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1. Introduction

Let R denote a non-artinian primitive factor ring of the enveloping algebra of
s/(2, C). Arnal-Pinczon [1] and Roos [10] have shown that if R is simple then it has
Krull dimension 1. Roos also shows that "most" of the simple R have global
dimension 1. In this paper we prove that if R is not simple then it has Krull
dimension 1 (thus all non-artinian primitive factor rings of s/(2, C) have Krull
dimension 1) and does not have global dimension 1.

Notation and the basic properties of these factor rings are described in §2. In
particular, if R denotes such a non-simple primitive factor ring, then R has a unique
proper two-sided ideal M of finite codimension, and R embeds in the Weyl algebra
A{. In §3 we prove that R has Krull dimension 1. The proof illustrates and depends
on the close relationship between R and Al. In §4 the relationship between certain
/^-modules and certain A x -modules is examined more closely. The results in §4 are
used in §5 to describe the generators of M as a left ideal. We also show in §5 that the
grading on Ax (defined by the semi-simple element) induces a grading on R, and that
both R and M are graded by the induced grading. Finally, in §6 it is proved that R is
not hereditary. In particular, it is shown that R/M has projective dimension 2. (The
primitive ideal of the enveloping algebra corresponding to R is the annihilator of a
Verma module of length two and both composition factors of this Verma module
have projective dimension at most two as i?-modules.) The precise global dimension
of R remains an open question.

I would like to thank J. C. McConnell and J. C. Robson for bringing these
problems to my attention. I am indebted to them both for their constant interest, and
for their generous encouragement and advice.

2. Preliminaries

All modules are tacitly assumed to be left modules; global dimension and Krull
dimension are both calculated on the left but of course a similar argument will give
corresponding results on the right. The Krull dimension of a module, M, is denoted
by \M\, and global dimension is abbreviated to gl.dim. The annihilator of a module
M is denoted by ann (M).

Let U denote the enveloping algebra of s/(2, C). The basic properties of U appear
in Dixmier [3] and Nouaze-Gabriel [7]. Let
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be a basis for s/(2, C). Let

Q = 4EF + H2-2H = 4FE + H2 + 2H e U .

The centre of U is C[Q]. For all c e C let Ic = U(Q — c). The map c -> /c is a bijection
from C onto the set of primitive ideals of U of infinite codimension; Ic is maximal if
and only if c is not of the form n2-\-2n, n e N = {0,1, 2,...}. As mentioned above, if c
is not of the form n2 + 2n {n e N) then \U/IC\ = 1 ([1], [10]). Roos also proved that if
c is transcendental over <Q then gl.dim. (U/Ic) = 1. Let A = AX{C) denote the Weyl
algebra over C with two generators p, q subject to the relation pq — qp = 1. For t e Z
set

D{t) = {x G A | [qp, JC] = tx}

(where [a, 6] = ab-ba). It is obvious that A = 0 D(t), and
- 00

t > 0

D(t) =

t < 0 .

It is easy to see that D{s)D(t) c: D(s + t); frequent use is made of this fact. We also
make frequent use of the identity q'p* = (qp — t + l)...(qp — l)(qp).

Roos [10] has shown that U/Ie embeds in Ax. There are a number of different
such embeddings and we shall use the embedding defined by the map

where / j eC satisfies p.2 + 2f.i = c.
Henceforth fix n e N, put c = n2 + 2n, and let R be the subring of Ax isomorphic

to U/Ic, which is defined by the map above with /x = n. Put

e = q{qp-n); f = -p; h = 2qp-n.

The ring R has a unique proper two sided ideal M; this ideal M is of codimension
(n+\)2 in R, and is the annihilator of the unique finite dimensional simple
R-module, S, and S has dimension (n + 1). We have that S s R/I where
/ = Re + R(h-n) + Rfn + 1, (see for example [4; 7.2.7]).

Let h denote the subspace of s/(2, C) spanned by H, let h* denote the dual space
of h and let k: h -> C be the element of h* defined by k{H) = n. In the notation of
Dixmier [4; Chapter 7], Ic is the annihilator of the Verma module M(X + S) (where S
is the half-sum of positive roots). The finite dimensional simple {/-module, L(k + 5), is
isomorphic as an R-module to S, and as mentioned above has annihilator M (as an
K-module); L(/ + (5) has highest weight I and the weights of L(k + d) are precisely

n

those neh* such that p.(H) = n-2j {j e fol, 0 ^ j ^ n). Thus, t = [~[ {h-n + 2j) is
an element of M (this fact is used in Lemma 3.1). j=0
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3. Krull dimension

Recall Corollaire 1 of Roos [10]. R may be localised at C[e] \{0} and at
C[ / ] \{0} to obtain the rings Re and Rf, say. Both Re and Rf have Krull dimension
1 (being isomorphic to partial localisations of A); both Re and Rj are flat as either
right or left i?-modules. Consider R as a subring of T = Re © Rf via the diagonal
embedding r ^ (r, r). It is implicit in Roos' Corollaire 1 that if / and J are left ideals
of R with / £ J and TI = TJ then J/I is finite dimensional as a C-vector space.

LEMMA 3.1. Let I and J be left ideals of R with I £ J, J/I a simple left R-module
and AI = AJ. Then J/I is infinite dimensional as a C-vector space.

Proof. Suppose not—that is, let J and / be as above with J/I finite dimensional.
Now AI = I + ql + q2l + .... For xeAI, define the length of x to be

l(x) = min {me N \x e I + qI + q2I + ... + qmI}. Pick x e J, x £ I of least length (such
x exist because I i= J and l(x) is defined because J £ AJ = AI). Let
x = bo + qbl +... + qmbm where each fr.eJ and l(x) = m ^ 1. Put a = x — b0, so
aeJ,a£I and /(a) = m.

n

Put t = 0 (h — n + 2j). By the remark in §2 teM. Because J/I is a finite
j = o

dimensional simple module, MJ £ /; in particular ta e / .
Look at t<j\ For i ^ 1, we have /i = 2qp — n, so

(h-n + 2j)ql = 2(qp-n+j)ql = 2ql{qp-n+j + i) = qfy-n + Kj + ij). So ^ = '̂s,-

where st = f\ (h — n + 2{j + i)). Thus, ta = qs1bl+q2s2b2 + .-. + qmsmbm.

Considering s, as a polynomial in (h — n) it has non-zero constant term because
j + i ^ i ^ 1. Write sf = (/i — / i ^ + oCf where rteR and 0 ^ a , e C . Now
q(h — n) = 2q{qp — n) = 2eeR. Write ty = g(/i — n ) ^ , - e / . Now

However, as am =£0, it follows that ta — ccmaeJ, ta — ctma£I and ta — ccma is of
shorter length than x. This contradicts the choice of JC. Hence J/I cannot be finite
dimensional.

THEOREM 3.2. The Krull dimension of R is 1.

Proof. Consider the natural embedding of R in T © A = Re © Rf © A via the
map r-> (r,r,r). Suppose that / and J are left ideals of R with / p J. Then
(T © A)/ =£ (T © A)J because if TI = TJ then J// is finite dimensional by the
comments prior to Lemma 3.1, but then by the lemma, AI ^ AJ.

Thus the lattice of left ideals of R may be embedded in the lattice of left ideals of
T © A. Consequently, \R\ < \T © A\. However,

|T 0 ^ | = max {|/?.|, I ^

4. Relation between certain R-modules and A-modules

The Weyl algebra A is easier to deal with than R, and the purpose of this section
is to exhibit some of the connections between R and A so that the simpler structure
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of A may be exploited. In particular, Lemma 4.3 will enable us to describe the
generators of M (Theorem 5.2) by using the properties of A. Lemma 4.1 and Lemma
4.2 exhibit the remarkably close relationship between R and A. Unfortunately,
though, A is not flat as an K-module.

LEMMA 4.1. If J is a left ideal of A, then J = A(J n R).

Proof. Clearly J => A{J n R).
For meN, put Jm = J n (R + qR + ... + qmR). It is obvious that A =

2R + ..., and so J = (J Jm. We will show that Jm £ A{J n R) for all
m = 0

m. The proof is by induction on m. Clearly Jo £ A{ J n R).
Suppose that Jm £ A{J n R) and pick xeJm + l. We will show that both

(qp — n — m — l)x and {qp)x are in A{J r\ R). Let x = y + qm + lr with /• e R and

+ g"'R. Now,

(qp-rt-m-l).Y = (qp - n - m- i)y -\- q"1 +1 (qp - n)r = (qp-n — m-l)y + qmrl

where r' = q(qp — n)r e R. It is easy to check that (qp — n — m—\)ye
... + qmR, and so (qp-n-m-\)xeJm £ /((JniJ). Now

p.v = py + {qp + l)qmr = py + q'"{qp + m + l)r

and because py e R + qR + ... + q'"R it follows that px e Jm ^ A{J n R).
Consequently, qpx e A(J n R), and thus (n + m+l ) i6 / l ( Jn J J ) which implies
x£ /1(J n K) as »i + m + l ^ 0. Hence Jm+1 £ /4(J n R).

LEMMA 4.2. Let K be a maximal left ideal ofR and suppose AK ^ A. Then AK is
a maximal left ideal of A, and K = AK n R.

Proof. Now K ^ AK nR implies that either AK n R = R or AK n R = /C. If
AK n R = R then 1 e /IK which implies /4X = ,4, contradicting the hypothesis. So

Suppose now that J is a left ideal of A and AK £ J =/= /4. Clearly /C £ J n /?, so
either J n R = R or J n R = K. But J n R i- R (as J =/= /4) so J nR = K.
However, by Lemma 4.1, J = /4(J n K), so J = AK and consequently AK is a
maximal left ideal of A.

LEMMA 4.3. / / K is a maximal left ideal of R and AK ^ A, then A/AK
(considered as an R-module) contains an isomorphic copy of R/K, namely
{R + AK)/AK,and

annR{R/K) = R n annA((R + AK)/AK).

Proof. As /^-modules, {R + AK)/AK s R/{R n AK) = R/K (by Lemma 4.2).
The second part of the Lemma follows easily from the fact that

annR{R/K) = &nnR({R + AK)/AK).
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5. Description of R and M

Recall the definition of the D(t) in §2. It is well known that the D(t) define a
gradation on A. Because R is generated as an algebra by homogeneous elements of A
(with respqct to the gradation defined by the D{t)) it follows that

R = 0 (R n D(t)).
— 00

This fact together with the proposition below describes R in detail.

PROPOSITION 5.1. (i) Ift>0 then

D(t)nR = qt(qp-n)(qp-n + l)...(qp-n + t-l)C[qp-]

= {qp-n-t){qp-n-t+\)...{qp-n-\)qtClqp\ .

(ii) Ift^O then

D(t) nR = D(t) = p

Proof, (i) Recall that R is spanned (as a C-vector space) by the homogeneous
elements {e'fjhl \ i,j, I ̂  0}, and so R n D(t) is spanned by
{e'fjti | ij, I ^ 0} n D(t). Now elfjti e D(i-j) so e'fjhl e D(t) if and only iti-j = t.
It follows that e'Cfop] e D(t); also if t - ; = t, then e'/j/i' = e'ejfjti<=e'D(0) c /?.
Hence K n D(t) = e'C[gp], and the result follows because

e' = \_q{qp-n)J = ^p-n)...(gp-n + t - l ) = {qp-n-t)...(qp-n- \)q'.

(ii) As p e R, so pr 6 /? and consequently p'C[^f/?] ^ R as qpe R.

THEOREM 5.2. 77ze unique proper ideal M of R is generated as a left ideal by

X = { ^ y + 1 | 0 ^ ^ 2 ( « + l )} .

Proof. We show first that X £ R. Now g'p"+! e D(i - n - 1), so if 0 ^ i ^ n +1
then q'p" + leR by Proposition 5.1 (ii). Suppose i =j + n + l with 1 ̂ 7 ^ n+\.
Then

qipn + i = qJq»+ipn + i = q!{qp-n)...{qp-l){qp)

and because) ^ » + l this is an element of qj(qp — n)...(qp — n+j— l)C[gp] which by
Proposition 5.1 (i) is contained in R. Hence X ^ R.

Recall that M = annR(R/I) (where / is as in §2). Now
AI = Ae + A(h-n) + Af"+i = A(qp-n) + Apn+1, which by McConnell-Robson
[5; Proposition 5.11] is a maximal left ideal of A. In particular AI =/= A, and so by
Lemma 4.3

M = Rn

But R/I = [C + Cp + ... + Cp" + / ] , so {R + AI)/AI = [C + Cp + ... + Cpn + / l / ] . It is
easy to see that pn + 1[(R + AI)/AI] = 0 (considering {R + AI)/AI as a subset of the
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/4-module A/AI). Thus Apn + l £ <mnA[{R + AI)/AI] which implies that I ^ M a n d
so flX £ M.

Finally we show that the left ideal generated by X is also a right ideal. To show
this it suffices to prove that Xf ^ RX,Xh ^ RX, and Xe £ RX. These three cases
are proved separately:

(i) pn + i . p e RX; if ii $* 1 then

(ii) qY^

(iii) 9 y + 1 . 9 ( 9 P - t ) = 9'p"(9P + l)(9P-«) = (9P + »-*' + l)9l + y + 1 , and if
i < 2n + l then this is in RX; should i = 2(rc + l) then this is equal to

{qp-n-\).q.q2(n + l)pn + l = q(qp-n)q2{n + 1)p" + l e RX .

It is well known that if J is a two sided ideal of a factor ring of an enveloping
algebra of a finite dimensional lie algebra, then any set which generates J as a left
ideal also generates J as a right ideal. Thus M = RX = XR. Because the generators
of M are homogeneous we have the following.

00

COROLLARY 5.3. M =? ® (M n D(t)).
— oo

We now have a good enough description of M to show that R is not hereditary
(Theorem 6.2) but to show that R/M has projective dimension 2 a slightly better
description of M is required. This is given in Theorem 5.5.

L E M M A 5.4. Let K be the left ideal of R . Let meN and suppose asK and
qma G K. Then a, qa, q2a,..., q"'a are all in K.

Proof. The proof is by induction on m. Clearly the result holds if m = 1.
Suppose m ^ 2.

ifaeK then [_q{qp-n)Y~laeK, and

[q(qp-n)Y~lci = q'"-l(qp-n)...(qp-

If q'"aeK then pq'"a = {qp + l)q"'~la e K. It is now easy to see that qm~iaeK
because when viewed as polynomials in (qp) the expressions
{qp — n — m + l)...(qp — n — 1) and (qp+l) do not have a common root.

THEOREM 5.5. As a left ideal M is generated by fn + l = p" + 1 and by
e"+l = [q{qp-ny\"+l = q2(n+i)pn + l.

Proof By Theorem 5.2 both these elements are in M, and a single application of
Lemma 5.4 shows that X <= Rp" + l +Rq2{" + l)p" + l.

6. Global dimension

Let S = {a e Q{R) \ aM £ M} where Q{R) is the quotient division ring of R. In
fact Q{R) = Dy the quotient division ring of Ay. From Theorem 5.2 we see that
pn + l eM and AM = Ap" + l, so aM £ M implies apn + 1 e Ap" + 1 whence a e A. Thus
R <= S £ 4 .
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THEOREM 6.1. The rings S and R are equal.

oo oo

Proof Because A = 0 D{t) and R = 0 (R n D{t)) with R n D{t) as given in
— oo — oo

Proposition 5.1, it follows that

A = R e

where Vt is the C-subspace of C[<?p] generated by {l,(qp),(qp)2,...,...,{qp)' ! } .
/ OO \ " '

S u p p o s e n o w t h a t S j= R. T h e n t he re exists O ^ a e S n 0 <?'K I wi th a = Z a»
V = l / r=l

where each ateq'Vt ^ D(t). Clearly aM e M if and only if aX ^ M; because X
00

consists of homogeneous elements and M = 0 (M n £>(£)) we have for some t that
— OO

at ^ 0 and a,X ^ M. So we may assume, without loss of generality, that there exists
0 j= a e S n q'Vt for some r.

Let a = q'f(qp) where f{qp) is a polynomial in qp of degree ^ t— 1. Now,

and as aX^ M this is an element of R n D{n + t + l). Now by Proposition 5.1 (i)
aq2{n+1)pn + 1 eRnD{n + t+l) if and only if f{qp)e {qp + l)...{qp + t)C[qp'].
However, f(qp) ^ 0 and the degree of / is ^ t — 1, so f(qp) cannot be an element of
this ideal of C[qp~]. Thus aq2{n + i)p" + 1 £ M. This contradiction shows that no such a
can exist and hence S = R.

COROLLARY 6.2. The global dimension of R is either 2 or infinity.

Proof. Suppose gl.dim. R is finite. It is well known that gl.dim. U = 3, so by
Kaplansky [5; Theorem 4, p. 173], gl.dim. R ^ 2. It is clear that gl.dim. R ± 0. It
remains to show that gl.dim. R ± 1.

Suppose gl.dim. R = \\ that is R is hereditary. Because M is idempotent (that is,
M2 = M) and R is prime noetherian, Theorem 4 (iii) of Robson [9] applies. This
says that MS = S, but this contradicts Theorem 6.1 as M ± R. Hence
gl.dim. R = 2.

If K is a left ideal of R put K* = {ae Q(R) \ Ka ^ R}. Because R is a prime
noetherian ring K* ^ Horn (K, R) and so K is projective if and only if
K*K = EndR(K); and for this to happen it is sufficient that 1 e K*K. This provides a
reasonable method to prove Theorem 6.4. First we require an easy lemma.

LEMMA 6.3. If s and sqm are both elements of R, then sq, sq2,..., sqm~l are also
elements of R.

Proof. It is enough to prove the lemma when sq'" e R n D(t). Suppose t > 1;
then sqm = x{qp-n — t)...(qp-n-i)q' for some x e C[qp] by Proposition 5.1 (i).
Thus sqm~l = x(qp — n — t)...(qp — n — l)qt~1 which is an element of R by
Proposition 5.1 (i). Suppose t ^ 1; then sqm~l eD(t-l) and t - l ^ 0 , but by
Proposition 5.1 (ii), D(t — 1) ^ R. An induction argument now shows that the lemma
holds.
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THEOREM 6.4. The R-module R/M has projective dimension 2.

Proof. Because R is uniform as an .R-module, R/M is not projective. Notice that
the ring 5 is the endomorphism ring of M, so M is projective if and only if
M*M = S. However, S = R by the previous theorem. Thus if M were projective
then M*M = R; but this cannot happen as M is idempotent, viz. M*M = R implies
M*M2 = M. So M is not projective.

Now look at a projective resolution for M = Rp" + l +Rq2l" + l)p" + 1. Let

0 > K >R@R - 5 - > M >0

be a short exact sequence where n(r, s) = rpn+1 -\-sq2{n+i)p"+x. It is obvious that the
kernel K is given by

K = { { - s q 2 { n + l ) , s ) \ s s R a n d s g 2 ( n + I ) e K } ;

K is isomorphic to the left ideal J = {s e R \ sq2{n + 1) e R}. To show that R/M has
projective dimension two it suffices to show that 1 6 J*J (that is J is projective).

Clearly 1, q2(n+1) e J*, so 1, q, q2,..., q2{n+1) are elements of J* by Lemma 6.3. It
is easily checked that J contains p2(n + 1) and p'(qp — n — 2(n + l))...(qp — n — t — 1) for
0 ^ t < 2(n+l). Hence J*J contains the following elements:

for 0 ^ t < 2(n + l). Putting .x = qp these elements are

{ ( x - 3 n - 2 ) . . . ( x - n - t - l ) ( x -

Look at the commutative polynomial ring C[x]. The ideal of C[x] generated by the
elements above is C[x] itself, so l e J*J (because C[x] ^ J*).

COROLLARY 6.5. The unique finite dimensional simple R-module has projective
dimension 2.

Proof. The i?-module R/M is a direct sum of copies of this simple module so
Exercise 4 of Kaplansky [5; p. 169] gives the result.

7. Remarks

1. It is possible for corresponding results to be established on the right rather
than the left. However, for this to be done a different embedding of R in A^ is
required. This embedding is given by the map

F -*• p , H^>
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2. As mentioned in §4, A is not flat as an K-module. To see this let / be the left
ideal of R generated by p and qp. Then q® p — 1 ® g/? is a non-zero element of
A (x) / , but the image of this element in A ® R under the natural homomorphism is
zero. Thus A is not flat as a right jR-module. A similar example using the right ideal
of R generated by p and pq shows that A is not flat as a left ^-module either.

3. As mentioned in the introduction and in §2 (using the notation of
§2), M(X + 5) is an artinian K-module of length two and is faithful over R. Moreover,
M(X + S) has a unique simple submodule which is itself faithful over R. This simple
submodule is isomorphic to R/K where

K = Re + R{h + n + 2) = Rq(qp - n) + R(qp + 1).

To show that K has projective dimension ^ 1 is straightforward. Let

be the short exact sequence given by n(r, s) = rq(qp — n) + s(qp +1), so the kernel, J,
is given by

J = {(r,s)\n(r,s) = 0} s {r e R | rq{qp-n)(qp+ I ) " 1 e R} = J2

where J2 is a left ideal of R. It is easy to see that peJ2, and that
q{qp — ri)(qp + \ ) ~ l G i f , s o q(qp — n)(qp + l)~lp e J$J2. T h i s e l e m e n t is e q u a l t o
qp — n — l, and this together with the fact that qpeJ2 ^ J*J2 shows that 1 eJ*J2

(as n ^ 0). So J2, and hence J, is projective.

4. Dixmier [2] has shown that every left ideal of Ax can be generated by two
elements. More generally, Stafford [11] has shown that every left ideal of a simple
noetherian ring with Krull dimension 1 can be generated by two elements.
Considering how close R is to satisfying these conditions, we are prompted to ask
whether every left ideal of R can be generated by two elements. The answer is no.

Let J = {s e R | sq2(n + l) e R] be the left ideal which occurs in Theorem 6.4 as the
kernel of the resolution of M. We will show that J requires at least three generators.
Clearly if J can be generated by less than three elements so too can the K-module
J/MJ. It will be shown that J/MJ requires at least three generators.

We use the techniques and notation developed in Ratliff and Robson [8]. To
begin recall the definitions of [8]. Let B be a finitely generated K-module. Let J(B)
denote the Jacobson radical of B (that is, the intersection of the maximal submodules
of B), and A(B) denotes the length of a composition series for B/J(B), or oo if no
composition series exists. Suppose X{B) < oo and B ± 0. For each simple K-module
T occurring in a composition series for B/J(B), let e(T) denote the number of copies
of T in the composition series and let f(T) = X(R/ann T). Define v(B) to be the least
integer such that

v(B)> sup {Ue(T)/f(T)}

where T varies over all simple composition factors of B/J{B). The following theorem
forms the basis for our proof.
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THEOREM 7.1 [8]. If X{B) < oo, then B can be generated by v(B) elements and no
fewer.

Here J/MJ is a finitely generated left R/M module, so is certainly of finite length
as R/M is simple artinian. It follows that J/MJ is semi-simple and has zero Jacobson
radical. The only module possibly occurring in a composition series for J/MJ is the
finite dimensional simple module S (of dimension n +1). It is clear that f(S) = n +1
and e(S) is precisely dim (J/MJ)/(n + l) so we shall show that
dim {J/MJ) > 2{n +1)2, implying v(J/MJ) ^ 3, and hence by the theorem, J has at
least three generators.

The idea behind the proof is simple but a tedious amount of calculation is
required. The first step is to show that MJ £ J n Ap3{n + 1), and the problem is
reduced to showing that we can find at least 2(n + l)2 + l elements of J which are
linearly independent (over C) modulo Ap2>(n + V).

LEMMA 7.2. MJ <= V ( " + 1).

Proof. After Theorem 5.5 it is enough to show that p" + lJ £ /4p3(n + 1). Because
00

q2(n + \) j s a homogeneous element of A it follows that J = @ (j n D{t)), and
— oo

accordingly we prove that p" + 1 ( j n D{t)) ^ ,4p3(" + 1) for all t. Let a e J n D(t).
Suppose t > 0. Put a = {qp — n — t)...{qp — n — l)f{qp)q' (after Proposition 5.1)

where f(qp) e C[<jrp]. Because aq2{n+l) e R, it follows (by Proposition 5.1) that there
exists g{qp) in C[gp] such that f{qp) = (qp — n — 2(n + i) — t)...(qp — n — t — l)g(qp).
Now

p"+la = (qp-n

which is an element of/Ip3("+1) as p'q'eClqp'] and p3(" + 1)C[gp] = C[^p]p3(n

Suppose t ^ 0. If t ^ — 2(n + l) then it is clear that

p" + laeD(t-(n + l)) <= Api(n + l)

by Proposition 5.1. So suppose — 2(n + l ) < t ^ 0 , and put s = — t. Let
a = f{qp)ps where f{qp) e C[gp] . Because aq2{" + l)eR, and is equal to
f(qp)psqsq2(n + l)~s, it follows that

f{qp)psqs = {qp-n-2(n + l) + s)...(qp-n-l)g(qp)

for some fif(^fp) e C[gp] (this is by Proposition 5.1). Now psqs = (qp + l)...(qp + s)
and so g{qp) = {qp + \) ...{qp + s)h{qp) with h(qp) € C[gp] . In particular, if follows
that / ( g p ) = (gp — n — 2{n + l) + s)...(qp — n — l)h(qp) and now

p" + 1a = p" + l(qp-n-2{n + l) + s)...{qp-n-l)h{qp)ps = q2{n + 1)-sp>{n + l)

which is an element of ApM"+l) because p3(l l + 1)"s/i(gp)G C[^p]p3 (" + 1 )"s .
This completes the proof of the lemma.
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LEMMA 7.3. The vector space J/J n Ap3(n + i) has dimension at least

Proof. In Theorem 6.4 it was shown that J contains the elements p2(n + 1) and
pt(qp-n-2(n + i))...(qp-n-t-\) for 0 < t < 2(n + l). Because J is a left ideal J
contains the following elements:

= 2(n
x(s,t) =

p'+s{qp-n-2(n+l))...(qp-n-t-l) 0 ^ s < n + l,

There are precisely n + 1 +2(n +1)2 of the elements and the proof will show that the
images of these elements in J/J n Ap3{n + 1) are linearly independent. Notice that each
x(s, t) may be written uniquely in the form y(s, t)ps+t where y(s, t) is a polynomial in
qp of degree 2(n +1) — t.

Suppose that £as>tx(s,f) e Ap3{n + 1) where asr e C and the sum over all pairs (s, t)
with 0 ^ s < n + 1 , 0 ^ t < 2(n+l) . Because p3(n + 1) is a homogeneous element of

00

A, it follows that Ap3{n + i) = 0 (Ap3{n + 1) n D{r)). Fix an integer r with
— oo

0 ^ r ^ 3 (n + 1). Splitting the above sum into its homogeneous parts, it must be the
case that

Now, if xeA, then xpM" + l) eD(-r) if and only if x e D(3(n +1)-r); that is if and
only if x = f(qp)q3{n + l)~r for some f{qp) e C[gp]. Hence,

and, dividing on the right by p\

Now, g3di + i)-rp3<n + i)-r i s a n e i e m e n t of £,[qp] of degree 3(n + l ) - r , so the above
equation may be interpreted as being a relationship of linear dependence between
certain polynomials in C[gp]. However, each term on the left is of degree
2(n + l) — t = 2(n + l) — {r-s) < 3(n+l)-r because s < n + 1. So we have a linear
dependence relation between elements of C[gp], each element being of different
degree—this of course can only happen if all as>t = 0.

COROLLARY 7.4. The left ideal J = {s e R \sq2{n + 1) e R} requires at least three
generators.

Proof It is simply a matter of putting together all the above. By the two
foregoing lemmas, dim (J/MJ) > dim (J/J n Ap{n + l)) > 2(n + l)2 , and then the
discussion prior to Lemma 7.2 completes the argument.
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Note added in proof. Stafford has recently shown that every infinite dimensional
simple /^-module is of projective dimension 1. Consequently gl.dim. R = 2.

References

1. D. Arnal et G. Pinczon, 'ideaux a gauche dans les quotients simples de l'algebre enveloppante de
s/(2)", Bull. Soc. Math. France, 101 (1973), 381-395.

2. J. Dixmier, "Sur les algebres de Weyl II", Bull. Sci. Math. (2), 94 (1970), 289-301.
3. J. Dixmier, "Quotients simples de l'algebre enveloppante de s/(2)", J. Algebra, 24 (1973), 551-564.
4. J. Dixmier, Enveloping algebras, North-Holland Mathematical Library (North-Holland, Amsterdam,

1977).
5. I. Kaplansky, Fields and rings, Chicago Lectures in Mathematics (University of Chicago Press,

Chicago, 1969).
6. J. C. McConnell and J. C. Robson, "Homomorphisms and extensions of modules over certain

differential polynomial rings", J. Algebra, 26 (1973), 319-342.
7. Y. Nouaze et P. Gabriel, "Ideaux premiers de l'algebre enveloppante d'une algebre de lie nilpotente",

J. Algebra, 6 (1967), 77-99.
8. L. J. Ratliff and J. C. Robson, "Minimal bases for modules", Houston J. Math., 4 (1978), 593-596.
9. J. C. Robson, "Idealizers and hereditary noetherian prime rings", J. Algebra, 22 (1972), 45-81.

10. J.-E. Roos, "Complements a l'etude des quotients primitifs des algebres enveloppantes des algebres de
lie semi-simples", C. R. Acad. Sci. Paris Ser. A, 276 (1973), 447-450.

11. J. T. Stafford, "Completely faithful modules and ideals of simple noetherian rings", Bull. London Math.
Soc, 8(1976), 168-173.

School of Mathematics,
University of Leeds,

Leeds LS2 9JT.


