DIFFERENTIAL OPERATORS ON THE AFFINE AND PROJECTIVE LINES
IN CHARACTERISTIC p > 0
by
S.P. SMITH

Let k be a field, and denote by A! {or Aé) and P! (or Pi) the affine and pro-
jective lines over k. When k is of characteristic 0 the rings of differential
operators on A! and P! (which we denote D(Aé) and D(Pé)) have been extensively
studied, and are considered to be well understood. In contrast, if char k =p > 0,
the rings of differential operators on Al and P! (which we denote D(Aé) and D(Pé))
have not been studied at all, The purpose of this note is to begin an investigation
into D(AE) and D(P;).

Before we outline some of our results, we give a brief account of the wider
context in which D(Ag) and D(Pg) appear {and which accounts for their significance).
First, if one is to study differential operators on any affine or projective variety
then D(A') and D{P') are the first cases to examine. However, another important
motivation is the connection of D{Az) and D{Pz) with the representation theory of
finite dimensional Lie algebras in characteristic zero. The recent history of D(AB)
(known as the Weyl algebra) begins with Dixmier's papers [3] and [4]. He showed
that if g is a finite dimensional nilpotent Lie algebra over {, then the primitive
factor rings of U(g), the enveloping algebra of g, are of the form D(AE)g D(AE)@EN.
8¢ D(AE). Hence, the irreducible representations of g are precisely the simple
modules over D(AE) for various n. For example, if g is the 3-dimensional Heisenberg
Lie algebra then the infinite dimensional irreducible representations of g are
precisely the simple modules over D(Nt).

The ring D(Pé) arises in a similar way. Let G be a connected complex semi-
simple Lie group with Borel subgroup B; then G/B is a complex projective algebraic
variety (PE arises as SL{2)/B), and the ring of global regular differential
operators on G/B, D(G/B), is isomorphic to a primitive factor ring of U(g) where g

is the Lie algebra of G. See [1] where this idea is exploited to verify the
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Kazhdan-Lusztig conjectures on Verma modules.

The corresponding connections between representations of characteristic p Lie
algebras and modules over D(Aé) and D(P;) are not studied here. Rather, we concern
ourselves with the ring theoretic properties of D(A;) and D(P;) and examine to what
extent their structure parallels or diverges from D(A;) and D(Pé). It is largely a
matter of taking a result in characteristic zero and asking whether the same result
holds in characteristic p, and if not, in what sense is it false.

In Table 1, below, the properties of D(A!) in characteristics zero and p are
set out side by side. Let us mention just a few of them. D(Aé) is finitely
generated and Noetherian - both these are false for D(As). Much of the "bad"
behaviour of D(AS) can be attributed to the lack of some sort of finiteness condition
(in particular, the question of whether every endomorphism of a simple D(Aé)-modu]e
is algebraic over k, is difficult because one has no finiteness condition whichmight
allow a result concerning generic flatness of the associated graded algebra to be
established). For a similar reason Gelfand-Kirillov dimension, which is an effective
tool for D(Aé), does not seem to be useful for D(Ag). But, all is not lost, For
example, if k[t] denotes the co-ordinate ring of A*, and if 0 £ f e k[t] then
k[t,f—lj is a D(At)-module. In characteristic zero, k[t,f-l] is an Artinian module,
and the usual proof involves Gelfand-Kirillov dimension. Nevertheless, in character
istic p, k[t,f—lj is also an Artinian D(As)—module, and the proof makes use of one
siructura] feature of D(Aé) that has no analogue in D(Aé). Namely that D(Aé) =

80 Endk[tpn]k[t], is a union of matrix algebras over commutative rings (whereas
BEA&) is a domain). One question which appears in [3] and remains unanswered to
date, is whether D(Aé) has a proper subring isomorphic to D(Aé). It is quite easy
to construct a proper subring of D(Aé) which is isomorphic to D(Aé).

Although D(P&) is a primitive factor ring of U(s1(2,L)), the natural map from
Hyp(s1(2,k)), the hyperalgebra of s1(2,k), to D(Pk) is not surjective if char k=p>0.

D(Pé) has a unique two sided ideal (apart from 0 and D(Pé)) and this ideal isof
codimension 1; the analogous statement for D(P;) is also true. Whereas KO(D(Pé)) =
ZeL, KO(D(P;)) =7 ® I[1/p]; the lattice of order ideals in Ko(D(PS)) is isomorphic

to the lattice of two sided ideals in D(P;).
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TABLE 1

Properties of D(A})

Characteristic zero

Characteristic p > 0

finitely generated
Noetherian

simple ring

domain

gl.dim.
K.dim.

GK.dim.

centre

K

o F

Every derivation is inner

If 1 is a left ideal with I nk{t] # 0
and I n k[d/dt] # 0, then 1 = D(A")

If 0 #f c k[t] then K[t,f ] is Artinian

k[t] is a simple module
D/Dt is a simple module

Open question whether D(A') has a proper
subalgebra isomorphic to D(R')

not finitely generated
not Noetherian
simple ring

not a domain

gl.dim. = 1

K.dim. does not exist

GK. dim. = 1.
centre = k
Ky = Z[1/p]

There exists a non-inner derivation

If char k = 2 then Dt + Dx; # D{AY)

If 0#f eklt] then k[t,f'lj is of finite
length

kf[t] is a simple moduie
D/Dt is a simple module

D{A') contains a proper subalgebra iso-

. 1 .
morphic to D(A") viz k{tp,xp,xzp,xgp,..q

If M is a simple module EndDM is algebraic Not known

gver k

My initial interest in these ideas was aroused during conversations and

correspondence with Ken Goodearl. I am indebted to him for his generous comments and

assistance, especially relating to matters concerning K-theory.

My thanks alsc go

to C.R. Hajarnavis for many useful conversations during the preparation of these

notes.
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§1. DIFFERENTIAL OPERATORS

Let k be any commutative ring, and A any commutative k-algebra. Then EndkA
may be made into an A @kA-modu]e by defining ({a © b)s)(c) = ag(bc) for g « EndkA

and a,b,c ¢ A. We write [a,0] for (a ® 1-1 ® a)s, so [a,0](b) = a6(b) ~6(ab).

DEFINITION 1.1 The space of k-linear differential operators of order < n on A,
DiffEA, is defined inductively by DTfleA =0, and for n = 0,
DiffyA = {6 « EndA|[a,8] e DiffE'lA for all a€A}. Thering of k- Lincar differential

operatars on A is D{A) = u DiffEA. If X is an affine algebraic variety over the
n=0

field k with ring of regular functions A, we write D(X) = D{A}.

REMARK 1.2 (1) DiffiA is an A ® A-submodule of End,A

(2) 1f 8 < EndA, then & < Diff A, if and only if,

[ao[al ... [a8,50]...11 = 0 for all L EPRRRPL My A.

(3) We refer the reader to [10] for a more comprehensive introduction
to rings of differential operators on commutative rings.

(4) 1t is an easy exercise to verify that if k is a field of character-
istic zero, and k[t] is the ring of regular functions on Al, then D(Ai) = k[t,d/dt]
where d/dt is the usual differentiation operator acting on the polynomial ring k[t].

As elements of EndkkEt] one has {d/dt}t - t{d/dt}) = 1.

DEFINITION 1.3 Denote by u:A @kA + A the multiplication map u(a ® b) = ab, Thisis
a k-algebra map (also an A-module map for either the right or left A-module structure

on A &kA). Put I = ker y.

THEOREM 1.4 (Heynemann-Sweedler [9], Grothendieck [8]). Let 6 « EndkA, Then
6 < DiffJA, if @ only if, 1710 = 0.

§2. PROPERTIES OF D(As}

Write D = D(AS), and consider D as the ring of k-linear differential operators
on k[t], the polynomial ring in t, over the field k of characteristic p > 0,

The following result was arrived at during conversation and correspondence with
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Ken Goodearl, and I am grateful for his allowing me to include it here.

o

PROPOSITION 2.1 D = u End

n
oD -1 _
o kitpn]k[tj and Diff, 7" k[t] = Endk[tpn]k[t3.

Proof Let 6 e Endkk[t}. Notice that I = ker{u:k{t] ®kk[t] + k[t]) is generated as
an ideal by 1® t - t 8 1. Hence IP" is generated by (1®t - t @ 1)pn =18 tpn -
tpn ®1l. So@ ¢ DiffEn'l k[t], if and only if, Ipn.e = 0. That is, if and only if,
0={(1® tpn - tpn ® 1}).6 = ot?" - tP"s. S0 6 is a differential operator of order

< pn»l, if and only if 6 ¢ Endk[tpnjk{t}. This proves the result. 0O

n n
We shall write D = Diffﬁ -1 k(t]. So we have just shown that D M n(k[tp 1D,
p

the pn X pn matrix ring over k[tpn]-

COROLLARY 2.2 (1) D is not a finitely gemerated K-algebra;
(2) D does not contain any primitive idempotents; in fact if
0 # e eD 45 idempotent then there exists a set of p mutually
orthogonal idempotents el,...,ep such that e = e, + ... * ep;
(3) D contains an infinite direct sum of ron-zero left ideals;
{4} D 4is not Noetheriam;

(5) D does not Mve Krull dimension (in the sense of Gabriel and

Rentschler).

Proof (3), (4), (5) are immediate consequences of (2), and (1) is obvious, sinceany
finite set of elements of D lies in some Dn’ and so can at best generate Dn which is
a proper subalgebra of D.

To prove (2), let 0 # e ¢ D be an idempotent. Suppose e e D = Endk[tpn]k[t]'
Write k[t] = U® V, a direct sum of k[tpn]-submodules, where e]U = Id]U and e(V) = 0.
As e # O, U is non-zero, and as a k[tpn+lj—modu1e, U= U1 6 ...98 Up is a direct sum
of p non-zero k[tpn+l]-modu]es. Now e = e + .0t ep where ej is the projection of
k[t] onto Uj with kernel Vo U; 8 ... & ﬁj ® ... 0 Up (omit Uj from the sum). One
checks that each ej is a k[tpn*l}-mcdule map, hence an element of Dn+1’ and that the
ej are mutually orthogonal idempotents. O

A concrete illustration of (2) above, is the followingif en:k[t] + kft] is the



162

n . .
k[tP ]-Tinear map defined by en(t1) = 6 pn_lt1 for 0 <1 <p", then {el,ez,...} is

an infinite set of mutually orthogonal idempotents.
PROPOSITION 2.3 KO(D) = Z[1/p]

Proof D * Mpn(k[tpn]) and one has that K (D) = K (k[tP"]) (as K, is defined in
terms of the category of modules over Dn) and it is known that Ko(k{tPnj) =Z. The
inclusions Dl > D2 - D3 +... induce maps on the K0 groups Z Bz Pz ... . The
maps are multiplication by p. As KO commutes with direct limits [ 7] we get
KO(D) =Z(1/p]. 0

An order unit is 1 = [R], and the order relation is the usual order relation

on Z[1/p].
PROPOSITION 2.4 Not every derivation of D is inner.

2
Proof Define A:D~ Dby a(d) = [t + tP + P74+ . ..,d]. This actually makes sense:
+ m
for n> 0,d ¢ Dn+1 and so d commutes with tpn 1, and hence with tP for all m> n;

therefore a{d) = [t + L S tPn,d} for d « Dn+1.

Suppose 4 is inner, say A = ad{y) for some y ¢ D. Let y ¢ Dy As A{t) = O,
y commutes with k[t], hence y ¢ k[t]. For all n we have & - adyID = 0 but we
n+l

n n
have just seen that A =ad{t+t+ ...+ tP ). Hence ad(t+tP+.. .+tP -y) =0,
D D
n+l n+l

pn+1

n
and sot +tP + ... tP - y belongs to the centre of Dn+1 (= k[t 1) for all n;

this is impossible. 0

PROPOSITION 2.5 Centre (D) = k.

it

n oo
Proof Centre (Dn) = k[tP Jand o k[tPn} k. The proposition is an immediate

n=0

consequence. U
Another description of D is also useful. For each i ¢ N, let X; be the k~linear

(?)tm-] where the binomial coefficient (T) is evaluated

map on k[t] given by xi(tm)
(mod p). One should think of x; as acting like (1/i!)a‘/3t1; even though 1/i! does
not make sense in k. if i z p, this analogy can be made rigorous, as in Theorem 2.7

below. The analogy is useful in noticing relationships such as Xi%y = (1:3)x1+j.
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THEQREM 2.6 Dn = k[t,xl,xz,...,xpn_lj and D = k[t,xl,xz,...].

Proof To see that Xy is a differential operator of order < m, notice that s =1E‘Dd

and [xm,t] = X1 then use the inductive Definition 1,1. Thus k[t,xl,...,x n 1D,
p -1

m_
L. ~ n . .
Viewing D = Mpn(k[tp 1}, there is a basis for D, asa k[tP™]-module givenby the

is the k[tP"]-module map defined by

A

maps &, :k[t] » k[t] for 0 < 1, j< p" where 845
m - Mg N
eij(t ) 6J'm ‘ for 0 <m< p". The eij are just the matrix units (for the

basi plt-1 n
asis 1,t,...,t of k[t] as a k[tP J-module).
i

One computes that 8, = t'x 7173 (the point being that ( :' ) is zero for

pr-1 p -1

all 2 e N unless & = pn—l). Thus eij € k[t,xl,...,x 7. This completes the

n
p -1
proof. O

Recall that D(Q[t]) = Q[t, 3/ 3]. One can easily check that the Z-module spanned
by all elements of the form t3(1/11)81/8t1 is in fact a Z-subalgebra; write
S=Z[t,s/at,{1/21) a%@tz,."},Of course S = D(Z[t]), the ring of Z-linear differ-

ential operators on Z[t]. The following is straightforward.

THEQREM 2.7 D(K[t]) = k @, S where the isomorphism s given by X; * 1@(1/i1)§/at*
and t~ t.

The proof that D is a simple ring is inevitably a 1ittle more complicated than
the proof in the characteristic zero case - if one recalls the characteristic zero
proof, one part of it is the observation that if I is a non-zero ideal and 0 # acl
then for some n, adn(8/8t)(a) e k[3/3t1\0, so there exists O # bel withbek[d/d ]
and then for some m ad"(t)(b) e k\{0}, so I contains a scalar. However, if
char k = 2,ad(3/3t) (t%) = 0.

Hence we require the following technical result.

L
L

e 2.8 (x ,t™ = T (-)INDxg ¢ o atzm,g

§=1 J

Proof Evaluate both sides at tn, and the lemma reduces to checking the identity



164

£ : .

mny Ny _yJ+lmy m+n-j
( . ) ) ;il {-1) (j) ( 2] ) for all my,nd.

This is standard. il
PROPOSITION 2.9 D s a simple ring.

Proof Let 0 # I be a two-sided ideal of D. For some n, I n Dn # 0. A non-zero two
sided ideal of a matrix ring over a ring R contains a non-zerc ideal of R. Hence,
for some n, I n k[tpn] # Q.

Choose 0 # f ¢ I n k[t], of Towest degree in t, Write f =a + g with g€tk [t],
a ¢ k. Ifg=0¢then Ink#£O0, hence I =D, and the proof is complete. Suppose
then, that g # 0, and let t" be the lowest degree term appearing in g. Pick n, with

p" < r< p™ Consider [xpn,fj = [Xpn,gl e L.

n
. . n
jtlem m-J ptl
- . t = -
Iy 0T T )

=)

Ifm= pn, then by Lemma 2.8, [xpn,tm] =

"

M. m-ph
(Pn)tm P since (?) = 0 (mod p) for j < p" <m. Also notice that as p" < r < pn+1

(;;) # 0 (mod p). So in particular [x n,tr] # 0; thus [x ,,9] is of lower degree
p p
than f and is non-zero. This contradicts the choice of f, Thus g = 0, and the

proof is complete. 0

PROPOSITION 2.10 D contains a proper subalgebra isomorphic to D, namely

P
kit ,xp,xzp,x3p,...]
Proof Notice that for all 1,] xip(tjp) = (gi)t(j-i)p and that (ga) = (g)(nnd p}.
Hence the natural action of x.ip on k[t] maps k[tpj into k[tp], and so each x}.p is a

differential operator on k[tp]. After Theorem 2.6 D(k[tﬁ ) = k[tp,yl,yz,...] where
Yi(tjp) = (%)(tp)3"1. As each Xip
D(k[t]) = kftp,xp,xap,...j; of course D(k[t]) = D(k[t"]) so we have shown that

acts as does Vs we conclude that

x p
D = k[t ’Xp’XZp""]'
That k[tp,xp,xzp,...] is a proper subalgebra of D is obvious from the fact that
D=k[t]® k[t]x1 @ k[t]x2 @ ... (this follows from Theorem 2.7) and k[tp,xp,xzp,-nl

= k[tP1 e k[tp]xp ® ... . 0
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The next example illustrates that one useful technique for studying the Weyl
al gebra in characteristic zero, is not available in characteristic p. If k is a
field with char k = 0, then D(Aé)g'k[x,yj with xy - yx = 1; D(AQ} can be localised
at the non-zero elements of k[x] and k[y] respectively. The diagonal embedding of
D(Aé) into the direct sum of the localisations, D(AQ)-+ k{x)[yl ® k{y)[x], is a
faithfully flat embedding; the "faithfulness" comes from the fact that if I is a
left ideal of D(Rk) with I n k[x] # O and I n k[y] # O then, in fact, I = D(Mé).

EXAMPLE There is a left ideal 1 of D, I # D such that I n k[t] # 0 and
In k[xl,xz,...] # 0.
We construct our example for char k = 2, but a similar example exists for any

characteristic.

So, assume p = 2, put | = th + DXI‘ Recall, from Theorem 2.7 that D is a

free 1eft k[t]-module with basis 1,x1,x2,..., so D=8 k[t]xn. Now
n=0

n+1) =0 nodd

={ , and thus Dx
n+l X41 N even

= & k[t]xn. As p= 2, {tzsxlj =0,

1 hodd

thus (k[t] + k(tDe)t? € k(60D + ktdx. If n = 2, then xt = tPx + X . 50

k[t]xnt2 = k[t](tzxn + Xn-Z)‘ Consequently,

Te 1 kitdx + kel 4 1 KIEN(ehx, +x )
n odd n even
n=z2

K[EIE2 + Ktdx, + k[ED(tPpt) + KDtDxg + KLET(togemy) + oo
and it is easy to see that 1 £ 1.

PROPOSITION 2.11 kftl 4s a simple D-module.

Proof Llet 0 # N be a submodule of k[t]. We will show N n k # O from which the

result follows. Suppose N n k = 0, and choose f ¢ N of least degree. Let t" be

the highest degree term appearing in f. Choose n such that pn L pn+1.

r-ph

Then

Then x_p(t") = (M)t

P ph
degree than f. This contradicts the choice of f. ]

, and (p;) # 0 (mod p). Hence x n(f) # 0 and is of lower
p
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Recall that if k is of characteristic zero then the natural action of
klt,3/8t] on k[t ] extends to an action of k[t,3/8t] on k[t,f-l] for any 0 # fek[t],
and that k[t,f'lj is of finite length as a k([t,3/8t]-moduie. The usual proof of
this [2] uses Gelfand-Kirillov dimension. Although the same tool is no longer
available in characteristic p » 0, the same result is true (Theorem 2.13). 1In
order to prove this a few preliminary observations are required.

As D, = Mpn(k[tpn]}, any non-zero D _-module has dimension (over k) at Teast

p". After Theorem 2.6 (and its proof) we have o, = kitle xlk[t] & ...8 xpn 1k{t]

If 0#f ¢ k[t] with deg(f) =F thenD/Df % S®x.S & ... ® x n .S
nn 1 pral
where , S = k[tl/(f), as a right k[t]-module. As dim S=F, dim (D /D f) = p"F,

and hence by our first observation length (an) < F.
n

LEMMA 2.12  Let M be a left D-module, with a chain of finite dimensional subspaces

MO ch cM2 < ... such that

(a) each M, ts a D -module,

(b) for large n, 1engthD (Mn) s F (fized F for all n> 0),
n
{c) M= uv M.
n=g

Then, as a D-module, 1engthD(M) < F.

Proof Suppose F = 1. We must show that M is a simple D-module. Choose 0 #m e M
and choose any m' ¢ M. For all sufficiently large n, m and m' belong to Mn’ which
is a simple Dn-module by {(b). Thus m' ¢ Dnm < Dm. Thus M is a simple D-module.

We now prove the result by induction on F. Suppose F 2 2, and that the lemma
is true for all numbers less than F. If M is simple as a D-module the proof is
finished. u}f not, choose 0 # N a proper D-submodule of M. Put Nn =N nMn; notice

that N= v N , and each Nn is a Dn-module. We show that for all large n,

n

n=0
length, (Nn) < F-1. To see this, pick me M, m £ N. There exists ng such that
n
moeM for all n 2 Nys but m £ N,. Hence, if n 2n,, N, %ﬁMn‘ Thus lengtth(Nn)

< F-1 for all large n. By the induction hypotheses IengthD(N) < F-1.

We have shown that any proper submodule of M has length at most F-1. Hence,
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1engthD(M) s F. O

THEOREM 2.13 Let O # f ¢ k[t]. Then the D-module k[t,f 1] is of finite length (in
fact, of length < deg{f} + 1).

_Proof  As k[t] is a simple D-submodule of k[t,f—lj, it is enough to show that
M = K[t,F 11/K[t] is of length < deg(f).
For each n, let Mn be the Dn-subnndule of M generated by the image of f'pn.
If gf_m e Mwith g ¢ k[t], there exists an n, with m < pn; then gf™ = gfpn'mf'pn €
M,. Hence M = n:O M -
Put F = deg(f). We will show that lengtth(Mn) < F, and the theorem will
follow from Lemma 2.12. Recall that a non-zero Dn—module has dimension at least

pn, so it will suffice to show that diman < Fpn.
_ph
Recall that D_ = k[t] ® k[tlx, ® ... @ k[t]x _ , so if one has x.(fP ) =0

_oh _ph "
for 1 <j < pn, then M = Dn.f PP = k1.7, and as " £°P = 0 (remember
- n
M= k[t,f 1]/k[t]), it would follow that dimk(Mn) = dimkﬂ<[t]/<fp >) = Fp".

~ph
So the theorem is complete if xj(f P }=0forlsjc< pn. However,
H] n n
P ¢ k[tP'], and as Xj € Dp» X commutes with multiplication by f° . Thus
_ph _ph
x;(F7P) = f P x;(1) =0, for 1= j < .o
The following is well known and is useful in deciding whether Xixj is zero or
not.

LEMMA 2.18 If a,b « N and the padic ecpansions are a = a_ +ap + ap° + ...,
- 2 ay _ 3j
b =by +bp +byp" + ... then () = E (bj)(mod p).

J=1
LEMMA 2.15 For m 2 n, Dm 18 free as a Dn—mdule {on either the right or the left)

13 1] . . .
of rank p . A basis for Dm as a Dn -module 1s given by 1’Xp"’xzpn""’X(pm-l)pn‘

Proof Recall the description of Dn and Dm given in Theorem 2.6. If 0 < j < pn-l,

j+ipn . . .
and 0 < 1 < pm-l then x.X, p = (J§7p }x However, writing j and lpm in their

itipn jHiph

p-adic form, Lemma 2.14 ensures that x\].x].pn # 0. The Lemma follows. O

The following consequence of Lemma 2.12 is useful.
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LEMMA 2.16 If N 48 «a Dn—modale of finite length, then D 8y N 4s of finite length
n
as a D-module.
Proof If N were a faithful Dn-module then Dn would be artinian (which it is not).
n n
So 1= anny (N) # 0. But a non-zero ideal of Dn = Mpn(k[tp 1) intersects k[tP ]
n
in a non-zero ideal. Thus N is a finitely generated module over the finite

n
dimensional algebra M n(k[tp VI n k[tpn3)= Dn/I. Thus dimkN < o,
p

let m>n., As Dm is a free Dn—wodule of rank pm—n’ Dy 8y N is of dimension
n

< ptn dimKN. As a non-zero D _-module has dimension > ", Tength, (Dm oy N) <
m n

p_n dimkN.The lemma follows fromLemma 2.12 by observing that DxD N = N. L]
n

g D& |
msn “m Dn
We next show that gi.dim.D = 1. As the comments and example following

Proposition 2.10 indicate, the proof that gl.dim.(D(A!)) = 1 when k is of

k
characteristic zero cannot be used. The following preparatory lemma is required
{and allows us in the proof of Theorem 2.18 to make freguent use of the fact that
for a finitely generated Dn-moduie the concepts of torsion submodule coincide
whether we consider torsion with respect to the regular elements of Dn’ or with

respect to the non-zero elements of k[t] when the Dn—nndule is viewed as a k[t]-

module) .

LEMMA 2.17 Let M be a finitely generated Dn—module. Let MI be the torsion sub-

module of M with respect to the regular elements of Dn; let MZ be the torsion sub-—
n X

module of M with respeet to k[tP 1; let M3 be the torsion submodule of M with

respect to k[t]. Then M1 = M2 = M3.

Proof As k[t] < Dn and Dn is a free k[t]-module, k[t]\{0} consists of regular
elements in Dn. Hence M3 < Ml' Similarly M2 < M3 < Ml‘ ]

Write Q, far the ring of fractions of Dn’ That is, Q, = Mpn(k(tp 1) o=

n n . n
k(tP ) @k[tpﬂ] Dy where k{tP ) denotes the field of rational functions in P,

Now Qn @D M

- n - .
] = 0. Hence k{tP") Qk{tpn] Ml = 0, and it follows that M1 c MZ' 0

1

THEQREM 2.18 gl.dim. D = 1.
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Proof As D is not semi-simple artinian, gl.dim. D = 1. So it is enough to show
that every left ideal of D is projective. Let I be a left ideal.
Put In =1n Dn’ and define IA to be the left ideal of Dn containing In such

. . . . R
that In/In is the torsion submodule of the Dn module Dn/In. Put Tn DIn nl.

. c e s . .
We claim that Tn < Tn+1' To see this it is enough to check that In S In+1.

But IA + In+l/1n+1 = I%/Ig n In+1 which is a homomorphic image of IA/In. As

i 3 - 4 -1 $ - i
In/In is k[t]-torsion so is I+ In+1/1n+1' Thus Iﬁ In+1.
We claim that Tn is a finitely generated left ideal. Notice that
Tn/DIn g_DIa/DIn £ ®Dn(lﬁ/ln)' By Lemma 2.16 this latter D-module is of finite
length since Iﬁ/In is of finite length as a Dn—modu]eA The truth of the claim
follows from the fact that DI, is finitely generated, and that Tn/DIn is of finite

iength.

Consider Tn+l/Tn‘ As both these left ideals are finitely generated there
exists m ¢ N with Tn+1/Tn = D(Tn+l A Dm)/D(Tn n Dm)' Now Tn+1 i Dm/Tn n Dm =
Tn + (Tn+1 n Dm)/Tn which s a submodule of I/Tn =1/1n DI& =1+ DI%/DI& which
3 (-1 ! - (1
is a submodule of /DI, D @Dn(Dn/In). However, as a k[t]-module Dn/ln is
torsion-free, hence so is D/DI%. Thus Tn+1 n Dm/Tn f Dm is torsion-free as a

Dm-nbdu3e. But Dm is a hereditary Noetherian prime ring, so by [5, Theorem 2.1]

a torsion-free Dm-modu]e is projective. Hence there is a left ideal J of Dm with

Toep © b, = Tn f Dm & J. Thus {as D is free as a Dm—moduie) D(Tn+1 n Dm) =
D(Tn n Dm) @ 0J. In particular, there is a finitely generated left ideal Sn with
Tn+1 = Tn @ Sn'

Now I = n:0 DIn = n:0 Tn = To + T1 +...0= S0 & S1 3 82 ® ... . But each Sn

is finitely generated hence projective (because Sn =D 8y (Dm n Sn), and Dm n Sn
m

is a projective Dm-module). Thus 1 is projective. 0

Goodear1 has pointed out the following way of viewing D. Let B denote the
subring k[xl,xz,...] of D; B is isomorphic to the factor ring of a commutative

polynomial ring k[xl’XZ""] modulo the ideal generated by Xin - (1?3)X1+j. The
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inner derivation ad(t) = [t,-] of D maps B into itself, so ad{t) actsas aderivation
on B, and D may be viewed as B[t], theextension of B by the derivation ad(t).Now it

is easy to see gl.dim. B = « because there exist non-split exact sequences:

0+XlB +B+xp_1B—>O

0~ Xp-lB +B -+ XlB + 0.

Hence this gives an example of a commutative ring of infinite global dimension such
that an extension by a derivation has finite global dimension (the first such
example appears in [6]).

As D is a ring of differential operators it has a filtration given by the
order of the operators. As Xq is of order n, the filtration is given by FnD =
k[tl e k[t]x1 & ...8 k[t]xn, and the associated graded algebra grD is isomorphic
to B{s] where s is a commuting indeterminate. Hence although gl.dim D = 1,
gl .dim (grD) = .

Notice that the exact sequences over D corresponding to those for B given
above are split. This is because Dxp_1 is projective (being generated by the
).

We now briefly turn our attention to the ring of fractions of D. As D is a

] p-1

idempotent t X5-1

free k[t]-module, k[t]\{0} consists of regular elements of D. Hence Fract D con-
n n

tains k{t). As Dn = Mpn(k[tp 1), Fract Dn = Mpn(k(tp }). Thus we have

THEQREM 2.19 The ring of fractions Q, of D, is equal to k(t)[xl,xz,...] and

o«

Q= n:O Q, where Q = Endk(tpn)k(t) = Fract D, .

In particular Q is a union of simple artinian rings, so is von Neumann
regular. As Q is flat as a D-module, gl.dim. Q < gl.dim. D. But Q is not semi-

simple artinian, so gl. dim. Q = 1.

PROPOSITION 2.20 Q <8 not self-injective.

_Proof It is sufficient to find a left ideal J of Q, and a Q-module map ¢:J » Q

which is not the restriction of a Q-module map ¢:Q ~ Q.
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Put J = Qxl + sz + ... ; consider the formal sumy =

R

X R and define
j=0 Po-

¢:d » Q by ¢(r) = ry. This does make sense: notice that xixpj"1 =0 if i is fixed
and j is sufficiently large, thus ry is actually a finite sum for r ¢ J. S0 ¢
is a bona-fide Q-module homomorphism.

Suppose that ¢:Q + Q is a left Q-module map. Then ¢ is just richtmultiplication

by z= y(1). So if ¢ = w]J then, in particular, xi(y—z) =0 for all1 1 > 1. Suppose

= . m
z=a, + Xlal + ...+ xnan with each aj « k[t], and 2, # 0, Suppose p -1 > n,
m
Then X p.y = & X _.X and x _.X # 0, but x -z cannot contain a term
L L pm TpmM-1 p™

. R . m
involving x2pm-1 since n < p -1. Hence xpm.y # xpmz, and thus ¢ # w]d. 0

§3. PROPERTIES OF D(Pé)

We begin by defining D(PS). Let D be the sheaf of differential operators on
P!, and define D(PY) = r{P',0). As D is the unique quasi-coherent sheaf of Ope=
modules such that for every open affine U « P', T(U,0) is the ring of differential
operators on 0(U) (the ring of regular functions on U) to compute the global
sections of D we may proceed as follows. Let U, U_be two copies of A' covering pl
such that 0(U,)=k[t], O{U_)=k[t_1] and let D', D™ denote the rings of differential
operators on U+ and U~ respectively. If D+ and D~ are considered as subalgebras of
D(k(t)), we have D(P') = D" n D™. As D' = {6 e D(k(t))[6(k[t]) < k[t]} and
D" =18 ¢ D(k(t)){e(k[t'lj) c k[t 17} we have D(PY) = {8 e D(k(t))|6(k[t]) < k[t]
and e(k[t~1]) < k[t'l]}. Thus we obtain {for k a field of characteristic p > 0)

LEMMA 3.1 Fix n, put q = pn and let 8 ¢ D: (using the notation of §2). Then
8 ¢ D(Pé), if and only if
{1} 8(l) « k

(2) e(tJ) e lin.span <1,t,t2,...,tq> for all j, 0 <J < q.

Proof Suppose 6 satisfies the conditions. First observe that 6 extends to a
. + L
k[tqj»linear differential operator on k{t) (since 8 « Dn). Pick i > 0; we show

that e(t“i) € k[t'l].
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Pick m such that mq < i < (m+l)q. Then 0 < {ml}g-i < g, so by (2},
a(t{™19Ty inspan <1,t,t%,.. 1%, But a(tMETy o ((mellag ooty e

(m+l)q<1,t,...,tq> < k[t’lj. This and (1) ensure that

e(t—i) e lin.span t~
dk[t-lj) c k[t-lj, and 50 6 D(PQ). The conditions are therefore sufficient.

On the other hand, if 8 « D(Pﬁ), then certainly 6(k[t] n k[t'lj)c k[ t) nkitul],
so (1) is necessary, Also if 0 < j < q, then e(t‘j) € k[t'lj, and hence
8(t979) = t%(t79) ¢ t%t™1] n k[T = lin.span. <1,t,...,t%, So (2) is
necessary. ]

Put D(P’)n = D(PY) n D:; that is, D(IPl)n is the differential operators in D(P?)
of order < n. Notice that after the Temma dim D(P') =1+ (p"-1)(p"+1) = pz",

so D(P' ) is a union of finite dimensional subalgebras.
LEMMA 3.2 The nilpotent radical of D{Pi)n is the span of those 6 which satisfy

(1} s(1) =0
i n
{2} e(tg) e lin.span <1,t? > for all 0 < j < p".

Proof

pn. First the span of such 8 is an ideal of D(Pl)n. Ify e D(Pl)n,

Put q

oy(1l) = 0; and for 0 < j < q, one has we(tJ) c lin.span <w(l),w(tq)> =

then yo (1)
lin.span <(1), tqw(1)> < lin.span <1,tq> by Lemma 3.1(1); also ew(tj) < lin.span
<e(1),e(t),...,e(tq)> c Tlin.span <1,tq> as e(tq) = tqe(l) = 0. We have shown that
if 6 satisfies (1) and (2), so do 8y and Y& . Hence the span of such & is an ideal.

The square of this ideal is zero: if @ and ¢ satisfy (1) and {2} then
ve(1) = 0 and for 0 < j < g, we(tj) < Tlin.span <p(1) w(t%)> = 0.

The factor by this ideal is semi-simple artinian: the factor may be identified
with those 6 such that 6{1) < k and e{tj) ¢ lin.span <t,t2,...,tq'1> for 1 <3 <q;
but this algebra is isomorphic to (Endkk) & (Endkkq'l). 0

Put N, = nilpotent radical of D(Pl)n; notice that dim N = g(p“-1)_

LEMMA 3.3 Nn n N = 0,

n+l

Proof Pick 0 # 0 ¢ Nn‘ Then e(tJ) #0 for some 0 < j < pn. Hence, if ¢ ¢ Nn+1’
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n+l n
> o lin.span <1,tP > = k. But 0 < j + p" < p™!

then 8(t?) € lin. span <1,tP
i+ph n i n

and 8(t"P7) =t o(td) e ktP . But by applying Lemma 3,2(2) for n+l, one must
Py n s n 1

have 8(t3*P") ¢ Tin.span <1,tP™15. Thus a(t3*P") = 0, whence o(t?) = 0. This

contradiction gives the result. [J
PROPOSITION 3.4 D(P!) contains no non-zero nilpotent ideal.

Proof Suppose N # 0, is a nilpotent ideal. Then N n D(Pl)n # 0 for some n. Thus
N n D(Pl)n is a nilpotent ideal of Dn‘ Similarly N n D(]Pl)nﬂ is a nilpotent ideal

of D{PY Hence 0 # N.n D(P') N N ;. This contradicts Lemma 3.3. [

n+l’

PROPOSITION 3.5 D(P!) 4s not von Neumann regular.

Proof Consider x; e ot (the notation is that of §2). One seesthat x;= 3/0t€ D(P').
Suppose there exists a ¢ D(P') with Xj8%; = X Then in particular, as xl(t) =1,
one has xla(l) = 1, But if a ¢ D(P') then a{l) = 1. However, xl(k) = 0, so there

exists no a « D(P') with xla(l) = 1. Hence the result. 0O
PROPOSITION 3.6 D(P) is its own ring of fractions.

Proof This is true of any algebra which is a union of finite dimensional algebras

over a field (since an artinian ring is its own ring of fractions). O

PROPOSITION 3.7 (1) D(P‘)n is the sun of the two-sided ideals J = {8 ¢ D{P‘)n[
o(t?) < k for al1 05 j < p"} and Q, ={6c D(P') |6(1) = O}. (2) dim (D(Pl)n/Qn)=1
{3) Jy 0 Qp = N {4) For n 2 1, J, /N, and Q /N are minimal ideals of D(Pl)n/Nn.
(8) Let o ¢ D(lPl)n. The two sided ideal of D(P )n generated by o equals D(P! )n

if and only <if o can be written in the forma = B + vy with B ¢ Jn\Nn and Y € Qn\Nn'

Proof After Lemmas 3.1 and 3.2 the proposition is straightforward. O

o0

PROPOSITION 3.8 ({MNotation as in (3.7)). Pt Q= U Qn‘ Then Q 1s the unique
n=0

proper ideal of D{P') , and D(P*)/Q = k.

Proof As each Qn < Qn+1, and Qn is an ideal of D(P‘)n, Q is a two sided ideal of
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npy.
Suppose 6 ¢ D(IP‘)n and 6 ¢ Q,- Then D(PL) 6D(PL) =D(P!). To prove this it

s 1

is enough to show that D(P )n+l eD(Pl)nJr

= D(P1) As 8 ¢ Qn,e(l) # 0. Hence,

1 ntl’
without loss of generality 6(1) =1. As 8 is k[tP"]-1inear, e(tpn) = tpn, and it
follows that 8 £ Jn+1,and 8 £ Qn+l' Hence by Proposition 3.7(5), the two sided
ideal of D(P‘)n+l generated by 6 s D(P*)n+1 itself.

It follows that any two sided ideal of D(P!) not equal to D(P!) must be con-
tained in Q.

Suppose now that 6 « Q, 8 # 0. We show 6 generates Q. Suppose § « D(Pl)n.
Hence 6(1) = 0, and as 8 # O, G(tj} # 0 for some j, 0 < J < p". Hence 6(tj+pn) =
e o(td) 4 k. Thus o 4 Jppp- 1t follows that D(P') 16 DIP') .y =0 ;-

This is true for all n >> 0, so D(P')eD(P!) = Q.
Thus Q 1s the unique proper ideal of D(P'}. Finally as dimk{D(Pl)n/Qn) =1

for all n, dimk(D(Pl)/Q) =1, 0

PROPOSITION 3.9 D(P!) 4e a primitive ring, and k[t] <s a faithful module of length

2, the submodule being K.

Proof This is an immediate consequence of Lemma 3.1. [J
We now compute KO(D(P1 }}. As K, commutes with direct 1imi ts, one has
KO(D(Pl)) = 1im KO(D(Pl)n). We need only consider n = 1, so henceforth assume

—>
nzl.

[
n

n
1 = P . ~ p'-1

Recall that D(P }n/Nn Jn/Nn & Qn/Nn and Jn;’Nn k while Qﬂ/‘Nn Mp“-l(k )
{this is implicit in the proof of Lemma 3.2). Hence KO(D(P‘ )n) =7 @& 17 with
[D(P"),] = (1,p"-1). The positive cone in K (D(PY) ) is K (D(P1) ) = {(a,b) «
Z®Zlaz0,b =0}

The embedding D(IP‘)n > D(P‘}M1 induces maps q»n:KO(D(P‘)n) - KO(D(}PI)ml)
given by ¢ (1,0) = (1,p-1) and ¢ (0,1) = (0,p).

Define G = & Zand let wn:Gn -+ Gn+1 be the group homomorphism wn(l,O):(l,O),
wn(O,l) = (0,p). Define 6:Z®Z~Z ®7Z by §(1,0) = (1,1), &(0,1) = (0,1), and

extend § to a group isomorphism. Then cS:(KO(D(Pl)n,q:n) > (Gn,\bn) is a chain
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isomorphism, so KO(D{P‘)) = 1im (Gn,wn). As ¢ is just the multiplication map
—>

n
(a,b) Ll¢£ﬂ., (asbp) one sees that this direct 1imit is Z @ Z[1/p], and that
[oP')1 = (L,p).
By chasing the positive cones K;(D(P‘)n}, one obtains KZ(D(P‘)) =
{(a,b) eZ®Z[1/plla = 0 and b > 0 or (a,b) = (0,0}}. It is an easy matter now to
see that the only order ideal in KO(D(Pl)) apart from 0 and KO(D(Pl)) is Z(1/p].
Hence the lattice of order ideals is isomorphic to the lattice of two sided

ideals of D(P'). We summarise the above.

THEQREM 3.10 K (D(P')) % Z @ Z[1/pJ, with [D(P')] = (1,p). The lattice of order
ideals in KO(D(Pl)) is isomorphic to the lattice of two sided ideals in D(P1};

this lattice 1s: I

Remark In [7, Corollary 15.21] it is proved that if R is a unit-regular ring there
is an isomorphism between the lattice of two sided ideals of R, and the order ideals
of KO(R). Of course after Proposition 3.5, D(P*) is not unit-regular.

Recall that if k is a field of characteristic zero, then there is a surjective
map U(s1(2,k)) > D(P\). This mp is given by e > t%3/at, f > -3/3t, h > 2ta/at
where e = (8 é), f= (? 8), h = (é _?
Jjectivity is seen from the fact that D(P?) = k[ 3/3t, ta/at, tza/at], and this

) is the usual basis for s1{2,k). The sur-

equality can be proved by elementary arguments. We snow below tnat, if chark= p>0,
then the analogous map does not give a surjection from Uk’ the hyperaligebra of
s1(2,k), to D(P).

So k is once again a field of characteristic p > 0. Denote the Z-span of the
elements g;«(E)EE- with a,b,c ¢ N, in U{s1(2,L)) by UZ; this is the Kostant Z-form
and is a Z-subalgebra of U(s1(2,L)). The hyperalgebra Uk is defined to be
Uk =k @Z UZ'

D(Pi) is equal to D{Z[t]) » D{Z{t-l]}, the intersection being taken inside
D(Z[t,t_lj)‘ Hence D(Pi) is precisely those elements of D(P&) which, when acting
on €[t] and C[t-lj, map Z[t] into Z[t] and Z[t_lj into Z[t-lj. The image of
g;—(g} gg»in D{P&} is of course (—§L§%ﬂi {tha/at) iEE%%&ElE.’ and it is easy to
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check that this differential operator sends Z[t] to Z[t] and Z[t—lj to Z[t—]’].
Hence this element belongs to D(P‘Z). Thus the map U(s1(2,L)) + D(Plt) restricts to
give a map Uy ~ D(Pi). This in turn induces a map ¢:U, - D(Pf() since D(P;) =

k & D(IP%). This last equality derives from Theorem 2,7.

THEOREM 3.11  The map $:U, » D(P,) s not surjective.

Proof Give k[t,t” ] the grading where t is of degree 1; define D(IP 13) =

o e D(Pk}[e(kt ) e kt'™ for all i ¢ Z}. Then D(P,) = @ D(P,)(j) and this gives
Jel

a grading on D(PL). Notice that ¢(e) e D(PL)(I), o(f) « D(]P“()(—l), ¢(h) € D(lPlk)(O).

a
Likewise, o(57 (1) e,) < D(PyMc-a).

Consider the element tP~! K%L which belongs to D(PL)(I). We will show
this is not in the image of ¢. If it were in the image of ¢, then it would be a

a c

linear combination of the image of elements §T (g) -f:—, with c-a = 1. Notice that
- P -

tp 1 a/at acts on k[t] sending tP to tP 1. The action of

a+l
M(Zta/at) % sends tP to (g ?) (2p+ga+2) (p+<‘;+%)tp 1. However, for all

a+1
a e, (P+a (P+a+1) = 0(mod p). Hence ¢(f~,—( )( ) l) sends t”? to zero. Con-

. N p-1 (9/0t)° -
sequently, no linear combination of these elements can equal t T which
sends t to tPL, a
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