

P,Q ~ ~(~D) simply by computing inside ~ seems an impossibly dif- 

ficult task . Even if one can find elements of ~(~D) one needs to 

know whether one has found enough elements to generate all of 

~(~D)/~JD (hence the importance of Theorem 2.2 saying that ~(C) is 

finitely generated , and hence the importance of trying to obtain a 

procedure to find generators of ~(C)) . Secondly, to know that all 

polynomial solutions belong to I.~(C) (in the case when II: ~ ÷ C 

is injective) one needs to show (as we do below) that S is a simple 

right ~ (C)-module 

It is no problem to extend the above analysis to the more general 

situation described in the following Proposition. First note that there 

is a natural anti-automorphism ~ on the ring 

~(A n) = ~[t I ..... tn,~l, .... ~n ] where Dj = ~/~tj , given by 

~(tj) = ~j , ~(~j) = tj for all j 

PROPOSITION 1 . Let R = { [ tl,...,tn] , and let J be an ideal of R 

contained in (tl,...,t n) . Set A = R/J , an_d_ ~ = (tl,...,tn)/J 

Set ~=~(R) and let ~ : ~÷~9 be the above ant i-automorphism. Con- 

sider R as a left ~-module and define S = {f e RID(f ) = O f0r all 

D 6 ~(J~)} . Then S is a left ~( ~ (J~))-submodule annihilated by 

o(J~) . There is an anti-automorphism 

: II( ~ (J~))/o (J~9) .... II(J~)/J~=~(A) 

and thus S may be @iv en the structure of a right ~(A)-module. As a 

right ~9 (A)-module~ S is isomorphic to ~(A,A/m) 

Proof. It is straightforward computation to see that S is an 

~( c (J~))-submodule of R , annihilated by ~(J~) . The anti-isomor- 

phism • is of course induced by ~ , and the fact that 

~(A) = ~(J~)/J~ is just [6, § 1.6] . Thus it remains to prove the 

final asertion. 

Apply the left exact functor ~R ( - , R/(t I ..... tn)) to the short 

exact sequence of R-modules O -~ J ~ R-÷ A -+ O to obtain the exact 

sequence 

O--~ ~R(A,R/(t I ..... tn))---~@JR(R,R/(t I ..... tn))---+ ~JR(J,R/(t I ..... tn)). 
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Thus />A(A'A/m--) = ~R(A'R/(t I ..... t n)) = {Qe~/t]~+-..+tn~ )Q* J= O} 

= {Q 6,~ IQj _c tl~+. . .+tn~}/tl~9+. . .+tn ~ " 

Now consider S c_ R --~/~;~i + "'" +~n By definition 

S = {P E~I~(J/))P c_ ~i +'''+ /D ~n}/~l+'''+~n" 

Through the anti-isomorphism 4, , S is made into a right ~(A~module. 

Let 9 : S + JDA(A,A/m) be defined by 

~([ P +/)~]+...+ ~nl) -- [ o(P) + tl~)+...+tn,~]] • 

It is clear that q" is a vector space isomorphism. To see that q* 

is a right ~ (A)-module map , let s q S , and d e /~(A) Suppose 

that s = [ P +~)~i+...+.~ ] , and d = [ C(e) + J~] for 
n 

e e IX ( a (Jo~)) Then 

s.d = [P +~$i+...+~$n] .[ o(e) + J~9]-- [ eP +})~l+...+~n ] and q~(s.d) -- 

[o(P)o(e) + tl~+...+ tng] = I <~(P) + tl,P+...+ tn~ .[O(e) + J~=~(s)~. 

Thus S ~(A,A/m) as required . 

Remark. It is easier to consider S as a left ~(A)°P-module, and 

this is what we shall do in practice. That is ,o~[A) Op will be iden- 

tified with ~(a(J~))/~ (J~) and the action of this ring on S 

will be obtained through the restriction of the usual action of diffe- 

rential operators on R = {Ix,y] 

PROPOSITION 2. Let C be an irreducible affine curve, such that 
7-- 

: ~ + C is injective. Let m be a maximal ideal of A = ~(C) 

Then ~(A,A/m) is a sire l~right ~(A)-module. 

Proof. Let A denote the integral closure of A in Fract A . 

By Theorem 2.3 , ~(A) and <~(A] are Morita equivalent. The proge- 

nerators giving the Morita equivalence are ~(A,A) and ~(A,A) . Con- 

sider the following natural maps obtained by taking composition of 

differential operators : 
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Since ~(A,A)~(A) ~9(A,A) ÷ ~(A) given by composition is an isomor- 

phism, the above map is also an isomorphism. In particular, ~(A,A/m) 

corresponds to ~(A,A/m) under the Morita equivalence. Hence to prove 

the result, it is enough to show that ~A(A,A/m) is a simple right 

~(A)-module. 

However, by Proposition 4 below, ~A(A,A/m) = ~(A,A/m') where m' 

is the unique maximal ideal of A containing m . By [6, § 1.3e ] , 

~(~,~/m') =~9(A)/m'~9(A) , and this is a simple right ~(A)-module [ 6 , 

§l.4g] . Hence the result, o 

The next two results are required to complete the proof of Proposi- 

tion 4.2. 

LEMMA 3. Let A = ~(X) be the co-ordinate ring of an affine irreduci- 

ble variety X . Let M and N be A-modules r and m a maximal 

ideal of A . I_~f m__N = 0 , then for all n 

~gAn(M,N ) = {@ 6 HOmk(M,N) I @ (mn+iM) = 0}. 

Proof. Write J = ker(~ : A® k A ÷ A) where ~ is the multipli- 

cation map. As A = k e m , A is generated as a k-algebra by ele- 

ments of m . Hence J is generated as an ideal by 

{I ® a - a ® 1 I a ~ m} . In particular, a c A ® m + m ® A , and also 

A ® m m m ~ A + J . Thus jn c A ~ m n + m ~ A and A e m n C m ® A + J~ 

As mN = O , if 06HOmk(M,N ) then (m e A) .0 = 0 . Thus 

Jn-@(M) ~ (A ® m n) .@(M) = A@(mnM), and also AO(~ nM) 5 Jn'@(M) . Thus 

e(mn+iM) = O if and only if jn+l @ = O , which is precisely the con- 

dition that @e~An(M,N) . 

PROPOSITION 4. Le t A = ~(C) be the co-ordinate ring of an affine ir- 

reducible curve C , and set B = ~(C) . Let m be a maximal ideal of 

A , and {mlll EA} the maximal ideals of B containing m . Then there 

is an isomorphism of right ~(B)-modules 

¢ : ~l ~B(B,B/m l) +~A(B,A/m_) 

Proof. For each I , fix an A-module isomorphism ~I : B/~I-~A/m . 

If, for each I, @IE~B(B,B/m I ) then write E 1 @I for the element in 

the direct sum. Define ¢(Z 1 @I) = ZIWI01 
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First • is a map to ~gA(B,A/m) because each 

@I ~ ~B(B'B/mk ) C ~A(B'B/m k) whence ~I @i E ~A(B'A/m) It is clear 

that • is a right ~(B)-module map. However, a word of warning is re- 

quired : ~(B) means ~B(B,B) not ~A(B,B) , and one must observe 

that~B(B,B) C4(B,B) so ~A(B,A/m) really is a right ~(B)-module. 

To see that • is injective, first observe that ~I ~B(B'B/ml ) is 

a direct sum of non-isomorphic simple right ~(B)-modules [ 6,Corolla- 

ry 4.3 and § 1.4g] . Hence if ker ¢ ~ O then some ~B(B,B/ml ) is 

contained in ker • . But if @16 ker % then 91 Ol = 0 , which implies 

81 = O since ~l is an isomorphism. Hence ker • = 0 . 

It remains to show that % is surjective. Choose @ 6 ~A(B,A/m) 

By Lamina 4.3 this forces @(mnB) = O for some n >O . But for r>>O , 

r ~lmrl {~l ml )r c m n B . But B is a Dedekind domain so (TT 1 m I) = _ 

Thus @(n I mrl) = O for some r > > O . Denote by @ the map induced 

by @ , @ : B/ Nl mrl + A/m . However, B/ n imrl -~ ~91 B/mrl and hence 

there are maps ~i : B/mrl ÷ A/m for each i . Now define 81 : B + A/m 

by @l(b) = @l([b + mrl] ) . Finally, consider ~i-I@i : B +B/m I . By 

construction , ~ @~E (B,B/m) It is clear that 

~(~i~i-i@i) = EI@I = @ . So ~ is surjective, o 

This completes the proof of Proposition 4.2. The module ~A(A,A/~) 

seems to play a rather special role (when m is the maximal ideal cor- 

responding to a singular point on the curve). For example, it plays a 

key role in the results in [8]. Also the following is an interesting 

consequence of Lemma 3. 

COROLLARY 5. Let A = ~(X) be the Co-ordinate rin 9 of an irreducible 

affine variety X . Let m be a maximal ideal of A . Then as a 

{i~h t A-module ~A(A,A/m) = EA(A/m ) , the injective hull of A/m . 

Proof. Lemma 3 shows that 

~A(A'A/m) = {@EHom k(A,A/m) I @(n) = O for n >> 0 } 

That this is now the injective envelope of 

A/m- = HomA(A,A/m ) = ~AO(A,A/m) follows from [Bourbaki, Algebra Homo- 

logique, § i, Ex. 29-32 ] . That an earlier proof of this result could 
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be replaced by this reference was pointed out in [8]. 

We now return to the examples at the beginning of this section. In 

fact we will first discuss the example where D = ~ 2 _ ~ 3 (the other 
y x 

example is somewhat simpler since the corresponding curve is non-singu- 

lar, and we shall comment on that in the remarks at the end of this 

section) 

= 4x2~ x + 12Xy~y + 9y2~x 3 - 2x and Q = 2X~y + 3Y~x 2 Set P 

PROPOSITION 3. Set D = ~ 2 _ ~ 3 and S = {f6 ~Lx,y] ID(f) = O}. 
y x 

Then S = C [P] . 1 + Q~ [ P] . 1 

2 3 
Proof. Set g = y - x , so g = o(D) , and let 

A = C[x,y]/g~[x,y] . By Proposition 1 , the structure of S as a left 

II(~D)/~D-module transfers to make S a right ~ (A) -module isomor- 

phic to ~(A,A/_m) where m = Ax + Ay . A careful analysis of the proof 

of Proposition 1 shows that 1 e S corresponds to the natural algebra 

map e : A ÷ A/m_ which is an element of ~(A,A/m) 

Set P = t-l(t~ - 2)~ , Q = t2~ . We view P,Q as elements of 

~(A) with A = ~[ t2,t 3] C ~[t] . Since ~9(A) = ]I(g~)/g~ we can find 

elements p' ,Q' e II(g~) which map to P and Q respectively. Such 

elements are 

2 + 12Y~x~y + 9x2~ 2 2~ P' = 4x ~x y - x 

Q' = 2y~ x + 3x2~ 
Y 

Notice that P = o(P'), Q = o(Q') 

Hence to prove the Proposition it is sufficient to show 
^ ^ 

~(A,A/m) = g.~[P] + g.~[P]Q . Recall that 

~(A,A/m) = U ~ _ ~ _ _ _ n=o~nA(A,A/m) = Un=o{@6Hom{(A,A/m ) l@(m n+1) = O} . 

We identify ~nA(A,A/m ) with Hom~(A/m n+1,A/_m) . Set 

= {t j [O ~ j ~< 2n+1, j ~ 1} . This is a basis for A/m n+1 Set 

9' = {spJlo< j < n} U {sPJQI2 < j <n+1} . Check that (up to a non-zero 

scalar multiple) epk(tJ) = 62k,j and ePkQ(tJ) = 62k-l,j " Hence 

~, _c Hom~(A/m n+1,A/m) is (up to non-zero scalar multiples) the dual 

basis to 9. In particular, it follows that 

(A,A/m) : s.~[P] + c.~[P]Q . u 
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Remarks (I). Proposition 6 allows one to routinely produce a basis 

for S ; in fact the proof essentially shows that 

{PJ(1) lj ~O} U {QPJ(1) lj ~ 2} gives a basis for S ; this verifies 

the claims made at the start of this section. 

(2). The elements P' and Q' of the proof are obtained 

as follows. We have in A ~[t2,t 3] that y t 3 t 2 = = , x = . Now 

t8 6 ~(A) satisfies (t~) (y) = 3y , (t~) (x) = 2x . The derivation on 

~[x,y] that has this effect is precisely 3y~y + 2x~ x . So t~ 6 ~(A) 

"lifts" to 3y~y + 2x8 x 6 ~. Since t yx -I = , t2~ "lifts" to 

-I + 2y~ x (using the fact that in A , y2 = x3), yx (3y~y + 2X~x) = 3X2~y 

this gives Q' . To obtain P' , re-write P = t-2(t8 -3) (tS) , and 
-I 

this "lifts" to x (3ySy + 2x~ x - 3) (3y~y + 2xZ x) . Expanding this, 

using the fact that y2 = x 3 in A , gives P' 

(3). The other example was to describe S , the space of 

polynomial solutions to D = ~ 2 _ $ 3 + ~ . Here g = o(D) = y2-x3+x 
y x x 

defines a non-singular curve C c ~2 . Thus ~(C) is generated by 

~(C) and Der C . It is easy to compute that Der C is free on 6 

defined by 6(x) = 2y , 6(y) = 3x2-I. Lifting 6 back to Der {[x,y] 

we have @ = 2y~ x + (3x2-1)~y . Applying o , we have 

P = o(6) = 2X~y + 3YSx 2 - y . Since o(x) = ~x ' o(Y) = ~y the earlier 

analysis shows that S = {[~x,~y,P].1 . In fact the analogue of Propo- 

sition 6 gives S = {[P].I . The action of P on I is as follows : 

I L y ~ 2x-y 2 2~-6~y+y3 ~-12x2+y 4 ~ 60x2y20xy3-48y+y ~ L . . . . .  

and one continues applying P to obtain a basis for S . 

§ 5. ON THE ~A2)-MODULE ~(A2)f 

Let R = ~[x,y] = ~(A 2) , and let O % f E R be an irreducible po- 

lynomial defining a curve C ~ A 2 . By a celebrated theorem of 

Bernstein [I] , Rf = ~(A 2 \ C) is a ~(~2)-module of finite length. It 

is not difficult to show that Rf/R contains a unique simple ~(A2) - 

module (we give the proof below) . The problem we consider here is that 

of determining this simple submodule. We will show that if C is a 

non-singular curve then Rf/R is a simple ~(A2)-module. This is not 

difficult and is well known. It will be clear from the proof that a new 

idea is required to cope with the case when C is singular. The reason 
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is that the proof relies on the fact that, if C is non-singular, then 

the ideal of R generated by f , Sf / ~x, ~f/~y equals R itself. 

The main result in § 5 is to show that if ~ : ~ ÷ C is injective, 

then Rf/R is a simple ~A2) - module. The details of the proof will 

appear elsewhere [7] and we only give a rough outline. 

The reason for the interest in determining the simple submodule of 

Rf/R is as follows. Let X be a non-singular variety and y c X a 

closed irreducible subvariety (possibly singular) of codimension I in 

X , defined by 0 # f 6 ~(X) . Then ~(X~Y)/~(X) = ~(X)f/~(X) has a 

unique simple ~(X)-submodule, which we denote by £(Y,X) . Under the 

equivalence of categories between regular holonomic O~X-mOdules, and 

the category of perverse sheaves on X , £(Y,X) (which is regular ho- 

lonomic) corresponds to IC.(Y) the intersection homology complex as- 

sociated to y c X 

The main result in this section, namely Theorem 4, can be proved 

in a quite different (and less algebraic way) through using the 

Riemann-Hilbert correspondence. I would like to thank J.-L.Brylinski 

for showing me how to do this. 

PROPOSITION 1. The ~2)-module M = ~(~2)f/~(~2) has a unique simple 

submodule , for an~ 0 # f 6 ~(~ 2) 

Proof. Observe that if NI,N 2 ~ M are non-zero ~A2)-submodules 

then N I N N 2 # 0 . It follows that the same is true of any two non- 

zero~(~2)-submodules. Because M is of finite length as a ~A2) - 

module it contains some simple submodule S , say . By the first ob- 

servation, S must be contained in every non-zero ~(~2)-submodule of 

M. Hence the conclusion, m 

We will next show that when C , the curve defined by an irreduci- 

ble f 6 ~(~2) , is non-singular, the module ~(~i%2)f/ 
~A 2 ) is simple 

(this is certainly well known, but we cannot find a proof to refer the 

reader to) . To do this, first observe that f-IR/R _c R is an II~f)- 

submodule, is annihilated by ~)f , and is therefore an Z(~f)/~>f- 

module. However, there is an isomorphism of k-algebras 

E(~f) /~f --~ ]I(f~/f~) ; this isomorphism is obtained from 

: II(~gf) ÷ II(f~9) given by ~(D) = D' where D 6~is the unique ele- 

ment satisfying fD = D'f for D ~ ]I(~f) . Thus, as II(f~)/f~--~(C) 

by [6, § I . 6 ] , it follows that f-IR/R is a left ~(C)-module. The 

point is 
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PROPOSITION 2. As a left ~(C)-module f-IR/R is isomorphic to 

~(C) = R/fR with its natural ~(C)-module structure. 

Proof. Easy. o 

THEOREM 3. Let 0 • f 6 ~(~2) be an irreducible pol[nomial defining 

a curve C . If C is ngn-sin~ular then ~(~2)f/ ~(~2) is a simple 

~(A2)-module. 

Proof. First we show that M = ~(A2)f/ ~(A 2) is generated by f-1. 

f-2 ~y(f-1) = _ f f-2 and Clearly ~(A2).f -I contains ~×(f-1) = -fx ' y 

f-1 = ff-2 . Since C is non-singular, 1 6 ~(A2)f + ~(A2)f + ~(A2)f. 
x y 

Thus we obtain f-2 6 ~(A2) .f-1 . An induction argument applying ~x 

and ~ to f-n for each n > 0 completes the proof of the fact 
Y 

that ~(A 2) .f-1 = S . 

Now to see that M is simple, we need only show that every non- 

zero submodule of M contains f-1 . Pick 0 • m 6 M , and consider 

~(A2).m . Clearly this contains an element of the form af -I with 

a 6 ~ (A 2) ~ ~(A2)f . Thus O % af -I £ f-1 ~(A 2) / ~(A2i . Consider 

f-1 ~(A2)/ ~(A 2) as a left ~(C)-module. As such it is isomorphic to 

~(C) . However, ~(C) is a simple ~(C)-module because C is non-sin- 

gular. Therefore f-1 6 ~(A2).af -I [] 

Remark. (I) The above proof gives a very explicit argument as to 

why f-1 generates ~(A2)f/ ~(A 2) . Later we shall show that 

~(~2)f/ ~(A 2) is a simple ~A2)-module whenever U : ~ ÷ C is injec- 

tive. Hence in that case also f-1 generates ~(A2)f/ ~(A 2) . However, 

our proof will not explain in such an explicit manner, why 

f-n 6 ~(A2).f -I . Hence it is an interesting question (interesting for 

this author, anyway) to find in some explicit cases (for example , 

f = y2 _ x 3 ) operators D n such Dn.f -I = f-n in ~(A2)f/ ~(A 2) 

(2) It is clear that all the above arguments work in grea- 

ter generality. That is, if X is a non-singular variety and 

0 # f 6 ~(X) an irreducible polynomial defining a hypersurface YcX, 

then similar considerations (to the above) apply to ~(X)f/ ~(X) as a 

~(X)-module. 
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THEOREM 4. Let O ¢ f 6 ~A 2) be a n irreducible polynomial defining 

a curve C . Suppose that U : C ÷ C is injective. Then 

~(~2) f/ ~(~2) is a simple ~ (~2)_module. 

Sketch of Proof. The goal is to show that each f-nR/R, R = ~(~2) , 

is a simple left ~(~fn)_module, where ~=~(~2) It will then fol- 

low at once that Rf/R is a simple left a-module. 

It is clear that for n6~ f-nR/R is a left ~ (~fn)/~fn-module. 

However, ~(~fn)/~fn ~ ~(R/fnR), the ring of differential operators 

on R/fnR , and it is easy to see that as a left ~(R/fnR)-module, 

f-nR/R is isomorphic to R/fnR . Hence the aim is to show that 

R/fnR is a simple ~(D/fnR)-module for all n 6 ~ . The case n = I 

is precisely Theorem 2.3 above. For n > I we must extend the results 

in [6] . This is done in [7] , and here we just sketch the main steps 

of the argument. 

There is an inclusion of algebras 

R/f nR ~ R/fR®kk[Z]/(z n) = ~(C)®kk[Z]/(z n) ~ ~(~)®kk[ z] /(zn)~Fract(R/~, 

such that R/fnR is of finite codimension in ~(~)®kk[Z]/(z n) , and 

the induced map on the spectra is bijective. One observes that 

~ ~((C)®kk[Z]/(zn)) ~(~)®ko~(k[z]/(z n))~(~)®kMn(k) 

and this latter algebra is Morita equivalent to ~(C) . One therefore 

can apply the same ideas as in [6 , §§2,3] to show that, if 

(+) ~(~(~)®kk[Z]/(z n) ,R/fnR) * ( ~(~)Okk[Z]/(z n))=R/fnR 

then ~(R/fnR) is Morita equivalent to ~(~) ® k[z]/(zn)) . Because 

of the bijectivity of the map on the spectra , (+) can be establ±shed 

by imitating the proof of ~ , Theorem 3.4] . Then, from the Morita 

equivalence it follows that ~(R/fnR) is a simple ring, and hence 

R/fnR is a simple ~(R/fnR)-module. m 

Theorem 4 has been obtained independently by van Doom and van den 

Essen [8]. 
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