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ABSTRACT. This note studies a special case of Artin's projective geometry (Ge- 
ometry of quantum planes, MIT, preprint, 1990) for noncommutative graded 
algebras. It is shown that (most of) the line modules over the homogenization 
of the enveloping algebra U(s[(2, C)) are in bijection with the lines lying on 
the quadrics that are the (closures of the) conjugacy classes in SI(2, C) . Fur- 
thermore, these line modules are the homogenization of the Verma modules for 
s (2, C). 

1. LEVEL QUADRICS FOR s[(2, C) 
Throughout we will write g = Ce ED Cf @ Ch and define a vector space 

isomorphism s[(2, C) -- g by 

(0 O) p I1 0) 0f -1) h 
We transfer the Lie bracket on s[(2, C) to g giving 

[e, f]=h, [h,e]=2e, [h, f]=-2f. 
The cone of nilpotent elements in s[(2, C) is the variety defined by the 

quadratic relation det = 0 where det is the determinant function on sr(2, C). 
The conjugacy classes of semisimple elements in s[(2, C) are the level surfaces 
det + A2 = 0, where A E C*0; in particular, this surface is the conjugacy class of 
the element (O -A 

Transferring this to g via the above isomorphism, it follows that the deter- 
minant function on g is given by det = -h*2 - e*f*, where e*, f *, h* are the 
dual bases to e, f, h, respectively. Hence the nilpotent cone (resp. the conju- 
gacy class of the element Ah ) is given by the quadric surface -h*2 - e*f* = 0 
(resp. = -A2) in g. 

We identify g with g* through the Killing form induced by the nondegen- 
erate pairing 

s[(2, C) x s[(2, C) -- C, (x, y) -- Tr(xy). 
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Transferring this to g gives the identifications e = f*, f = e*, and h = 2h*. 
Under this identification the nilpotent cone (resp. the conjugacy class of Ah) is 
given by the equation det = h2 - ef = 0 (resp. = _2)). 

We may homogenize the defining equations with respect to a new variable t 
and thus consider the following pencil of quadrics in p3: 

Q(6) = fY(det + 62t2) for all a E P1 
The base locus of this pencil is the conic %(t2, -h2 - 4ef ) in the plane at 
infinity. The only singular quadrics in this pencil are Q(O) and Q(oo) (the 
plane at infinity twice). If we identify g with the affine open piece t = 1, 
then the intersection of Q(O) with g is the cone of nilpotent elements. If 
s :# 0, xo then Q(6) is smooth and its intersection with g is a conjugacy class 

of semisimple elements, the conjugacy class of (5h. 
If Q(6) is smooth then Q(6) -- Pl x P1, and there are two families of lines 

lying on Q(6). On the other hand, Q(O) is singular and contains only one 
family of lines; see [4, Chapter II, ?6]. Our first objective is to characterize in 
terms of s[(2, C) those lines in P3 that lie on some quadric Q(6). 

Any two-dimensional Lie subalgebra of g is a Borel subalgebra. A standard 
basis for a Borel subalgebra is an ordered basis (E, H) such that [H, E] = 2E. 
Any standard basis for a Borel subalgebra may be extended to a standard triple 
(E, F, H) that is a triple of linearly independent elements such that 

[EF]=H, [HE]=2E, [HF]=-2F. 
The standard triples form a single orbit under conjugation by GL(2). If b is 
a Borel subalgebra with standard basis (E, H) then A E C determines fA E b* 
by requiring that fJ(E) = 0 and fA(H) = A . Notice that fJ depends only on A 
and not on the choice of the standard basis, since any other standard basis for 
b is of the form vE, H + uE. 

For each pair (b, ,A) we define a line in p3: 

lb,A = Y(E 5H - t) 
where (E, H) is standard basis for b. Notice that this line does not depend 
on the choice of a standard basis for b. If we identify the plane at infinity with 
P(g) and the affine open piece as before with g, then the following two facts 
are easily verified: 

(1) /b,AnP() = [b, b] =CE, 
(2) lb, An = I H + CE, where (E, H) is a standard basis for b . 

In particular, 1b, is a line on the quadric Q(IA . In fact, 

Theorem 1. The lines that lie on the quadrics Q((5) = f(det + 62t2) for some 
E 1P' are 

1. the lines at infinity and 
2. lines lb,A for a Borel subalgebra b and A E C. 

Proof. The first case corresponds to lines on Q(oo). Suppose (5 $ 0. Then 
Q((5) n g is the conjugacy class of (" ) . If 1 is a line lying on Q((5), then 
we can choose a basis for s[(2, 5C) such that 1 = {x + vylv E C}, where 
x = (5 % ) and y is some other element of s[(2, 5C) . Write y = (I b). Since 
det(x + vy) = det(x) for all v, a calculation shows that det(y) = 0 and a = 0. 
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Thus y is (up to scalar multiples) either (8 ) of (?8). In the first case 
/ = lb,2, with b having standard basis y, x. In the second case / = lb,_25 
with b having standard basis y, -x. 

Suppose that (5 = 0, so that Q(() is the nilpotent cone. We can choose 
a basis for s[(2, C) such that / = {x + vylv E C}, where x = (% ) and 
y = (1 b). Since det(x + vy) = 0 for all v, a calculation shows that det(y) = 0 
and c = 0 (whence a = 0 also). Thus y is a scalar multiple of x, so the line 
is / = Cx = 4b, having standard basis x, H, where H satisfies [H, x] = 2x 
(such an H does exist since every nonzero nilpotent element belongs to some 
standard triple). 

Conversely, we have already seen that 4b, A lies on the quadric Q( A ) 
If s :# 0, ox then the two rulings on Q(() are given by {lb,2Ilb is a Borel} 

and {/b,_2,5lb isaBorel}. 

2. THE QUANTUM SPACE OF S[(2, (C) 

Let A denote the homogenization of the enveloping algebra of g with respect 
to a central variable t. That is, A = C[e, f, h, t] with defining equations 

ef - fe = ht, he - eh = 2et, hf - fh = -2ft; 
et - te = ft - tf = ht - th = 0. 

Notice that A/A(t - 1) - U(g), the enveloping algebra of g, and A/At 
C[e, f, h] = S(g), the symmetric algebra on g. From these facts one deduces 
that A has Hilbert series (1 - t)-4, is a positively graded Noetherian domain, 
a maximal order, Auslander-regular of dimension 4, and satisfies the Cohen- 
Macaulay property, see, e.g., [5-7]. Moreover, the center of A is C[Q, t], 
where Q = h2 + 2ef + 2fe is the Casimir element. 

Artin [1] associates to any regular algebra R its quantum space Proj (R), 
which is by definition the quotient-category of all finitely generated graded left 
R-modules by the full Serre subcategory of the finite length modules. We will 
denote the quantum space associated to A by Q(g). We want to characterize 
the linear subspaces in Q(g) . There are three types to consider: 

(1) A plane module 59 is a cyclic module with Hilbert series (1 - t)-3. 
(2) A line module Y is a cyclic module with Hilbert series (1 - t)-2. 
(3) A point module 3Y is a cyclic module with Hilbert series (1 - t)-I . 

As in [6] these modules (together with A and the trivial module A/Ae + 
Af + Ah + At) are precisely the Cohen-Macaulay modules of multiplicity one. 
We will associate to each of them a linear subspace in ordinary P3. 

As dim(AI) = 4 and the homogeneous degree 1 component of a plane (resp. 
line, point) module is 3 (resp. 2, 1) one can find a E A1 (resp. a, b E A1, 
resp. a, b, c E A1) and surjections 

A/Aa -> 59 (resp. A/(Aa + Ab) -- Y? resp. A/(Aa + Ab + Ac) -- ) 

(in fact we will see shortly that these maps have to be isomorphisms). Hence 
to each plane (resp. line, point) module we can associate a plane (resp. line, 
point) in p3 = P(A7), namely, Y(a) (resp. i(a, b), resp. i(a, b, c)). We 
will now determine which linear subspaces of p3 arise in this way. 
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We observe that there is a dichotomy in the problem. As a linear subspace 
module is critical (because it is of multiplicity 1) it follows from [6] that t 
either kills the module or acts faithfully. The first case gives a linear subspace 
module over the commutative polynomial ring A/At - S(s), i.e., we get a 
linear subspace in p2 = %(t) = P(g). In the second case we can form M = 
M/(t- l)M, which is a filtered U(g)-module MO c Ml c ... , where dim(M1) 
is equal to a (if M is a point module), i + 1 (if M is a line module), or 
2 (i+ 1) (i+ 2) (if M is a plane module). Moreover, this process can be reversed, 
namely, Ma -Miti (see [3] or [7]). 
Proposition 1. 1. Every plane V(a) in P3 determines a plane module S. 

2. The points at infinity and the origin (0, 0, 0, 1) are the only points in P3 
that determine a point module Y . 

Proof. Since A is a domain, A/Aa has Hilbert series (1 - t)-3 for every 
nonzero a E AI . Hence the surjection A/Aa -- Y is an isomorphism. 

From the dichotomy remark it follows that a point-module either corresponds 
to a point on the plane at infinity (when it is killed by t) or corresponds to the 
1-dimensional g-module, whence it corresponds to the origin in 9 (which is 
bing identified with the complement to the plane at infinity). In the first case 
we can take a = t and let b, c determine the point in Proj(A/At) = P2 . Hence 
the Hilbert series of A/At + Ab + Ac is (1 - t)-' so .5 = A/At + Ab + Ac. 
In the second case A/Ae + Af + Ah C[t], which also has the right Hilbert 
series. 3 

Still the situation concerning point-modules is slightly more subtle. The set 
of points obtained from point modules is called the point variety, and it may be 
described by multilinearizing the defining relations as in [2] or [8]; that is, the 
point-variety is the zero set of the 4 x 4 minors of either of the following two 
matrices: 

e 0 _h 
h 0 -e -2e 
0 h -of 2f 
-t 0 0 e 
0 -t 0 f 

i 0 O t hv 
or 

f -h-2t 0 tO 0 \ 
-e 0 -h + 2t 0 t 0 
-t e f 0 0 tJ. 
i 0 O 0 -e -f -h 

Proposition 2. The ideal determining the point-modules of A in P3 is 

t((h2 + 4ef)(e, f, h), te, tf, th). 

Hence the conic at infinity %"(t, h2 + 4ef ) is an embedded component of the 
point-variety. 

So the base locus of the pencil of quadrics described in ? 1 appears here as 
the embedded component of the point-variety for A. Let us now describe the 
line-modules of Q(j9). 
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Theorem 2. The lines in I3 determining line modules are precisely the lines in 
the pencil of quadrics Q((5) = f(det + 62t2) for a E P1 . 
Proof. As in the case of point-modules, the lines in the plane at infinity are 
already accounted for. Hence we have to prove that any line module of A is 
of the form 

Y - AI(AE + A(H - t)), 
where E, H is a standard basis for a Borel subalgebra b and A E C. 

There is a surjection A/Aa+Ab -- Y for some a, b E A1 since dim L1 = 2. 
Clearly, we can change a, b if necessary so that a = y, b = z + At with 
y, z E g. Let x, y, z be a basis of g. Then the following seven linearly 
independent elements in A2 belong to Aa + Ab: 

xy, yy, ty = yt, x(z + it), y(z + it), z(z + it), t(z + it) = (z + It)t. 
As dim Y2 = 3 and dim(A2) = 10 these elements must be a basis for 
(Aa + Ab)2. Note that both yz = y(z + At) - Ayt and zy belong to this 
space. Hence yz - zy can be written as a linear combination of the seven ele- 
ments. If A :$ 0 then only ty can occur with nonzero coefficient, and if A = 0 
so might tz. At any rate b = Cy E Cz is a two-dimensional Lie subalgebra of 
g and hence is a Borel subalgebra. 

But then A/(Aa + Ab) is the homogenization of U(g) ?u(b) Cf6b for some 
f E g* such that fl[j,,] = 0 and hence has as its Hilbert series (1 - t)-2. 
Therefore, A/Aa + Ab = Y and %(a, b) = 1 , as claimed. r 

3. SOME COMMENTS 

The line module associated to 1b, A will be denoted by M(b, A). By Theorem 
2 we have M(b, A) - A/AE + A(H - At), and hence M(b, ,A) is the homog- 
enization of the Verma module Mb (A) = U(g) ?u(b) CA of highest weight A. 
The (n + 1)-dimensional simple U(s[(2, C))-modules will be denoted V(n) . 
For each Borel b there is a short exact sequence 0 - Mb (-n - 2) - Mb (n) -> 
V(n) -> 0. Taking homogenized modules, there is a corresponding short exact 
sequence 0 -> M(b, -n - 2) M(b, n) -- F(n) -> 0 where F(n) is a certain 
fat point of multiplicity n + 1; a fat point module [ 1 ] is a 1 -critical module gen- 
erated in degree 0, having constant Hilbert series, and a fat point is a module 
that is an A-module that is equivalent to a fat point module in the sense that 
they give isomorphic objects of Proj(A). 

This is reminiscent of some of the results on the Sklyanin algebra in [9]. 
Homogenized s[(2, C) shares some other common features with the Sklyanin 
algebra; for example annihilators of line modules behave in a similar way. We 
leave the details to the interested reader. 

The quantum space of any three-dimensional Lie algebra has similar prop- 
erties. Let us briefly sketch the case of the three-dimensional Lie algebra 1 = 
Cx ED Cy ED Cz with z central and [x, y] = z. The corresponding algebra 
H(1) is C[x, y,' z, t] with relations xy - yx = zt and z and t central; the 
point variety in Q(1) = Proj(H(1)) is determined by the ideal tz(z, t) and so 
consists of the union of the plane %(z) and the plane at infinity %(t); their 
intersection is an embedded component. 

The line modules of H(1) are precisely the lines in the pencil of planes 
P((5) = %(z + bit) for 5 E P1p, which has as its base locus the embedded 
component (z, t). 
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