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Let k be a f i e l d ,  and denote by A z (or A~) and P~ (or P~) the af f ine and pro- 

jec t i ve  l ines over k. When k is of character is t ic  0 the rings of d i f f e ren t i a l  

operators on A I and P~ (which we denote D(A~) and D(P~)) have been extensively 

studied, and are considered to be well understood, in contrast ,  i f  char k = p > O, 

the rings of d i f f e ren t i a l  operators on A I and pl (which we denote D(A~) and D(P~)) 

have not been studied at a l l .  The purpose of th is  note is to begin an invest igat ion 

into D(A~) and D(P~). 

Before we out l ine some of our resul ts ,  we give a br ie f  account of the wider 

context in which D(A~) and D(P~) appear (and which accounts for  the i r  s igni f icance).  

F i rs t ,  i f  one is to study d i f f e ren t i a l  operators on any a f f ine or pro ject ive var iety 

then D(A z) and D(I #) are the f i r s t  cases to examine. However, another important 

motivation is the connection of D(A~) and D(P~) with the representation theory of 

f i n i t e  dimensional Lie algebras in character is t ic  zero. The recent history of D(A~) 

(known as the Weyl algebra) begins with Dixmier's papers [3] and [4 ] .  He showed 

that i f  ~ is a f i n i t e  dimensional n i lpotent  Lie algebra over $, then the pr imi t ive 

fac tor  rings of U(~), the enveloping algebra of g, are of the form D(A~) ~ D(A~ ~ . . .  

~{ D(A~). Hence, the i r reducib le representations of g are precisely the simple 

modules over D(A~) for various n. For example, i f  g is the 3-dimensional Heisenberg 

Lie algebra then the i n f i n i t e  dimensional i r reduc ib le  representations of g are 

precisely the simple modules over D(A~). 

The r ing D(F~) arises in a similar way. Let G be a connected complex semi- 

simple Lie group with Borel subgroup B; then G/B is a complex project ive algebraic 

var ie ty  (P~ arises as SL(2)/B), and the ring of global regular d i f f e ren t i a l  

operators on G/B, D(G/B), is ison~)rphic to a pr imi t ive  factor  r ing of U(g) where 

is the Lie algebra of G. See [1]  where this idea is exploited to ver i f y  the 
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Kazhdan-Lusztig conjectures on Verma modules. 

The corresponding connections between representations of character is t ic  p Lie 

algebras and modules over D(Alp) and D(Plp) are not studied here, Rather, we concern 

ourselves with the r ing theoret ic  propert ies of D(A~p) and D(P~p) and examine to what 

extent the i r  structure para l le ls  or diverges from D(A~ o) and D(PIo). I t  is largely a 

matter of taking a resul t  in character is t ic  zero and asking whether the same resul t  

holds in character is t ic  p, and i f  not, in what sense is i t  false. 

In Table i ,  below, the propert ies of D(A z) in character is t ics zero and p are 

set out side by side. Let us mention jus t  a few of them. D(A o) is f i n i t e l y  

generated and Noetherian - both these are fa lse for D(A~). Much of the "bad" 

behaviour of D(A~) can be at t r ibuted to the lack of some sort of f in i teness condition 

(in par t i cu la r ,  the question of whether every endomorphism of a simple D(A~)-module 

is algebraic over k, is d i f f i c u l t  because one has no f in i teness condition whichmight 

allow a resul t  concerning generic f latness of the associated graded algebra to be 

establ ished). For a similar reason Gel fand-Ki r i l lov dimension, which is an effect ive 

tool for D(A~o ), does not seem to be useful for  D(Alp). But, a l l  is not los t .  For 

example, i f  k i t ]  denotes the co~ordinate ring of A I ,  and i f  0 /E f E k [ t ]  then 

k [ t , f  - I ]  is a D(~)-module. In character is t ic  zero, k [ t , f  " I ]  is an Art inian module, 

and the usual proof involves Gel fand-Ki r i l lov dimension. Nevertheless, in character- 

i s t i c  p, k [ t , f  - I ]  is also an Ar t in ian D(Ap)-module, and the proof makes use of one 

structural  feature of D(A~) that has no analogue in D(Ao). Namely that D(A~) = 
oo  

u Endk[ tpn]k[ t ] ,  is a union of matrix algebras over commutative rings (whereas 
n:O 
D(A~) is a domain). One question which appears in [3] and remains unanswered to 

date, is whether D(Ao) has a proper subring isomorphic to D(Ao). I t  is quite easy 

to construct a proper subring of D(A~) which is isomorphic to D(A~). 

Although D(P~) is a pr imi t ive factor  r ing of U(s I (2 , { ) ) ,  the natural map from 

Hyp(s l (2,k) ) ,  the hyperalgebra of s l (2 ,k ) ,  to D(P k) is not sur ject ive i f  char k=p>O. 

D(P o) has a unique two sided ideal (apart from 0 and D(Po)) and th is  i d e a l i s o f  

codimension 1; the analogous statement for D(P~) is also true. V#hereas Ko(D(Po)) : 

7/ (~ / ,  Ko(D(p~) ) = Z m Z [ i / p ] ;  the l a t t i ce  of order ideals in Ko(D(P~)) is isomorphic 

to the l a t t i ce  of two sided ideals in D(P~). 



159 

TABLE 1 

Properties of D(A~) 

Characterist ic zero Characterist ic p > 0 

f i n i t e l y  generated 

Noetherian 

simple ring 

domain 

gl.dim. = I 

K.dim. = i 

GK.dim. = 2 

centre = k 

K 0 = Z 

Every derivation is inner 

I f  I is a l e f t  ideal with I n k [ t ]  ~ 0 
and I n k[d/dt] ~ O, then I = D(A l) 

I f  0 ~ f ~ k i t ]  then k [ t , f  " I ]  is Artinian 

k [ t ]  is a simple module 

D/Dt is a simple module 

Open question whether D(A ~) has a proper 
subalgebra isomorphic to D(A I) 

I f  M is a simple module EndDM is algebraic 
over k 

not f i n i t e l y  generated 

not Noetherian 

simple r ing 

not a domain 

gl.dim. = 1 

K.dim. does not ex is t  

GK. dim. = 1. 

centre = k 

K : ZE1/p]  o 
There exists a non-inner der ivat ion 

I f  char k = 2 then Dt + Dx I ~ D(g l) 

I f  O ~ f ~ k [ t ]  then k [ t , f  " I ]  is of f i n i t e  

length 

k i t ]  is a simple module 

D/Dt is a simple module 

D(A ~) contains a proper subalgebra iso- 
morphic to D(A 1) viz k[tP,x ,xo~,x . . . . .  ] 

w cv ~p 
Not known 

My i n i t i a l  in terest  in these ideas was aroused during conversations and 

correspondence with Ken Goodearl. I am indebted to him for  his generous comments and 

assistance, especial ly re la t ing  to matters concerning K-theory. My thanks also go 

to C.R. Hajarnavis for  many useful conversations during the preparation of these 

notes. 
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§1. DIFFERENTIAL OPEP~ATORS 

Let k be any commutative r ing ,  and A any commutative k-algebra. Then EndkA 

may be made in to an A®kA-module by def in ing ((a ~ b)@)(c) = ae(bc) fo r  @ E EndkA 

and a,b,c c A. We wr i t e  [a,@] for  (a ~ i -1 © a)@, so [a,O](b) = ae(b) - O(ab). 

DEFINITION 1.1 The space of k-linear differemtial operators of order ~ n on A, 

• n i Dlf fkA,  is defined i nduc t i ve l y  by D i f f  1A = O, and for  n ~ O, 

Dif f~A = {8 E EndkAl[a,@] E D i f f~ - IA  for  a l l  aEA}. Thering of k - l i n e a r d i f f e r e n t i a l  

ope ra to rs  on A is D(A) = u Dif f~A. I f  X is an a f f i ne  a lgebra ic  va r i e t y  over the 
n=O 

f i e l d  k wi th r ing of regular  funct ions A, we w r i t e  D(X) = D(A). 

REMARK 1.2 ( i )  Dif f~A is  an A ~ A-submodule o f  EndkA 

(2) I f  @ c EndkA, then @ ~ Dif f~A, i f  and only i f ,  

[ao[a I ... [an,@]...]] = 0 for a l l  ao,a I . . . . .  a n E A. 

(3) We refer the reader to [10] for a more comprehensive introduction 

to rings of di f ferent ial  operators on commutative rings. 

(4) I t  is an easy exercise to verify that i f  k is a f ie ld  of character- 

i s t i c  zero, and k i t ]  is  the r ing of regular funct ions on A~, then D(A~) = k [ t , d / d t ]  

where d /d t  is  the usual d i f f e r e n t i a t i o n  operator acting on the polynomial r ing  k [ t ] .  

As elements of Endkk[t] one has ( d / d t ) t  - t ( d / d t )  = 1. 

DEFINITION 1.3 Denote by ~:ABk A + A the m u l t i p l i c a t i o n  map ~(a ® b) = ab. Th i s i s  

a k-algebra map (also an A-module map for  e i ther  the r i gh t  or l e f t  A-module struCure 

on A ~kA). Put I = ker U. 

THEOREM 1.4 (Heynemann-Sweedler [9 ] ,  Grothendieck [ 8 ] ) .  Let  8 ~ EndkAo Then 

e ~ Di f f~A,  if and only if, In+l.@ = O. 

§2. PROPERTIES OF D(A~) 

Write D = D(A~), and consider D as the ring of k-linear di f ferent ia l  operators 

on k [ t ] ,  the polynomial ring in t ,  over the f ie ld  k of characteristic p > O. 

The following result was arrived at during conversation and correspondence with 
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Ken Goodearl, and I am gra te fu l  f o r  h is  a l lowing me to inc lude i t  here. 

PROPOSITION 2.1 ~n_ 1 Endk[ tpn]k [ t  ] . D = u Endk [ tPn ]k [ t ]  and D i f f  k i t ]  = 
n=O 

Proof Let 0 E Endkk[ t ] .  Not ice tha t  I = k e r ( v : k [ t ]  Bkk [ t ]  + k [ t ] )  i s  generated as 

an ideal  by i @ t - t @ i .  Hence I pn is generated by ( i  @ t - t ® 1) pn = I ® t pn - 
pn 

t pn @ i .  So e E D i f f~  n ' l  k i t ] ,  i f  and on ly  i f ,  I .0 = O. That i s ,  i f  and on ly  i f ,  

0 = ( i  ~ t pn - t pn ~ 1). e = 8 t  pn - tPne. So 0 is  a d i f f e r e n t i a l  operator of order 

pn-1, i f  and on ly  i f  0 c Endk [ tpn ]k [ t ] .  This proves the r e s u l t .  
n 

We shal l  wr i te  D n = D i f f~  n-1 k i t ] .  So we have j u s t  shown tha t  D n ~ Mpn(k[tP ]), 

the pn x pn mat r ix  r ing  over k [ t pn ] .  

COROLLARY 2.2 (1) D is  not a finite ly generated k-a ~ebra; 

(2) D does not contain any primitive idempotents; in fact if 

0 ~ e ~ D is idempotent then there exists a set of p m~tually 

orthogonal idempotents el,...,e p such that e = e I + ... ÷ ep; 

(3) D contains an infinite direct sum of non-zero left ideals; 

(4) D is r~t Noetherian; 

(5) D does not ~ave Krull dimension (in the sense of Gabriel and 

Rentschler] . 

Proof (3 ) ,  (4 ) ,  (5) are immedi~ate consequences of (2 ) ,  and (1) is  obvious, since any 

f i n i t e  set of elements of D l i e s  in  some D n, and so can at best generate D n which is  

a proper subalgebra of D. 

To prove (2) ,  l e t  0 ~ e ~ D be an idempotent. Suppose e ~ D n = Endk [ tpn ]k [ t ] .  

n = Id I and e(V) = O. Write k [ t ]  = U@ V, a d i r e c t  sum o f  k[ tP ]-submodules, where elu U 
~ . p n + l  

As e ~ O,U is  non-zero, and as a KLZ ]-module, U = U 1 @ . . .  @ Up is  a d i r e c t  sum 

of p non-zero k [ tPn+ l ] -n~du les .  Now e = e I + . . .  + ep where ej is  the pro jec t ion  of 

k [ t ]  onto Uj w i th  kernel V@ U 1 @ . . .  m Uj m . . .  m Up (omit Uj from the sum). One 

checks tha t  each ej i s  a k [ tpn+l ] -module map, hence an element o f  Dn+ I ,  and that  the 

ej are mutua l ly  orthogonal idempotents. D 

A concrete i l l u s t r a t i o n  of (2) above, i s  the f o l l o w i n g : i f  e n : k [ t ]  ÷ k [ t ]  is  the 
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pn ' i fo r  0 _ i pn then { e l , e  2 . . . .  } is k i t  ] - l i n e a r  map def ined by en( t  I )  = 6 i , p n _ i t  < ~ , 

an i n f i n i t e  set of mutua l ly  orthogonal idempotents. 

PROPOSITION 2.3 Ko(D) ~ Z[I /p]  

Proof D n m Mpn(k[tpn]) and one has that Ko(D n) = Ko(k[tpn]) (as K o is defined in 

terms of the category of modules over D n) and i t  is known that Ko(k[tpn]) = Z. The 

inclusions D I ÷  D 2+ D 3 ~ . . .  induce maps on the K o groups Z P÷Z P÷Z÷ ...  The 

maps are multiplication by p. As K o commutes with direct l imits [ 7] we get 

Ko(D) = Z [ 1 / p ] .  

An order un i t  is  i = [R],  and the order r e l a t i o n  is  the usual order r e l a t i o n  

on Z [1 /p ] .  

PROPOSITION 2.4 Not every derivation of D is inner. 

Proof Define A : D ~  Dby ~(d) = [ t  + t p + t p2 + . . . , d ] .  This a c t u a l l y  makes sense: 

f o r  n >> O, d ~ Dn+ I and so d commutes w i th  t pn+l ,  and hence w i t h  t pm fo r  a l l  m> n; 

there fore  ~(d) = [ t  + t p + . . .  t pn ,d ]  f o r  d E Dn+ 1. 

Suppose ~ i s  i nner ,  say A : ad(y) for  some y ~ D. Let y ~ D n. As A( t )  : O, 

y commutes w i t h  k [ t ] ,  hence y c k i t ] .  For a l l  n we have & - ady I : 0 but we 
Dn+l 

tPn) n 
have j u s t  seen tha t  AIDn+ I ad( t  + t + . . .  + Hence ad ( t+ tP+ . . . + t  p -y) IDn+ 

. . .  - k t pn+l and so t + t p + t pn y belongs to the centre of Dn+ 1 (= [ ] )  fo r  a l l  n; 

th i s  i s  impossib le.  

PROPOSITION 2.5 Centre (D) = k. 

c o  

Proof Centre (D n) = k[t pn] and n k[tP n] = k, The proposition is an immediate 
n=O 

consequence. D 

Another description of D is also useful. For each i c I~, let  x i bethe k-linear 

map on k [ t ]  given by xi(tm) = m .m-i ( i ) ~  where the binomial c o e f f i c i e n t  (m) isevaluated 

(mod p) .  One should th ink  of x i as ac t ing l i ke  ( I / i ! ) @ i / @ t i ;  even though i / i !  does 

not make sense in k i f  i -> p, t h i s  analogy can be made r igorous ,  as in  Theorem 2.7 

below. The analogy is useful  in  no t i c ing  re l a t i onsh ips  such as x i x  j = ( i TJ ) x i +  j .  
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THEOREM 2.6 D n = k [ t , x l , x  2 . . . . .  Xpn_l] and D = k [ t , x l , x  2 . . . .  ] .  

Proof To see that  x m is  a d i f f e r e n t i a l  operator of order ~ m, notice that  x o =IE~D~ 

and [Xm,t] = Xm_ 1 then use the induct ive De f in i t i on  1,1. Thus k [ t , x  1, . . . .  Xpn 1]cD n. 

Viewing D n ~ Mpn(k[tPn]),  there is  a basis for  D n as a k[ tpn]-modulegivenby the 

maps ~ j : k [ t ]  ~ k [ t ]  fo r  0 ~ i ,  j < pn where @ij is the k[tpn]-module map defined by 

@ i j ( t  m) = 6jm t m+i- j  fo r  0 ~ m< pn. The 8i j  are j us t  the matr ix  uni ts  ( for  the 
pn-1 

basis l , t  . . . . .  t of k i t ]  as a k[ tpn]-module).  

= t i t ~  - l - j  (the point being that  ( ~ ) is zero for  One computes that  e i j  Xpn_l pn_l 

a l l  ~ ~ ~ unless ~ = pn-1). Thus @ij ~ k [ t ' X l  . . . . .  x ] .  This completes the 
pn- i  

proof.  D 

Recall that  D(~ [ t ] )  = ~ [ t , ~ ] .  One can eas i l y  check that  the Z-module spanned 

by a l l  elements of  the form t J ( I / i ! ) ~ i / ~ t  i is  in fac t  a Z-subalgebra; wr i te  

S : Z [ t , ~ / ~ t , ( 1 / 2 ! )  92~t2 . . . .  ] .Of  course S = D (Z [ t ] ) ,  the r ing of Z - l i nea r  d i f f e r -  

en t ia l  operators on Z [ t ] .  The fo l lowing is s t ra ight forward.  

+ I~  (Z / i ! )~ ' /a t i  ~ THEOREM 2.7 D(k [ t ] )  = k ~ S where the isomorphism is given by x i 

and t ~  t .  

The proof that  D is  a simple r ing is  i nev i t ab l y  a l i t t l e  more complicated than 

the proof in the charac te r i s t i c  zero case - i f  one reca l l s  the charac te r i s t i c  zero 

proof,  one part  o f  i t  is  the observation that i f  I is  a non-zero ideal and 0 ~ a c l  

then for  some n, adn(~/~t)(a) ~ k [~ /~ t ] \O,  so there ex is ts  0 ~ bE l  w i t h b c k [ ~ / ~ t l  

and then for  some m adm(t)(b) ~ k\ {O},  so I contains a scalar .  However, i f  

char k = 2 ,ad (~ /~ t ) ( t  2) = O. 

Hence we require the fo l lowing technical resu l t .  

LEMMA 2.8 Ix  , t  m] = >i ( -1)J+ l (m)x~_ j t  m - J J  for  a l l  m s~.  
j=1 

Proof Evaluate both sides at t n, and the lemma reduces to checking the i d e n t i t y  



164 

Imp+°> C>o 
j=1 

This is  standard. 

( .  l)J+l(~.) (m+n-j . & . j  ) for  a l l  m ,n# .  

PROPOSITION 2.9 D is a simple ring. 

Proof Let 0 ~ I be a two-sided ideal of D. For some n, I n D n ~ O. A non-zero two 

sided ideal of a matr ix  r ing over a r ing R contains a non-zero ideal of R. Hence, 

f o r  some n, I n k[tP n] y 0. 

Choose 0 ~ f ~ I n k [ t ] ,  of lowest degree in t .  Write f =a  + g wi th g E t k l t ] ,  

~ k. I f  g = 0 then I n k ~ O, hence I = D, and the proof i s  complete. Suppose 

then, that  g ~ O, and l e t  t r be the lowest degree term appearing in g. Pick n, w i th  

pn < r < pn+l. Consider [Xpn,f ] = Ix n,g]  c I .  
P n 

P (_ I) J+l(~.)Xpn j t  m-j I f  m > pn, then by Lemma 2.8, [Xpn,t  m] = = (-1) pn+l 
j=1 

m)tm-pn since ( j )  = 0 (mod p) fo r  j < pn <_ n n+Z (p m. Also not ice that  as p -< r < p 

(pr n) /~ 0 (mod p). So in pa r t i cu la r  [Xpn,t  r ]  i O; thus Ix n,g] is of lower degree 
P 

than f and is  non-zero. This contradicts the choice of f .  Thus g = O, and the 

proof i s  complete. D 

PROPOSITION 2.10 D contains a proper subalgebra isomorphic to D, namely 

k[t p ,Xp,X2p,X3p . . . .  ] 

Xip(tjp ) jp ( j - i )p  JP (~)(mod p) Proof Notice that for al l  i , j  = ( ip)t and that (ip) = . 

Hence the natural action of Xip on k[t]  maps k[t p] into k[tP], and so each Xip is a 

differential operator on k[tP]. After Theorem 2.6 D(k[t p] ) = k[tP,yl,y 2 . . . .  ] where 

Yi( t  jp) = (~)(tP) j ' i .  As each Xip acts as does Yi' we conclude that 

D(k[tP]) ~ k[tP,xp,X2p . . . .  ]; of course D(k[t]) ~ D(k[tP]) so we have shown that 

D ~ k[tP,xp,X2p . . . .  ]. 

That k[tP,xp,X2p,...] is a proper subalgebra of D is obvious from the fact that 

D = k[t] ® kEt]x 1(~ k[t]x 2 (B ... (this follows from Theorem 2.7) and k[tP,xp,X2p,.-.] 

= k[t p] ~ k[tP]xp ® ...  
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The next example i l l u s t r a t e s  tha t  one useful  technique for  s tudying the Weyl 

gebra in  c h a r a c t e r i s t i c  zero, is  not ava i lab le  in c h a r a c t e r i s t i c  p. I f  k i s  a 

f i e l d  w i th  char k = O, then D(A~)~ k [ x , y ]  w i th  xy - yx = I ;  D(A~) can be loca l i sed  

at the non-zero elements o f  k [ x ]  and k [y ]  respec t i ve l y .  The diagonal embedding of 

D(~¢) into the direct sum of the localisations, D(~) ÷ k(x)[y] ¢ k(y)[x],  is a 

fa i th fu l l y  f l a t  embedding; the "faithfulness" comes from the fact that i f  I is a 

le f t  ideal of D(~ k) with I n k[x] ~ 0 and I n k[y] { 0 then, in fact, I = D(~). 

EXAMPLE There is a l e f t  ideal  I o f  D, I ~ D such tha t  I n k i t ]  ~ 0 and 

I n k [X l ,X  2 . . . .  ] ~ O. 

We const ruc t  our example for  char k = 2, but a s im i l a r  example ex i s t s  fo r  any 

characteristic. 

So, assume p = 2, put I = Dt 2 + Dx 1, Recall, from Theorem 2.7 that D is a 

free le f t  k[t]-module with basis 1,Xl,X 2, . . . .  so D = ® k[ t ]x n. Now 
n=O 

XnXl = (n~1)Xn+ 1 ={0 n odd and thus Dx I = ® k[ t ]x  n. As p = 2, [ t2 ,x l  ] = O, 
Xn+ 1 n even' n odd 

thus ( k i t ]  + k [ t ] x l ) t  2 ~ k [ t ] t  2 + k[ t ]x  I .  i f  n m 2, then Xn t2 = t2Xn + Xn_ 2, so 

k[t]Xn t2 = k[t](t2Xn + Xn_2). Consequently, 

I ~ ~ k[t ]x n + k [ t ] t  2 + Z k[t](t2Xn + Xn. 2) = 
n odd n even 

n m 2 

k [ t ] t  2 + k [ t ] x  I + k [ t ] ( t 2 x 2 + l )  + k [ t ] x  3 + k [ t ] ( t2x4+x2)  + . . .  

and i t  is easy to see that i ~ I. 

PROPOSITION 2.11 k [ t ]  <s a si~le D-module, 

Proof Let 0 ~ N be a submodule of  k i t ] .  We w i l l  show N n k ~ 0 from which the 

r e s u l t  fo l l ows .  Suppose N n k : O, and choose f ~ N o f  leas t  degree. Let t r be 

the h ighest  degree term appearing in  f .  Choose n such tha t  pn ~ r < pn+l.  Then 

Then Xpn(t  r)  (p~) t  r 'pn (p~) pn( f )  = , and ~ 0 (mod p). Hence x ~ 0 and i s  of lower 

degree than f .  This contradicts the choice of f .  
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Recall tha t  i f  k is  o f  c h a r a c t e r i s t i c  zero then the natural  act ion of 

k [ t , ~ / ~ t ]  on k [ t ]  extends to an act ion of  k [ t , ~ / ~ t ]  on k [ t , f  -1]  f o r  any 0 # f E k [ t l ,  

and that  k [ t , f  -1 ]  is o f  f i n i t e  length as a k [ t ,~ /~ t ] -modu le .  The usual proof  o f  

th is  [ 2 ]  uses G e l f a n d - K i r i l l o v  dimension. Although the same too l  is  no longer 

ava i l ab l e  in cha rac te r i s t i c  p > O, the same resu l t  is t rue (Theorem 2.13). In 

order to prove th i s  a few pre l im inary  observat ions are requi red.  

Mpn( k n -module has dimension (over k) at leas t  As D n ~ [tP ] ) ,  any non-zero D n 

pn. A f t e r  Theorem 2.6 (and i t s  proof) we have D n = k [ t ] ~  X l k [ t ] ~  . . .  ~ Xpn_ l k [ t ]  

I f  0 ~ f ~ k [ t ]  wi th deg(f)  = F then Dn/Dnf m S @ XlS ® . . .  @ Xpn lS 

where , S = k [ t ] / ( f ) ,  as a r i g h t  k [ t ] -module.  As dim S=F,d im (Dn/Dnf) = pnF, 

and hence by our f i r s t  observat ion length Dn(Dn f) -< F. 

LEMMA 2.12 Let M be a left D-module, with a chain of finite dimensional subspaces 

M 0 c M I c M 2 c ... such that 

(a) each M n is a Dn-module , 

(b) for ~ g e  n, lengthDn(M n) -< F ( f i xed F for  a l l  n >> 0) ,  

(c) M= u M .  
n= 0 n 

Then, as a D-module, lengthD(M) -~ F. 

Proof Suppose F = 1. We must show that  M is a simple D-module. Choose 0 /~ m ~ M 

and choose any m' ~ M. For a l l  s u f f i c i e n t l y  large n, m and m' belong to M n, which 

is a simple Dn-module by (b) .  Thus m' c Dnm c Dm. Thus M is  a simple D-module. 

We now prove the r e s u l t  by induct ion  on F. Suppose F -> 2, and that  the lemma 

i s  t rue for  a l l  numbers less than F. I f  M is simple as a D-module the proof  is 

f i n i shed .  I f  not, choose 0 ~ N a proper D-submodule o f  M. Put N n = N nMn; not ice  
oo 

that  N = u N n, and each N n is  a Dn-module. We show that fo r  a l l  la rge n, 
n=O 

lengthDn(N n) <- F- I .  To see th i s ,  pick m~ M, m A N. There ex is ts  n o such that  

m c M n fo r  a l l  n >- n o , but mE N n. Hence, i f  n -> n o , N n ~=M n. Thus lengthDn(N n) 

-< F-1 for  a l l  la rge n. By the induct ion hypotheses lengthD(N)-< F- I .  

We have shown that  any proper submodule of M has length a t  most F- I .  Hence, 
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lengthD(M) -< F. 

THEOREM 2.13 Let 0 ~ f ~ k [ t ] .  T~en the D-KnodazLe k [ t , f  "1] is of finite length (in 

fact, of length <- deg(f) + I ) .  

Proof As k [ t ]  is  a simple D-submodule of k [ t , f - 1 ] ,  i t  is  enough to show that  

M = k [ t , f ' l ] / k [ t ]  i s  o f  length -< deg( f ) .  
.pn 

For each n, l e t  M n be the Dn-submodule of M generated by the image of  f . 

I f  gf-m E M with g E k i t ] ,  there ex is ts  an n, wi th m < pn; then gf-m = gfpn_mf_pn 

M n. Hence M = u M n. 
n=O 

put 6 = deg( f ) ,  We w i l l  show that  lengthDn(M n) -< F, and the theorem w i l l  

fo l low from Lemma 2.12. Recall that  a non-zero Dn-module has dimension at  least  

pn, so i t  w i l l  su f f i ce  to show that  dimkM n -< FP n. 

k [ t ]Xpn_ l ,  x j ( f  -pn) Recall that  D n = k [ t ]  ~ k [ t ] x  I 0  . . .  C) so i f  one has = 0 

= pn _pn 
fo r  i -< j < pn, then M n Dn.f" = k [ t ] . f  , and as fPn . f  -pn = 0 ( re , tuber  

M = k [ t , f ' 1 ] / k [ t ] ) ,  i t  would fo l low that  dimk(M n) = dimk~<[t]/<fPn>) = Fp n. 

_pn n 
So the theorem is  complete i f  x j ( f  ) = 0 for  I <- j < p . However, 

fpn c k [ t pn ] ,  and as x j  E D n, x j  commutes wi th m u l t i p l i c a t i o n  by fpn. Thus 

x j ( f_pn)  pn n = f" x j(1) = O, for I -< j < p , 

The following is well known and is useful in deciding whether xix j is zero or 

not. 

LEMMA 2.14 I f  a,b E ~ are th~ p-adic expansions are a = a o + alp + a2 p2 + . . . .  

I: I b = b o + b l P  + + . . .  t h e n  (~ )  ~- 1I )(rood p ) .  
j = l  

LEMMA 2.15 For m > n, D m is free as a Dn-mOdule (on either the right or the left) 

of rank pm-n A basis for D m as a D n -m~dule is given by l,Xpn,X2p n, .... X(pm.1)pn. 

Proof Recall the descr ip t ion of D n and D m given in Theorem 2.6. I f  0 < j < pn-1, 
( j+ipn)x,+~ and 0 -< i -< pm-i then xjXip n = j j ,pn. However, wr i t ing j and ip m in their  

p-adic form, Len~a 2.14 ensures that xjXip n ~ O. The Lemma follows. 

The following consequence of Lemma 2.12 is useful, 
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LEMMA 2.16 If N is a Dn-module of finite length, then D @D N 
n 

as a D-m~dule. 

is of finite length 

Proof I f  N were a f a i t h f u l  Dn-module then D n would be a r t i n i an  (which i t  i s  not) .  

So I = ann D (N) { O. But a non-zero ideal of  D n = Mpn(k[tpn]) in tersects  k [ t  pn] 
n 

in a non-zero idea l .  Thus N is  a f i n i t e l y  generated module over the f i n i t e  
pn 

dimensional algebra Mpn(k[t ] / I  n k[tpn])=" Dn/I.  Thus dimkN < ~. 

Let m -> n. As D m is a f ree Dn-mOdule of rank pm-n Dm@DnN is  of dimension 

m-n  
-< p dimkN. As a non-zero Din-module has dimension ~> pm lengthDm (D m ~DnN ) _< 

- n  p dimkN. The lemma follows fromLemma 2.12 Dy observing that D~OnN =m~n Dm~DnN" []  

We next show that  gl.dim.D = i .  As the comments and example fo l lowing 

Proposit ion 2.10 ind ica te ,  the proof that  gl .dim.(D(A~)) = i when k is  of  

cha rac te r i s t i c  zero cannot be used. The fo l lowing preparatory lemma is required 

(and allows us in  the proof of Theorem 2.18 to make frequent use of  the fac t  that  

fo r  a f i n i t e l y  generated Dn-mOdule the concepts of tors ion submodule coincide 

whether we consider tors ion with respect to the regular elements of  D n, or wi th  

respect to the non-zero elements of k i t ]  when the Dn-mOdule is  viewed as a k [ t ] -  

module), 

LEMMA 2.17 Let M be a finitely generated Dn-module. Let ~1 be the torsion sub- 

module of M with respect to the regular elements of Dn; let M 2 be the torsion sub- 
n 

module of M with respect to k[tP ]; let M 3 be the torsion submodule of M with 

respect to k i t ] .  Then M I = M 2 = M 3. 

Proof As k i t ]  c D n and D n is  a free k[ t ] -module,  k [ t ] \ {O }  consists of regular 

elements in D n. Hence M 3 c M I .  S i m i l a r l y  M 2 c M 3 c M 1. 
= pn 

Write Qn fo r  the r ing  of f rac t ions  of  D n. That i s ,  Qn Mpn(k(t )) = 
n 

k(tP n) @k[tpn] D n, where k ( t  pn) denotes the f i e l d  of ra t i ona l  funct ions in t p . 

Now Qn ~DnM1 = O. Hence k(tP n) ®k[tpn] M I = O, and i t  fo l lows that  M 1 c M 2. D 

THEOREM 2.18 gl .dim. D = 1. 
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Proof As D is  not semi-simple a r t i n i a n ,  g l .d im.  D ~ 1. So i t  is  enough to show 

tha t  every l e f t  ideal  of D is  p ro j ec t i ve .  Let I be a l e f t  i dea l .  

Put I n = I n D n, and def ine  l'n to be the l e f t  ideal  of D n conta in ing  I n such 

tha t  In/' In is  the to rs ion  submodule of  the Dn-mOdule Dn/l n. Put Tn = Dl'n n I .  

We cla im tha t  T n c Tn+ 1. To see t h i s  i t  is  enough to check tha t  I '  c I '  n n+l"  

But I n' + I n+ i / I n+  I ~ In /  I n' n In+ I which is  a homomorphic image of  l ' / In n" As 

I n / I  n i s  k [ t ] - t o r s i o n  so is  I '  + n n+1" n I n+ l / I n+  I ,  Thus I '  c I '  

We claim tha t  T n i s  a f i n i t e l y  generated l e f t  i dea l .  Not ice tha t  

c ~ I Tn/Dln _ DIn/DI n m D o D ( I n /  n ).  By Lemma 2.16 th i s  l a t t e r  D-module is  of  f i n i t e  
n 

' I i s  o f  f i n i t e  length as a Dn-module. The t r u t h  of  the claim length since In /  n 

fo l lows from the fac t  t ha t  DIn is  f i n i t e l y  generated, and tha t  Tn/DI n is  of f i n i t e  

length.  

Consider Tn+I/T n. As both these l e f t  i dea ls  are f i n i t e l y  generated there 

: ex is ts  m ~ I~ w i th  Tn+I/T n D(Tn+ 1 ~ Dm)/D(T n n Din). Now Tn+ I n Dm/T n n D m 

+ Dm)/T n which is  a submodule of  I /T  n I / I  n D n n n T n (Tn+ 1 n = I '  z I + D I ' / D I '  which 

is a submodule of D/DI~ ~ D ~Dn(Dn/l ' ) 'n However, as a k[t ] -mOdule Dn/l  n is 

t o r s i o n - f r e e ,  hence so is  D/DIt n. Thus Tn+ 1 n Dm/T n n D m is t o rs ion - f ree  as a 

Dm-module. But D m is a he red i ta ry  Noetherian prime r i n g ,  so by [5 ,  Theorem 2.1]  

a t o r s i on - f r ee  Dm-mOdule is p ro jec t i ve .  Hence there is  a l e f t  ideal  J o f  D m wi th  

Tn+ I n D m = T n n D m ~ J. Thus (as D is f ree as a Din-module) D(Tn+ I n D m) = 

D(T n n D m) ® DJ. In p a r t i c u l a r ,  there is a f i n i t e l y  generated l e f t  ideal S n w i th  

Tn+ I = T n @ S n. 
co 

Now I = u DI n = u T n = T o + T 1 + . . .  = S o ~ S 1@ S 2 @ . . . .  But each S n 
n=O n:O 

D (D m r, S n) ,  and D m n S n is f i n i t e l y  generated hence p ro jec t i ve  (because S n ODm 

is a p ro jec t i ve  Dm-module). Thus I is  p ro jec t i ve .  

Goodearl has pointed out the fo l l ow ing  way of v iewing D. Let B denote the 

subr ing k [ X l , X 2 , . . . ]  o f  D; B is  isomorphic to the fac to r  r i ng  o f  a commutative 

polynomial r ing  k [ X I , X 2 , . . . ]  modulo the ideal  generated by XiX j - ( l ; J ) X i +  j .  The 
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inner d e r i v a t i o n  ad( t )  = [ t , - ]  of  D maps B i n to  i t s e l f ,  so ad(t )  acts as ader i va t ion  

on B, and D may be viewed as B [ t ] ,  the extension of B by the de r i va t i on  a d ( t ) .  Now i t  

i s  easy to see g l .d im.  B = ~ because there e x i s t  non -sp l i t  exact  sequences: 

0 ÷ XIB ÷ B ÷ Xp_lB ÷ 0 

0 ÷ Xp_lB ÷B ÷ XlB ÷ O. 

Hence this gives an example of a commutative ring of i n f i n i t e  global dimension such 

that an extension by a derivation has f i n i t e  global dimension (the f i r s t  such 

example appears in [6]) .  

As D is a ring of d i f ferent ia l  operators i t  has a f i l t r a t i o n  given by the 

order of the operators. As x n is of order n, the f i l t r a t i o n  is given by FnD = 

k i t ]  • k [ t ]x  I 0 . . .  (~ k[ t ]x  n, and the associated graded algebra grD is isomorphic 

to B[s] where s is a commuting indeterminate. Hence although gl.dim D = 1, 

gl.dim (grD) = ~. 

Notice that the exact sequences over D corresponding to those for B given 

above are sp l i t .  This is because DXp_ 1 is projective (being generated by the 

idempotent t P - l x p _ l  ) . 
We now br ie f l y  turn our attention to the ring of fractions of D. As D is a 

free k[t]-module, k[ t ] \ {O} consists of regular elements of D. Hence Fract D con- 
n 

rains k( t ) .  As D n m Mpn(k[t p ] ) ,  Fract D n m Mpn(k(tpn)). Thus we have 

THEOREM 2.19 The ring of fractions Q, of D, is equal to k ( t ) [ x l , x  2 . . . .  ] anz~ 
on 

Q = u Qn where Qn = Endk(tpn) k(t) = Fract D n. 
n:O 
In particular Q is a union of simple art inian rings, so is von Neumann 

regular. As Q is f l a t  as a D-module, gl.dim. Q -< gl.dim. D. But Q is not semi- 

simple art inian, so gl .  dim. Q = 1. 

PROPOSITION 2.20 Q is not self-injeotive. 

Proof I t  is  s u f f i c i e n t  to f i nd  a l e f t  ideal  J o f  Q, and a Q-module map @:J + Q 

which is not the r e s t r i c t i o n  o f  a Q-module map ~:Q + Q. 
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co  

Put J = qx I + qx 2 + . . .  ; consider the formal sum y = ~ XpJ_l,  and def ine  
j=O 

@:J ÷ Q by @(r) = ry.  This does make sense: not ice that  XiXpJ.1 = 0 i f  i is  f i xed  

and j is  s u f f i c i e n t l y  la rge,  thus ry is  ac tua l l y  a f i n i t e  sum for  r c J. So @ 

is a bona-f ide Q-module homomorphism. 

Suppose tha t  ~:Q ÷ Q is a l e f t  Q-module map. Then ~ is j u s t r i g h t m u l t i p l i c a t i o n  

by z= 9(1) .  So i f  @ = ~ j j  then, in  p a r t i c u l a r ,  x i (Y-Z)  = 0 fo r  a l l  i -> I .  Suppose 

z = a 0 + x la  I + . . .  + Xna n w i th  each aj ~ k i t ] ,  and a n ~ O. Suppose pm-I > n. 
m 

Then Xpm.Y = )~ -1 '  and ~ O, but x - cannot contain a term j=O Xpm'Xp j Xpm'Xp m-1 pm z 

i n vo l v i ng  X2pm_ 1 since n < pm-l. Hence Xpm.Y ~ XpmZ, and thus ~ i ~ I j .  D 

§3. PROPERTIES OF D(PI) 

We begin by de f in ing  D ( ~ ) .  Let D be the sheaf of d i f f e r e n t i a l  operators on 

p1, and def ine D(Pz) = £(Fz,O). As # is  the unique quasi-coherent  sheaf of Op,- 

modules such tha t  for  every open a f f i n e  U c p ' ,  F(U,O) is the r ing  of d i f f e r e n t i a l  

operators on O.(U) ( the r i ng  of regu lar  func t ions  on U) to compute the global 

be two copies of  A' covering pl  sect ions o f  P we may proceed as f o l l ows .  Let U+, U_ 

such tha t  O(U+)=k[ t ] ,  O(U )=k i t  -1 ]  and l e t  D +, D- denote the r ings  of  d i f f e r e n t i a l  

U + operators on and U- respec t i ve l y .  I f  D + and D- are considered as subalgebras of  

D ( k ( t ) ) ,  we have D(£ I) D + D + = n D-. As = {e ~ D ( k ( t ) ) I B ( k [ t ] )  c k i t ] }  and 

D" = {e c D ( k ( t ) ) l e ( k [ t - Z ] )  c k i t - l ] }  we have D(P t) = {e ~ D ( k ( t ) ) J e ( k [ t ] )  c k i t ]  

and e ( k [ t - l ] )  c k [ t - 1 ] } .  Thus we obta in ( f o r  k a f i e l d  of c h a r a c t e r i s t i c  p > O) 

+ 
LEMMA 3.1 F/x n, put q = pn and /et @ ~ D n (us ing the nota t ion  of §2). 

0 c D(1)~), if and only if' 

(1) 8(1) ~ k 

(2) O(t j )  E f in .span < l , t , t  2, , tq> f o r  a l l  j 0 < j < q • , ,  , • 

Then 

Proof Suppose 8 s a t i s f i e s  the cond i t i ons .  F i r s t  observe tha t  8 extends to a 

D + k [ t q ] - l i n e a r  d i f f e r e n t i a l  operator on k ( t )  (s ince 8 c n ) .  Pick i > O; we show 

tha t  @(t - i )  c k [ t - l ] .  
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Pick m such that  mq < i ~ (m+l)q. Then 0 ~ (m+l)q- i  < q, so by (2) , 

O(t (m+ l )q ' i )  ~ l in .span < l , t , t  2 . . . . .  tq>. But O(t (m+ l )q ' i )  : t ( m + l ) q e ( t ' i ) ,  hence 

6 ( t  - i )  E l in .span t ' ( m + l ) q < l , t  . . . . .  tq> c k [ t - 1 ] .  This and (1) ensure that  

~ k [ t ' l ] )  c k [ t - 1 ] ,  and so @ E D(PC). The condit ions are therefore s u f f i c i e n t .  

On the other hand, i f  @ E D(P~), then ce r ta i n l y  e ( k [ t ]  n k [ t - l ] ) c k [ t ]  n k i [ t ' l ] ,  

so (1) is necessary. Also i f  0 < j < q, then O(t " j )  c k [ t ' l ] ,  and hence 

@(t q- j )  = tqo( t  - j )  ( t q k [ t  " I ]  n k [ t ]  = f in .span.  < l , t  . . . . .  tq>, So (2) is 

necessary. D 

= D +" that is  D(PI) n is  the d i f f e r e n t i a l  operators in D(P I) Put D(P~) n D(P I) n n' 

o f  order ~ n. Notice that  a f te r  the lemm~dimkD(Pq) n = i + (pn- l ) (pn+ l )  = p2n, 

so D(P)  is a union of  f i n i t e  dimensional subalgebras. 

LEMMA 3.2 The nilpotent radical of D(PI) n is the span of those e which satisfy 

( I )  8(1) = 0 

(2) e ( t  j )  E l in .span <l , tpn> f o r  a l l  0 < j < pn. 

Proof 

Put q = pn. F i r s t  the span of such 0 is an ideal  of D(P~) n, I f  ~ ~ D(PI) n, 

then ~0(1) = 0~( i )  = O; and for  0 < j < q, one has ~e( t  j )  c l in .span <~(1),~(tq)> = 

f in.span <~(1), tq~(1)> c l in .span <l , tq> by Lemma 3.1(1);  also e~(t j )  c l in .span 

<e(1),O(t)  . . . . .  o( tq)> ¢ l in .span <1,tq> as e ( t  q) = tqo(1) = O. We have shown that  

i f  0 s a t i s f i e s  ( I )  and (2) ,  so do e~ and ~0 . Hence the span of such e is  an idea l .  

The square o f  th is  ideal i s  zero: i f  8 and ~ s a t i s f y  ( I )  and (2) then 

~e(1) : 0 and for  0 < j < q, ~e( t  j )  c l in .span <~(Z),~(tq)> = O. 

The fac to r  by th i s  ideal i s  semi-simple a r t i n i an :  the fac tor  may be i d e n t i f i e d  

wi th those 9 such that  0 ( I )  E k and O(t j )  ~ l in .span < t , t 2 , . . . , t q - l >  fo r  I ~ j < q; 

but t h i s  algebra is  isomorphic to (Endkk) @ (Endkkq-1). 0 

Put N n = n i l po ten t  rad ica l  o f  D(PI)n; not ice that  dim N n = 2 (pn- l ) .  

LEMMA 3.3 N n n Nn+ 1 = O. 

Proof Pick 0 }~ 0 ~ N n. Then O(t j )  ~ 0 for  some 0 < j < pn. Hence, i f  e ~ Nn+ I ,  
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e ( t  j ) n+1 n n+ 1 then c f i n .  span < l , tP > n l in .span < l , t  p > = k. But 0 < j + pn < P 

and @(t j+pn) = t pn O(t j )  E kt pn. But by applying Lemma 3.2(2) fo r  n+l,  one must 

have O(t j+pn) c l in .span < l , tpn+l>.  Thus @(t j+pn) = O, whence 8( t  j )  = O. This 

cont rad ic t ion  gives the resu l t .  

PROPOSITION 3.4 D(P ~) contains no non-zero ni~otent ideal. 

Proof Suppose N }~ O, i s  a n i lpo ten t  idea l .  Then N n D(•I) n ~ 0 for  some n. Thus 

N n D(PI) n is  a n i l po ten t  ideal o f  D n. S im i l a r l y  N n D(Pl)n+ 1 is  a n i lpo ten t  ideal 

o f  D(IY)n+ I .  Hence 0 ~ N n D(PI)n c N n n Nn+ 1. This contradicts Lemma 3.3. D 

PROPOSITION 3.5 D(P l )  is not yon Ne~nann regular. 

Proof Consider x I c D + ( the notat ion is  that  of  §2). One seesthat  Xl= ~/atE D(P' ) .  

Suppose there ex is ts  a E D(P') wi th x lax I = x 1. Then in  p a r t i c u l a r ,  as x l ( t )  = i ,  

one has x la(1)  = i .  But i f  a ~ D(P') then a(1) = 1. However, Xl(k)  = O, so there 

ex is ts  no a E D(~ ) ' )  w i th  x la(1)  = 1. Hence the resu l t .  B 

PROPOSITION 3.6 D(I ~ ) i s  i t s  own r i n g  o f  f r a c t i o n s .  

Proof This is  true of any algebra which is  a union of  f i n i t e  dimensional algebras 

over a f i e l d  (since an a r t i n i an  r ing is i t s  own r ing of f r ac t i ons ) .  D 

PROPOSITION 3.7 ( I )  D(PI) n i s  the swan o f  the two-s ided  i dea l s  Jn : {0 ~ D(Pl)nl 

e ( t  j )  c k fo r  a l l  0 < j < pn} and Qn ={8~  D(P~)nI@(1) = 0}. (2) dim k (D(!Pl)n/Qn)=l 

(3) Jn n Qn = Nn" (4) For n > 1, Jn/Nn and Qn/Nn are  m in ima l  i d e a l s  o f  D(P l )n/Nn. 

(5) Let ~ c D(P l)n. The two sided ideal of D(P I )n generated by a equals D(P l )n 

if and only if ~ can be written in the form a = B + ¥ with ~ ~ Jn\Nn and X E qn\Nn. 

Proof A f te r  Lemmas 3.1 and 3.2 the proposi t ion is  s t ra ight forward.  [] 

PROPOSITION 3.8 (Notat ion as in (3 .7 ) ) .  

proper ideal of D(P l )  , and D(P z)/Q ~ k. 

Proo f 

oo 

~t Q = U qn" 
n=O 

Then q is the unique 

As each Qn c Qn+1' and Qn is  an ideal of D(PI) n, Q is  a two sided ideal  of  
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Suppose @ ~ D(FI) n and 0 i Qn" Then D(P l) 8D(P i) =D(PI) .  To prove th is  i t  

is enough to show that D(P~)n+ 1 8D(]PI)n+ 1 = D(PI)n+ 1. As ~) ~ Qn' 8 ( I )  ~ O. Hence, 

without loss of general i ty  e(1) = 1. As @ is k [ t pn ] - l i nea r ,  @(t pn) = t pn, and i t  

fol lows that  8 ~ Jn+l,and 8 ~ Qn+l" Hence by Proposit ion 3 .7(5) ,  the two sided 

ideal of D(PI)n+ 1 generated by @ is D(P~)n+ I i t s e l f .  

I t  fol lows that any two sided ideal of D(P z) not equal to D(P~) must be con- 

tained in Q. 

Suppose now that  8 E Q, e ~ O. We show @ generates Q. Suppose @ ~ D(P z)n, 

Hence @(I) = O, and as 0 ~ O, 8 ( tJ l  ~ 0 for some j ,  0 < j < pn  Hence O(t j+pn) = 

t pn E)(t j )  ~ k Thus ~) f Jn+1" I t  fol lows that D(P') D(]P')n+I Qn+1 • n + l  e = . 

This is t rue for a l l  n >> O, so D(PI)OD(]P ~) = Q. 

Thus Q is  the unique proper ideal of D(]PI). F ina l ly  as dimk(D(P1)n/Q n) = I 

fo r  a l l  n, dimk(D(Pl)/Q) = I .  

PROPOSITION 3.9 D(P I)  is a primitive ring, and k [ t ]  is a faithful module of length 

2, the subnodule being k. 

Proof This is  an immediate consequence of Lemma 3.1. 

We now compute Ko(D(P~)). As K o commutes with d i rec t  l im i t s ,  one has 

Ko(D(PI)) = l im Ko(D(PI)n ). We need only consider n > 1, so henceforth assume 
> 

n > - l .  

Recall that D(IP z )n/Nn = Jn/Nn ~) Qn/Nn and Jn/Nn m k whi le Qn/Nn m Mpn.1(k pn-1) 

( th is  is  imp l i c i t  in the proof of  Lemma 3.2).  Hence Ko(D(Pl)n ) = Z (~ Z with 

[D(P~)n ] = (1,pn-1).  The posi t ive cone in Ko(D(Pl) n) is  K+(D(PI) n) = {(a,b)  

Z ® Z [ a  -> O, b -> 0}. 

The embedding D(Pz) n -~ D(Pl)n+ I induces maps @n:Ko(D(]PI) n) + Ko(D(Pl)n+ I) 

given by a#n(l,O) = (1,p-1) and <~n(0,1) = (O,p). 

Define G n = Z • Z and le t  ~n:Gn ÷ Gn+ I be the group homomorphism ~n(l,O)=(1,0), 

~n(O,l) = CO,p). Define 8:Z ® 9/ ÷Z m~Z by 6(I,0) = (1,1), ~(0,1) : (0,1), and 

extend ~ to a group isomorphism. Then 6:(Ko(D(Pl)n,@ n) -~ (Gn,~ n) is a chain 
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isomorphism, so Ko(D(P~)) = lim (Gn,~n). As ~n is jus t  the mul t ip l ica t ion map 
> 

(a,b) ( l , p ) )  (a,bp) one sees that th is d i rec t  l im i t  is 2[ ® Z[1/p ] ,  and that 

[D(P' ) ]  : (1,p).  

By chasing the posi t ive cones Ko+(D(Pl)n), one obtains Ko(D(P~)) 

{(a,b) ~ Z ~ )Z [ i / p ] l a  >- 0 and b > 0 or (a,b) = (0,0)} .  I t  is an easy matter now to 

see that the only order ideal in Ko(D(PZ)) apart from 0 and Ko(D(PI)) is Z [ i / p ] .  

Hence the l a t t i ce  of order ideals is isomorphic to the la t t i ce  of  two sided 

ideals of D(PI). We summarise the above. 

THEOREM 3.10 Ko(D(PI )) ~ Z ® ~ [1 /p ] ,  with [D(]P z ) ]  = ( l , p ) .  The lattice of order 

ideals in Ko(D(PI)) is isonmrphic to the lattice of tw~ sided ideals in D(• I ); 

this lattice is: Z 

Remark In [7,  Corollary 15.21] i t  is proved that i f  R is a un i t - regular  r ing there 

is  an isomorphism between the l a t t i ce  of  two sided ideals of  R, and the order ideals 

of Ko(R). Of course af ter  Proposition 3,5, D(P ~) is not uni t - regular .  

Recall that i f  k is a f ie ld  of character is t ic  zero, then there is a sur ject ive 

map U(sl (2,k))  + D(P~k ). This map is given by e + t2a/at ,  f + -~ /~t ,  h -~ 2ta/at  

where e = ( ),  f = (I ), h = (0 - ) is the usual basis for s l (2 ,k ) .  The sur- 

j e c t i v i t y  is seen from the fact  that D(~ k) = k[ a /~ t ,  t~ /a t ,  t2~ /~ t ] ,  and this 

equal i ty can be proved by elementary arguments.~Je snow below that,  i f  chark= p>O, 

then the analogous map does not give a surject ion from U k, the hyperalgebra of 

s l (2 ,k ) ,  to D(P~). 

So k is once again a f i e l d  of character is t ic  p > O. Denote the Z-span of the 
fa fh3e c elements ~ ~ b ' ~  with a,b,c c 11, in U(sl(2,~))  by L~; th is is  the Kostant Z-form 

and is a Z-subalgebra of U(sI(2,C)).  The hyperalgebra U k is defined to be 

U k : k h U  Z, 

D(P~) is  equal to D(Z[t ])  n D(Z[ t -1 ] ) ,  the intersect ion being taken inside 

D(7 / [ t , t - l ] ) .  Hence D(P~) is precisely those elements of D(P~) which, when acting 

on ~ [ t ]  and l ; [ t - l ] ,  map Z [ t ]  into 2 l i t ]  and Z [ t  -1] into 7/[ t -1] .  The image of 
fa (~) e c ~ i n  D(P~) is of course ( -~/~t )a  (2tb~/at) ( t2~/~t)c a! c! , and i t  is easy to 
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check that this differential operator sends Z[t] to / I t ]  and Z[t -1] to Z [ t ' l ] .  

Hence this element belongs to D(F~). Thus the map U(sl(2,C)) ÷ D(P~) restricts to 

give a map L~ ÷ D(P~). This in turn induces a map ¢:U k ÷ D(P~) since D(P~) = 

k ~ D(P~). This last equality derives from Theorem 2.7. 

THEOREM 3.11 The map (h:U k ÷ D(IPk) is not surjeotive. 

Proof Give k[ t , t  "1] the grading where t is of degree I; define D(]P~)(j) = 

{e c D(IP~)le(kt i) ~ kt i+j for all i ~ Z}. Then D(P~) = (~ D(F~)(j) and this gives 

a grading on D(P~). Notice that ¢(e) c D(P~)(1), ¢(f) c D(F~)(-I), ¢(h) ~ D(P~)(O). 

fa e c 
Likewise, ¢(~]-.~. (~) ~ )  c D(P~)(c-a). 

(~/~t) p Consider the element t p-I p! which belongs to D(F~)(1). We will show 

this is not in the image of @. I f  i t  were in the image of @, then i t  would be a 
fa ~ c 

linear combination of the image of elements ~ ( ) e with c-a = 1. Notice that 

tP - i  (3/~t)  p p! acts on k [ t ]  sending t p to t p - I .  The act ion of  

13 /~ t )a~ t3 /3~)  I t z~ /~ t )  a+l t p /p+a~ 2p+2a+2 ~p+a+l~tp-I a! " b " (a+ l ) !  ... sends to ( b ) However for a l l  ~p- l '  ~ p-1 ~- " ' 

a I~, p+a p+a+1~ fa -h e a+l (p-1)(  p - l '  --- 0(mod p). Hence ¢ ( ~  (b)(a+-~!)  sends t p to zero. Con- 

(@/~t) p sequent ly,  no l i near  combination of  these elements can equal t p ' I  - ' T .  which 

sends t p to t p-I. L] 
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