THE PRIMITIVE FACTOR RINGS OF THE
ENVELOPING ALGEBRA OF si(2, C)

S. P. SMITH

1. Introduction

Let R denote a non-artinian primitive factor ring of the enveloping algebra of
sl(2, C). Arnal-Pinczon [1] and Roos [10] have shown that if R is simple then it has
Krull dimension 1. Roos also shows that “most” of the simple R have global
dimension 1. In this paper we prove that if R is not simple then it has Krull
dimension 1 (thus all non-artinian primitive factor rings of s/(2, C) have Krull
dimension 1) and does not have global dimension 1.

Notation and the basic properties of these factor rings are described in §2. In
particular, if R denotes such a non-simple primitive factor ring, then R has a unique
proper two-sided ideal M of finite codimension, and R embeds in the Weyl algebra
A,.In §3 we prove that R has Krull dimension 1. The proof illustrates and depends
on the close relationship between R and A,;. In §4 the relationship between certain
R-modules and certain A,-modules is examined more closely. The results in §4 are
used in §5 to describe the generators of M as a left ideal. We also show in §5 that the
grading on A, (defined by the semi-simple element) induces a grading on R, and that
both R and M are graded by the induced grading. Finally, in §6 it is proved that R is
not hereditary. In particular, it is shown that R/M has projective dimension 2. (The
primitive ideal of the enveloping algebra corresponding to R is the annihilator of a
Verma module of length two and both composition factors of this Verma module
have projective dimension at most two as R-modules.) The precise global dimension
of R remains an open question.

I would like to thank J. C. McConnell and J. C. Robson for bringing these
problems to my attention. I am indebted to them both for their constant interest, and
for their generous encouragement and advice.

2. Preliminaries

All modules are tacitly assumed to be left modules; global dimension and Krull
dimension are both calculated on the left but of course a similar argument will give
corresponding results on the right. The Krull dimension of a module, M, is denoted
by |M|, and global dimension is abbreviated to gl.dim. The annihilator of a module
M 1is denoted by ann (M).

Let U denote the enveloping algebra of si(2, C). The basic properties of U appear
in Dixmier [3] and Nouazé-Gabriel [7]. Let

01 1 0 00
Received 22 April, 1980.
[J. LoNDON MATH. Soc. (2), 24 (1981), 97-108]




98 S. P. SMITH

be a basis for si(2, C). Let
Q =4EF+H?-2H = 4FE+H*+2HeU.

The centre of U is C[Q]. Forallce Clet I, = U(Q —c). The map ¢ — I, is a bijection
from C onto the set of primitive ideals of U of infinite codimension; I, is maximal if
and only if ¢ is not of the form n?+2n, ne N = {0,1, 2,...}. As mentioned above, if ¢
is not of the form n? +2n (ne N) then |U/I | = 1 ([1], [10]). Roos also proved that if
¢ is transcendental over @Q then gldim. (U/I,) = 1. Let A = A,(C) denote the Weyl
algebra over C with two generators p, g subject to the relation pg—qp = 1. Forte Z
set

D(t) = {xe A|[gp, x] = tx}
(where [a, b] = ab—ba). It is obvious that A = @ D(t), and

q¢'Clgp] t20
D(t) =
p~'Clgp] t<0.

It is easy to see that D(s)D(t) = D(s+1); frequent use is made of this fact. We also
make frequent use of the identity ¢'p' = (gp—t+1)...(qp —1)(gp).

Roos [10] has shown that U/I. embeds in A4,. There are a number of different
such embeddings and we shall use the embedding defined by the map

E - qglgp—p), F—- —p, H-o2qp—p

where u e C satisfies u*> +2u = c.
Henceforth fix ne N, put ¢ = n*+2n, and let R be the subring of 4, isomorphic
to U/I,, which is defined by the map above with ¢ = n. Put

e=gq(gp—n), f=—-p;, h=20qp—n.

The ring R has a unique proper two sided ideal M ; this ideal M is of codimension
(n+1)* in R, and is the annihilator of the unique finite dimensional simple
R-module, S, and S has dimension (n+1). We have that S = R/l where
I = Re+R(h—n)+Rf"*! (see for example [4; 7.2.7]).

Let h denote the subspace of sl(2, C) spanned by H, let h* denote the dual space
of h and let A: h - C be the element of h* defined by A(H) = n. In the notation of
Dixmier [4; Chapter 7], I, is the annihilator of the Verma module M(A+ ) (where §
is the half-sum of positive roots). The finite dimensional simple U-module, L(A + J), is
isomorphic as an R-module to S, and as mentioned above has annihilator M (as an
R-module); L(4+6) has highest weight 4 and the weights of L(Z+4J) are precisely
those u € h* such that u(H) = n—2j (jeN,0 <j < n). Thus,t = [] (h—n+2j)is

an element of M (this fact is used in Lemma 3.1). i=0
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3. Krull dimension

Recall Corollaire 1 of Roos [10]. R may be localised at C[e]\ {0} and at
CL/T\{0} to obtain the rings R, and R, say. Both R, and R have Krull dimension
1 (being isomorphic to partial localisations of A); both R, and R, are flat as either
right or left R-modules. Consider R as a subring of T = R, @ R, via the diagonal
embedding r — (r, r). It is implicit in Roos’ Corollaire 1 that if I and J are left ideals
of Rwith I = J and TI = TJ then J/I is finite dimensional as a C-vector space.

LemMma 3.1.  Let I and J be left ideals of R with I < J, J/I a simple left R-module
and Al = AJ. Then J/I is infinite dimensional as a C-vector space.

Proof. Suppose not—that is, let J and I be as above with J/I finite dimensional.

Now Al = I+ql+q*I+.... For xe Al, define the length of x to be
I(x) = min {me N |xel+ql+q*I+...+q"I}. Pick xe J, x ¢ I of least length (such
x exist because I #J and Il(x) is defined because J < AJ = AI). Let
x = by+gb,+...+q"b,, where each b;el and I(x) =m = 1. Put a = x—b,, so
aelJ,a¢l and l(a) = m.

Put ¢t = [] (h—n+2j). By the remark in §2 te M. Because J/I is a finite

j=0
dimensional simple module, MJ S I; in particular ta e I.

Look at tq'. For i=1, we, have h = 2qp—n, so
(h—n+2j)g' = 2(gp—n+))q' = 2¢'(gp—n+j+i) = ¢'(h—n+2(j+)). So tg' = ¢'s;
where s; = [] (h—n+2(j+i)). Thus, ta = gs,b, +q*s,b,+...+ q"S b,

j=0

Considering s; as a polynomial in (h—n) it has non-zero constant term because
j+iziz1l. Write s;=(h—n)ri+oa; where r,eR and 0# q,eC. Now
q(h—n) = 2g(gp—n) = 2e € R. Write b; = g(h—n)r;b, € I. Now

ta—a,a = by +qb,+...+q" b, + (ot —0o,)gb+...+ (2 _  — g™ " b, .

However, as a,, #+ 0, it follows that ta—oa,aeJ, ta—a,a¢ I and ta—a,a is of
shorter length than x. This contradicts the choice of x. Hence J/I cannot be finite
dimensional.

THEOREM 3.2.  The Krull dimension of R is 1.

Proof. Consider the natural embedding of Rin T @ A = R, ® R, @ A via the
map r — (r,r,r). Suppose that I and J are left ideals of R with I & J. Then
(T @ A)I + (T @ A)J because if TI = TJ then J/I is finite dimensional by the
comments prior to Lemma 3.1, but then by the lemma, Al # AJ.

Thus the lattice of left ideals of R may be embedded in the lattice of left ideals of
T @ A. Consequently, |R| < |T @ A|. However,

IT ® 4] = max {|R,|, IR, |4]} = 1.

4. Relation between certain R-modules and A-modules

The Weyl algebra A is easier to deal with than R, and the purpose of this section
is to exhibit some of the connections between R and A so that the simpler structure
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of A may be exploited. In particular, Lemma 4.3 will enable us to describe the
generators of M (Theorem 5.2) by using the properties of 4. Lemma 4.1 and Lemma
4.2 exhibit the remarkably close relationship between R and A. Unfortunately,
though, 4 is not flat as an R-module.

Lemma 4.1. If J is a left ideal of A, then J = A(J n R).

Proof. Clearly J 2 A(J n R).
For meN, put J,=Jn(R+qR+...4+¢"R). It is obvious that A =

R+4gR+¢*R+..., and so J = [J J,. We will show that J,, = A(J N R) for all

m=0
m. The proof is by induction on m. Clearly J, & A(J n R).
Suppose that J, € A(J nR) and pick xeJ,,,. We will show that both
(gp—n—m—1)x and (gp)x are in A(J N R). Let x = y+4""'r with re R and
y€R+¢R+...+q"R. Now,

m.r

gp—n)r = (qp—n—m—1)y+q"r

m+l(

(gp—n—m—=1)x = (gp—n—m—1)y+q

where ' = g(gp—n)reR. It is easy to check that (gp—n—m—1)ye
R+qR+...4+¢™R, and so (gp—n—m~1)xeJ, € A(J n R). Now

px = py+(qp+1)q"r = py+q"(gp+m+1)r

and because pyeR+gR+...+¢"R it follows that pxel, S A(J A R).
Consequently, gpxe A(J n R), and thus (n+m+1)xe A(J n R) which implies
xeA(J nR)as n+m+1 # 0. Hence J,,.; € A(J N R).

Lemma 4.2.  Let K be a maximal left ideal of R and suppose AK # A. Then AK is
a maximal left ideal of A, and K = AK n R.

Proof. Now K & AK n R implies that either AK "R = Ror AKn R = K. If
AK n R = R then 1 € AK which implies AK = A, contradicting the hypothesis. So
AKNnR =K.

Suppose now that J is a left ideal of 4 and AK = J # A.Clearly K & J n R, so
either JAR =R or JAR=K. But JAR#R (as J# A) so JnR =K.
However, by Lemma 4.1, J = A(J N R), so J = AK and consequently AK is a
maximal left ideal of A4.

LemMma 4.3. If K is a maximal left ideal of R and AK # A, then A/AK
(considered as an R-module) contains an isomorphic copy of R/K, namely
(R+ AK)/AK, and

anng(R/K) = R n ann((R+ AK)/AK) .

Proof. As R-modules, (R+ AK)/AK = R/(R n AK) = R/K (by Lemma 4.2).
The second part of the Lemma follows easily from the fact that

anng(R/K) = anng((R + AK)/AK).
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5. Description of R and M

Recall the definition of the D(t) in §2. It is well known that the D(t) define a
gradation on A. Because R is generated as an algebra by homogeneous elements of 4
(with respect to the gradation defined by the D(t)) it follows that

0

R =@ (RnDO).

This fact together with the proposition below describes R in detail.
Prorosition 5.1. (i) Ift > O then
D(t) "R = ¢'(gp—n)(gp—n+1)...(gp—n+1—1)Clgp]
= (gp—n—1t)(gp—n—t+1)..(qp—n—1)¢'Clqp] .
(i) Ift <O then
D(t) n R = D(t) = p~'Clgp] .

Proof. (i) Recall that R is spanned (as a C-vector space) by the homogeneous
elements  {e'fih'|i,j,1 >0}, and so RAND() is spanned by
{e'fin'|i,j,1 = 0} N D(t). Now €'f’h' € D(i—j) so €' f’h' € D(t) if and only if i—j = ¢.
It follows that ¢'C[gp] < D(t); also if i—j = t, then &'fIh' = e'e’f’h' e &'D(0) = R.
Hence R n D(t) = €'C[gqp], and the result follows because

e = [q(gp—n)) = q'(gp—n)...(qp—n+t—1) = (gp—n—1t)...(gp—n—1)q".

(i) As peR,so p'eR and consequently p'C[gp] S R as gpe R.

THEOREM 5.2. The unique proper ideal M of R is generated as a left ideal by
X ={gp"*'|0<i<2n+1)}.

Proof. We show first that X < R. Now ¢'p"*' e D(i—n—1),50if0 < i < n+1
then ¢'p"*! € R by Proposition 5.1 (ii). Suppose i = j+n+1 with 1 <j < n+1.
Then

n+1 . n+1

=q'q""'p

in+1
p

q = ¢’(gp—n)...(qp—1)(qp)
and because j < n+ 1 this is an element of ¢/(qp —n)...(gp —n+j—1)C[gp] which by
Proposition 5.1 (i) is contained in R. Hence X < R.

Recall that M = anng(R/I) (where I is as in §2). Now
Al = Ae+ A(h—n)+ Af"*! = A(gp—n)+ Ap"*!, which by McConnell-Robson
[5; Proposition 5.11] is a maximal left ideal of A. In particular Al # A, and so by

Lemma 4.3
M = R nann,[(R+ Al)/AI].

But R/l = [C+Cp+...4+Cp"+1], so (R+Al)/Al = [C+Cp+...+Cp"+ AI. It is
easy to see that p"*![(R+ AI)/AI] = 0 (considering (R+ AI)/AI as a subset of the
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A-module A/AI). Thus Ap"*' < ann,[(R+ AI)/AI] which implies that X € M and
so RX € M.

Finally we show that the left ideal generated by X is also a right ideal. To show
this it suffices to prove that Xf & RX, Xh © RX, and Xe € RX. These three cases
are proved separately:

(i) p"*'.peRX;ifi =1 then
gp"tt . p=q"Ygp)p""" = (gp—i+1)g'" ' p"" eRX;
(i) 4'p"*'.(gp) = (gp+n+1-i)g'p"*' e RX;
(i) ¢'p"*' . q(gp—n) = ¢'p"(gp+1)(gp—n) = (gp+n—i+1)g'*'p"*!, and if
i € 2n+1 then this is in RX; should i = 2(n+1) then this is equal to
(qp_n_l)_q_qztnﬂ)pnﬂ — q(qp—n)qz‘"*”p"“ eRX .

It is well known that if J is a two sided ideal of a factor ring of an enveloping
algebra of a finite dimensional lie algebra, then any set which generates J as a left
ideal also generates J as a right ideal. Thus M = RX = XR. Because the generators
of M are homogeneous we have the following.

CoROLLARY 53. M = @ (M n D(1)).

We now have a good enough description of M to show that R is not hereditary
(Theorem 6.2) but to show that R/M has projective dimension 2 a slightly better
description of M is required. This is given in Theorem 5.5.

LemMA 54. Let K be the left ideal of R. Let me N and suppose ae K and
q"ae K. Then a,qa, q*a, ...,q"a are all in K.

Proof. The proof is by induction on m. Clearly the result holds if m = 1.

Suppose m > 2.
If a e K then [g(gp—n)]" " 'a€e K, and

[agp—m)]""'a = 4"~ '(gp—n)...(gp—n+m—2)a
=(gp—n—m+1)...(gqp—n—-1)g" " 'a
If g"ae K then pgq™a = (qp+1)q™ 'ae K. It is now easy to see that g" 'ae K
because when viewed as polynomials in (gp) the expressions
(gp—n—m+1)...(qp—n—1) and (gp+1) do not have a common root.

THEOREM 5.5. As a left ideal M is generated by f"*' =p"*! and by
en+l = [q(qp_n)]n+l = q2(11+1)pn+1.

Proof. By Theorem 5.2 both these elements are in M, and a single application of
Lemma 5.4 shows that X € Rp"*! + Rg?"*Vp"*1,

6. Global dimension

Let S = {a€ Q(R)|aM < M} where Q(R) is the quotient division ring of R. In
fact Q(R) = D, the quotient division ring of 4,. From Theorem 5.2 we see that
p"tteMand AM = Ap"*!,s0o aM S M implies ap"*' € Ap"*! whence ae A. Thus
RcESc A



THE PRIMITIVE FACTOR RINGS OF THE ENVELOPING ALGEBRA OF sl(2, C) 103

THeOREM 6.1. The rings S and R are equal.

Proof. Because A = @ D(t)and R = @ (R n D(t)) with R n D(t) as given in
Proposition 5.1, it follows that

A=R®[6?)lq'V.]

where V, is the C-subspace of C[gp] generated by {1, (gp), (gp)* ..., ..., (qp)’ .
Suppose now that S # R. Then there exists 0 # ae S N ((—B q V) with a = Z a,
where each a,€¢'V, < D(t). Clearly aM < M if and only if aX € M; because X
consists of homogeneous elements and M = é (M ~ D(t)) we have for some ¢ that

a, # 0and g, X < M. So we may assume, without loss of generality, that there exists
0 # aeS nq'V, for some t.
Let a = ¢'f(gp) where f(gp) is a polynomial in gp of degree < t—1. Now,

ag?"* Vpn*t1l = g"*t*Y(gp—n)...(qp)f(gp+n+1)

and as aX S M this is an element of R n D(n+t+1). Now by Proposition 5.1 (i)
ag*"*Vp"* e RN D(n+t+1) if and only if f(gp)e(gp+1)...(qp+1t)Clgp].
However, f(qp) # 0 and the degree of fis < t—1, so f(gp) cannot be an element of
this ideal of C[gp]. Thus ag*"*Vp"*! ¢ M. This contradiction shows that no such a
can exist and hence § = R

COROLLARY 6.2. The global dimension of R is either 2 or infinity.

Proof. Suppose gldim. R is finite. It is well known that gldim. U = 3, so0 by
Kaplansky [5; Theorem 4, p. 173], gl.dim. R < 2. It is clear that gldim. R # 0. It
remains to show that gl.dim. R # 1.

Suppose gl.dim. R = 1; that i1s R is hereditary. Because M is idempotent (that is,
M? = M) and R is prime noetherian, Theorem 4 (iii) of Robson {9] applies. This
says that MS = S, but this contradicts Theorem 6.1 as M # R. Hence
gldim. R = 2.

If K is a left ideal of R put K* = {ae Q(R)| Ka < R}. Because R is a prime
noetherian ring K* =~ Hom (K,R) and so K is projective if and only if
K*K = Endg(K); and for this to happen it is sufficient that 1 € K*K. This provides a
reasonable method to prove Theorem 6.4. First we require an easy lemma.

LemMa 6.3. If s and sq™ are both elements of R, then sq, sq>, ..., sq™ " are also
elements of R.

Proof. 1t is enough to prove the lemma when sq™ € R n D(t). Suppose t > 1;
then s¢™ = x(qp—n—t)...(qp—n—1)q" for some x e C[gp] by Proposition 5.1 (i).
Thus sq™ ' = x(gp—n—t)...(qp—n—1)q'"! which is an element of R by
Proposition 5.1 (i). Suppose t < 1; then sq" 'eD(t—1) and t—1 < 0, but by
Proposition 5.1 (i1), D(t —1) S R. An induction argument now shows that the lemma
holds.
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THEOREM 6.4. The R-module R/M has projective dimension 2.

Proof. Because R is uniform as an R-module, R/M is not projective. Notice that
the ring S is the endomorphism ring of M, so M is projective if and only if
M*M = §S. However, S = R by the previous theorem. Thus if M were projective
then M*M = R; but this cannot happen as M is idempotent, viz. M*M = R implies
M*M? = M. So M is not projective.

Now look at a projective resolution for M = Rp"*! 4+ Rq?"*Vp"*1, Let

0— K—R®R L5 M —0

be a short exact sequence where n(r,s) = rp"*' +s¢*"* Vp"* 1. It is obvious that the
kernel K is given by

K = {(—-Squ"“’, 5) ‘ seR and qu("H)ER};

K is isomorphic to the left ideal J = {s€ R|sq*"*" e R}. To show that R/M has
projective dimension two it suffices to show that 1 € J*J (that is J is projective).

Clearly 1,¢?"* Ve J* so0 1,4, 4% ...,q4*""V are elements of J* by Lemma 6.3. It
is easily checked that J contains p?"*" and p'(gp—n—2(n+1))...(gp—n—t—1) for
0 <t < 2(n+1). Hence J*J contains the following elements:

q*"rp* T, g'p(gp—n—2(n+1))...(gp—n—t—1)
for 0 <t < 2(n+1). Putting x = gp these elements are
x(x—=1)...(x =2n—1);
{(x=3n=2)...(x—n—t=1)(x—=t+1)..(x=1)x |1 <t < 2n+1};
(x=3n-2)...(x—n—-1).

Look at the commutative polynomial ring C[x]. The ideal of C{x] generated by the
elements above is C[x] itself, so 1 € J*J (because C[x] € J*).

CoroLLARY 6.5. The unique finite dimensional simple R-module has projective
dimension 2.

Proof. The R-module R/M is a direct sum of copies of this simple module so
Exercise 4 of Kaplansky [5; p. 169] gives the result.

7. Remarks

1. It is possible for corresponding results to be established on the right rather
than the left. However, for this to be done a different embedding of R in A4, is
required. This embedding is given by the map

E— —(n+pg)q, F—->p, H-on+2pq.
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2. As mentioned in §4, A is not flat as an R-module. To see this let I be the left
ideal of R generated by p and ¢gp. Then ¢ ® p—1 ® gp is a non-zero element of
A ® I, but the image of this element in A ® R under the natural homomorphism is
zero. Thus A is not flat as a right R-module. A similar example using the right ideal
of R generated by p and pg shows that A4 is not flat as a left R-module either.

3. As mentioned in the introduction and in §2 (using the notation of
§2), M(A+0)is an artinian R-module of length two and is faithful over R. Moreover,
M(A+9) has a unique simple submodule which is itself faithful over R. This simple
submodule is isomorphic to R/K where

K = Re+R(h+n+2) = Rq(qgp—n)+R(qp+1).
To show that K has projective dimension < 1 is straightforward. Let
0—J —RO®R-T5 K —0

be the short exact sequence given by n(r, s) = rq(qp—n)+s(gp + 1), so the kernel, J,
is given by

J={(r,s)|n(r,s) =0} = {reR|rq(gp—n)(gp+1)"'eR} = J,

where J, is a left ideal of R. It is easy to see that peJ,, and that
q(gp—n)(gp+1)~' e J%, so qlgp—n)(gp+1)"'peJiJ,. This element is equal to
gp—n—1, and this together with the fact that gpe J, S J¥J, shows that 1 e J$J,
(as n = 0). So J,, and hence J, is projective.

4. Dixmier [2] has shown that every left ideal of 4, can be generated by two
elements. More generally, Stafford [11] has shown that every left ideal of a simple
noetherian ring with Krull dimension 1 can be generated by two elements.
Considering how close R is to satisfying these conditions, we are prompted to ask
whether every left ideal of R can be generated by two elements. The answer is no.

Let J = {se R|sq*"*" € R} be the left ideal which occurs in Theorem 6.4 as the
kernel of the resolution of M. We will show that J requires at least three generators.
Clearly if J can be generated by less than three elements so too can the R-module
J/MJ. It will be shown that J/MJ requires at least three generators.

We use the techniques and notation developed in Ratliff and Robson [8]. To
begin recall the definitions of [8]. Let B be a finitely generated R-module. Let J(B)
denote the Jacobson radical of B (that is, the intersection of the maximal submodules
of B), and A(B) denotes the length of a composition series for B/J(B), or o if no
composition series exists. Suppose A(B) < oo and B # 0. For each simple R-module
T occurring in a composition series for B/J(B), let ¢(T) denote the number of copies
of T in the composition series and let f(T) = A(R/ann T). Define v(B) to be the least
integer such that

v(B) = sup {1, e(T)/f(T)}

where T varies over all simple composition factors of B/J(B). The following theorem
forms the basis for our proof.
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THeEOREM 7.1 [8]. If A(B) < o0, then B can be generated by v(B) elements and no
fewer.

Here J/MJ is a finitely generated left R/M module, so is certainly of finite length
as R/M is simple artinian. It follows that J/MJ is semi-simple and has zero Jacobson
radical. The only module possibly occurring in a composition series for J/MJ is the
finite dimensional simple module S (of dimension n+ 1). It is clear that f(S) = n+1
and e(S) is precisely dim (J/MJ)/(n+1) so we shall show that
dim (J/MJ) > 2(n+1)?, implying v(J/MJ) > 3, and hence by the theorem, J has at
least three generators.

The idea behind the proof is simple but a tedious amount of calculation is
required. The first step is to show that MJ S J n Ap*>"* Y, and the problem is
reduced to showing that we can find at least 2(n+1)?+1 elements of J which are
linearly independent (over C) modulo Ap3®™* 1),

LEmMMA 7.2. MJ S Ap3"+D,

Proof. After Theorem 5.5 it is enough to show that p"*'J = Ap3"* ", Because

0

g*"*Y is a homogeneous element of A it follows that J = @ (J n D(t)), and

accordingly we prove that p"*'(J n D(t)) € Ap*"* ! for all t. Let ae J n D(¢).
Suppose t > 0. Put a = (gqp—n—t)...(qp—n—1)f(gp)q' (after Proposition 5.1)

where f(qp) € Cgp]. Because ag?"*V e R, it follows (by Proposition 5.1) that there

exists g(gp) in C[gp] such that f(gp) = (gp—n—2(n+1)—t)...(gp—n—t—1)g(qp).
Now

2(n+ 1) +1,3(n+ 1) +1 8

p""ta = (gp—n—(n+1)—t)...(ap)p"* 'g(gp)q' = g(gp+n+1)q p q

2+ 1)+t 3(n+ 1)t t

=g(gp+n+1l)q p p'q

which is an element of Ap>"* ! as p'q' € C[gp] and p>"*V'C[gp] = Clgp]p>"*".
Suppose t < 0. If t < —2(n+1) then it is clear that

p"+laeD(t—-(n+1)) c Ap3(n+l)
by Proposition 5.1. So suppose —2(n+1) <t <0, and put s= —t. Let
a = f(gp)p* where f(qp)€Clgp]. Because ag*"*""eR, and is equal to
f(ap)p°q’q>"* V7%, it follows that

flap)p°q® = (gp—n—2(n+1)+5s)...(gp—n—1)g(qp)

for some g(qp) € C[gp] (this is by Proposition 5.1). Now p°¢®* = (qgp+1)...(qp +5)
and so g(gp) = (gp+1)... (gp+s)h(gp) with h(gp) € C[gp]. In particular, if follows

that f(gp) = (gp—n—2(n+1)+s)...(gp—n—1)h(gp) and now
ptla = p"tHgp—n=2(n+1)+s)..(gp—n—Dh(gp)p* = ¢*"*Vp>** ) "3h(gp)p*

which is an element of Ap>"* " because p>"* " ~Sh(gp) e C[gp]p3"* V5.
This completes the proof of the lemma.



THE PRIMITIVE FACTOR RINGS OF THE ENVELOPING ALGEBRA OF si(2, C) 107

3(n+1)

LEmma  7.3. The vector space J/J n Ap has dimension at least

n+1+42(n+1)>%

Proof. In Theorem 6.4 it was shown that J contains the elements p?®*!) and
p(agp—n—=2m+1))...(qp—n—t—1)for 0 < t < 2(n+1). Because J is a left ideal J
contains the following elements:

prnt+s 0<s<n+l, t=2n+1)
x(s, t) =
p'r(gp—n—2(n+1))...(gp—n—t—1) 0<s<n+l, 0<t<2n+l)

There are precisely n+1+2(n+1)* of the elements and the proof will show that the
images of these elements in J/J N Ap*®* 1) are linearly independent. Notice that each
x(s, t) may be written uniquely in the form y(s, t)p*** where y(s, t) is a polynomial in
gp of degree 2(n+1)—t.

Suppose that Y «, x(s, t) € Ap*" " where o, € C and the sum over all pairs (s, t)
with 0 < s < n+1, 0 <t < 2(n+1). Because p>**! is a homogeneous element of

0]

A, it follows that Ap*"*» = P (A4p>"*Y A D(r)). Fix an integer r with
-0
0 < r < 3(n+1). Splitting the above sum into its homogeneous parts, it must be the
case that
Y oa,x(s,t)e Ap3"* D A D(—r).

st+t=r

Now, if x € A, then xp*"*V e D(—r) if and only if x € D(3(n+1)—r); that is if and
only if x = f(qp)q*"*V " for some f(gp) € C[qp]. Hence,

Z as,,X(S, t) = f(qp)q3(n+1)—rp3(,,+l)

stt=r

and, dividing on the right by p’,

z as,ry(s9 t) = f(CIP)qS(”+1)—rp3(n+1)-, )

stt=r
Now, g*>"*1=rp3n+D=r is an element of C[gp] of degree 3(n+1)—r, so the above
equation may be interpreted as being a relationship of linear dependence between
certain polynomials in C[gp]. However, each term on the left is of degree
2(n+1)—t = 2(n+1)—(r—s) < 3(n+1)—r because s < n+1. So we have a linear
dependence relation between elements of C[gp], each element being of different
degree—this of course can only happen if all o, = 0.

CoroLLARY 7.4. The left ideal J = {s € R|sq*"*" e R} requires at least three
generators.

Proof. 1t is simply a matter of putting together all the above. By the two
foregoing lemmas, dim (J/MJ) > dim (J/J n Ap"*Y) > 2(n+1)?, and then the
discussion prior to Lemma 7.2 completes the argument.
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Note added in proof. Stafford has recently shown that every infinite dimensional

simple R-module is of projective dimension 1. Consequently gl.dim. R = 2.
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