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A REMARK ON GELFAND-KIRILLOV DIMENSION
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(Communicated by Lance W. Small)

Abstract. Let A be a finitely generated non-PI Ore domain and Q the
quotient division algebra of A. If C is the center of Q, then GKdimC ≤
GKdimA− 2.

Throughout k is a commutative field and dimk is the dimension of a k-vector
space. Let A be a k-algebra and M a right A-module. The Gelfand-Kirillov
dimension of M is

GKdimM = sup
V,M0

lim n→∞ logn dimkM0V
n

where the supremum is taken over all finite dimensional subspaces V ⊂ A and
M0 ⊂ M . If F ⊃ k is another central subfield of A, we may also consider the
Gelfand-Kirillov dimension of M over F which will be denoted by GKdimF to
indicate the change of the field. We refer to [BK], [GK] and [KL] for more details.

Let Z be a central subdomain of A. Then A is localizable over Z and the
localization is denoted by AZ . For any right A-module M , M ⊗ AZ is denoted
by MZ . Let F be the quotient field of Z. The first author [Sm, 2.7] proved the
following theorem:

Let A be an almost commutative algebra and Z a central subdomain. Suppose M
is a right A-module such that MZ 6= 0. Then

GKdimM ≥ GKdimF MZ + GKdimZ.

As a consequence of this, if A is almost commutative but non-PI and Z is a
central subalgebra such that every nonzero element in Z is regular in A, then
GKdimZ ≤ GKdimA− 2.

It is natural to ask if the above theorem (and hence the consequence) is true for
all algebras. In this paper we will precisely prove this.

Theorem 1. Let A be an algebra and Z a central subdomain. Suppose M is a
right A-module such that MZ 6= 0. Then

GKdimM ≥ GKdimF MZ + GKdimZ.

An algebra is called locally PI if every finitely generated subalgebra is PI. As
a consequence of Theorem 1, we have
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Corollary 2. Let A be algebra and Z a central subdomain. If AZ is nonzero, then

GKdimA ≥ GKdimF AZ + GKdimZ.

Furthermore, if AZ is not locally PI, then

GKdimA ≥ 2 + GKdimZ.

For the second inequality in Corollary 2, Z need not be a domain. Let Z be any
central subalgebra of A of finite GKdimension such that AZ is not locally PI. By
the Noether normalization theorem, there is a subalgebra Z1 ⊂ Z isomorphic to
the polynomial ring on d variables where d = GKdimZ. Since AZ = (AZ1 )Z , AZ1

is nonzero and not locally PI. Hence, by Corollary 2, GKdimZ1 ≤ GKdimA − 2.
Therefore GKdimZ = GKdimZ1 ≤ GKdimA− 2.

A stronger version of Corollary 2 also holds. We need another invariant defined
by Gelfand and Kirillov. Let A be an algebra. The Gelfand-Kirillov transcen-
dence degree of A is

TdegA = sup
V

inf
b

GKdim k[bV ]

where V ranges over all finite dimensional subspaces of A and b ranges over the
regular elements of A. If A is a commutative domain, then both GKdimA and
TdegA are equal to the classical transcendence degree of A, denoted by trdegA. If
F ⊃ k is a central field of A, the Gelfand-Kirillov transcendence degree of A over
F will be denoted by TdegF to indicate the change of the field.

Theorem 3. Let A be a semiprime Goldie algebra and Q the classical quotient
algebra of A. Let F be a central subfield of Q. Then

TdegQ ≥ TdegF Q+ trdegF.

If moreover A is not locally PI, then

GKdimA ≥ 2 + GKdimF.

The statement in the abstract is an obvious consequence of Theorem 3.
We now give the proofs. For simplicity a subspace means a finite dimensional

subspace over k and a subframe of an algebra means a subspace containing the
identity. Our proofs are based on the following easy observation.

Lemma 4. Let F ⊃ k be a commutative field and M a right F -module. Let M0 ⊂
M and W ⊂ F be subspaces over k. Then

dimkM0W ≥ (dimF M0F )(dimkW ).

Proof. Pick a basis of M0F over F , say {x1, · · · , xp} ⊂M0. Then M0F = ⊕p
i=1xiF

and hence M0W ⊃ ⊕p
i=1xiW . Therefore dimkM0W ≥ (dimF M0F )(dimkW ).

Proof of Theorem 1. Since Z is central, by the proof of [KL, 4.2], we have GKdimM
≥ GKdimMZ . By [KL, 4.2], GKdimZ = GKdimF where F is the quotient field of
Z. Hence it suffices to show GKdimMZ ≥ GKdimF MZ +GKdimF . Therefore we
may assume Z = F is a central field of A, and we need to show that GKdimM ≥
GKdimF M+GKdimF . Let d be any number less than GKdimF . Then there exists
a subframe S ⊂ F such that dimk S

n ≥ nd for all n� 0. Let e be any number less
than GKdimF M . Then there exist a subspace M0 ⊂ M , and a subframe V ⊂ A
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such that dimF M0F (V F )n ≥ ne for infinitely many n. Since A ⊃ F , we may
assume V ⊃ S. Since F is central, M0F (V F )n = M0V

nF . By Lemma 4,

dimkM0V
2n ≥ dimkM0V

nSn ≥ (dimF M0V
nF )(dimk S

n) ≥ nend = ne+d

for infinitely many n. Hence GKdimM ≥ e + d. By the choices of e and d, we
obtain GKdimM ≥ GKdimF M + GKdimF as desired.

Proof of Corollary 2. The first inequality follows from Theorem 1.1 by letting M =
A. If AZ is not locally PI, then GKdimF AZ > 1 by [SSW], and GKdimF AZ ≥ 2
by [Be]. Hence the second inequality follows.

As pointed out in [Sm, p. 37] the inequalities in Corollary 2 may be strict even if
Z is the maximal central subring. By a result of M. Lorenz [Lo] the same example
in [Sm, p. 37] shows also that the inequalities in Theorem 3 may be strict. The
proof of Theorem 3 is similar to that of Theorem 1.

Proof of Theorem 3. Since F is commutative, for any d < trdegF (= GKdimF ),
there is a subframe S ⊂ F such that dimk S

n ≥ nd for all n � 0. Let e be any
number less than TdegF Q. By the proof of [Zh, 3.1] there is a subframe V ⊂ A such
that for every regular element b ∈ Q, GKdimF [bV F ] > e. This is equivalent to
saying that, for every regular element b ∈ Q, dimF (F + bV F )n ≥ ne for infinitely
many n. We may assume V ⊃ S. Since F is central, dimF (k + bV )nbnF =
dimF (F + bV F )n. By Lemma 4,

dimk(k + bV )n(bS)n ≥ (dimF (F + bV F )n)(dimk S
n).

Hence

dimk(k + bV )2n ≥ dimk(k + bV )n(bS)n ≥ nend = ne+d

for infinitely many n. This means that GKdim k[bV ] ≥ e+ d and hence TdegQ ≥
e+ d. By the choices of e and d, TdegQ ≥ TdegF Q + trdegF .

Now we assume A is not locally PI. Then Q is not locally PI. By [SSW] and [Be],
GKdimF Q ≥ 2 and by [Zh, 4.1 and 4.3], TdegF Q ≥ 2. Therefore by [Zh, 2.1 and
3.1]

GKdimA ≥ TdegA ≥ TdegQ ≥ TdegF Q+ trdegF ≥ 2 + GKdimF.

If Z is a central subdomian of A, we can similarly prove that TdegA ≥ TdegF AZ

+ trdegZ where F is the quotient field of Z.
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