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1. Introduction

11. Let k be a field of characteristic zero. All vector spaces and algebras in this paper are taken
over k.

The first Weyl algebra is the ring A =k(x, y)/(xy — yx—1). We impose a Z-grading on it by setting
degx =1 and degy = —1. There is an isomorphism between A and the ring of differential operators
with polynomial coefficients on the affine line Speck[t] that is given by sending x to “multiplication
by t” and y to —d/dt.
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Our main result is that the category GrA of Z-graded A-modules is equivalent to the category of
quasi-coherent sheaves on a quotient stack X whose coarse moduli space is the affine line Speck(z],
and whose stacky structure consists of stacky points BZ; supported at each integer point n € Z C A}C.
We write

GrA = QcohX (1-1)
to denote this equivalence.

12. We now describe X.

Let Zgn be the group of finite subsets of Z with group operation given by “exclusive or”. Let G be
the affine group scheme whose coordinate ring is the group algebra kZg, with its usual Hopf algebra
structure. Since Zgy, is 2-torsion and is generated by the singleton sets {n} a k-valued point g € G
corresponds to a function Z — {+1}, n+ g({n}). We write g, for g({n}).

We define an action of G on the ring

C:=kl[z]l[/z—n|neZ]

by g.+/z—n:= gy/z —n, and the stack-theoretic quotient

S
X::[ pecC}
G

Its coarse moduli space is the affine line Speck[z]. Max Lieblich tells me that X is an algebraic stack
whose diagonal is locally of finite type but not quasi-compact (even though it is unramified).

1.3. The action of G on C corresponds to the Zg,-grading on C given by

deg+/z—n={n}.

A standard result for quotient stacks says that QcohX’ is equivalent to the category of G-equivariant
sheaves on SpecC or, equivalently, that there is an equivalence

QcohX = Gr(C, Zgn),

where Gr(C, Zgy) is the category of Zg, graded C-modules. Under this equivalence locally free co-
herent Ox-modules correspond to finitely generated projective graded C-modules; for example,
Ox corresponds to C.

We note that C is isomorphic to the polynomial ring k[x, | n € Z] modulo the relations x% +n=
xfn +m for all m and n, with the grading given by degx,, := {n}, and the isomorphism given by z <> x%,
and /zZ — 1 < x,. We therefore think of k-valued points of SpecC as elements in kZ.

The map (aj)icz > (ai -- ~a2g+1,a(2)) is a surjective morphism from SpecC to a hyperelliptic curve
of genus g. If k is not of characteristic two the fibers of this morphism are uncountable. When k = C
with its usual topology and CZ is given the product topology, and Max C is viewed as a subspace of
CZ with the subspace topology, the fibers are Cantor sets.

14. At first sight, the equivalence (1-1) is surprising. The Weyl algebra is an infinite dimensional
k-algebra having no two-sided ideals other than zero and the ring itself so has no non-zero finite
dimensional modules. As such it is “very non-commutative”. In stark contrast, C is not only commu-
tative but is even a graded PID meaning it is a domain and every graded ideal is principal. Graded
right ideals in A need not be principal. Moreover, C is a directed union of Dedekind domains. Al-
though C is not noetherian, it is noetherian from the graded perspective, meaning that Gr(C, Zgy) is
a locally noetherian category. In particular, it has a set of noetherian generators.
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1.5. The relation between A, C, and X, can be viewed in the following way. Let A be the k-
linear abelian category GrA but forget for the moment that it is GrA and consider it just as an
abelian category. The endomorphism ring of the identity functor ida is a polynomial ring in one
variable. In the equivalences of A with GrA, GrC, and QcohX’, End(ida) identifies with Ag = k[t%],
Cy =k[z] = k[x(z,], and I'(X, Oy), respectively. The Picard group, PicA, of A is defined as the group
of auto-equivalences modulo isomorphism. (It does contain the usual Picard group of X where one
identifies an invertible O y-module £ with the auto-equivalence £® —.) Thinking of elements of Pic A
as being like invertible sheaves, or line bundles, one is led to associate to each subgroup I" of PicA a
“homogeneous coordinate ring”

EB Hom(ida, F)

Fer

where Hom(ida, F) consists of natural transformations from ida to F. This point of view lies at the
heart of the work of Artin and Zhang's conception of non-commutative algebraic geometry [1]. There
are particular subgroups of PicA isomorphic to Zg, and Z, and the “homogeneous coordinate rings”
associated to these subgroups are isomorphic to C and A, respectively. The subgroup isomorphic to
Zgn also identifies with Pic X. In some sense, x,,, or rather the result of its action on ida, is an endo-
functor of A that is a square root of the endo-functor of GrA that is given by a left action of the
operator t% —n on graded right A-modules (see Sections 9.4 and 3.6).
The subgroup of Pic(GrA) isomorphic to Zg, was found by Sue Sierra [5].

1.6. The stimulus for this paper was Sierra’s work on the graded Weyl algebra [5] and especially
her “picture”

(1-2)

of the simple graded A-modules which reminded this author of a stack on the affine line with stacky
structure BZ; at each integer point. Each point in Sierra’s picture represents a simple graded A-mod-
ule: if A € k — Z there is a single simple graded A-module up to isomorphism, namely A/(xy — 1)A;
if n € Z there are two simple modules,

A A
X(n) = (H>(n) and Y(n):= <y—A>(n —-1).

(The isomorphism between A and D(A!) may be chosen so that Y (1) corresponds to the natural
module k[t] and X(1) corresponds to the module k[t,t~']/k[t].) There is a non-split extension of
X(n) by Y(n) and a non-split extension of Y (n) by X(n) for each n.

The underlying line in (1-2) should be thought of as Speck[xy] and the two points at n € Z repre-
sent, in some sense, the two formal square roots of —xy —n (because —xy corresponds to t%).

We call the two points at n € Z C k “fractional points”. There are two reasons for this. First, if
neZ and A € k—Z there is an equality [X(n)]+[Y(n)] =[A/(xy — A)A] in the Grothendieck group of
GrA, and under the equivalence with QcohX, [A/(xy — A)A] identifies with the skyscraper sheaf O,
at the point A € Speck[z]. Second, there is some consistency with the notion of a “fractional brane”
or “brane fractionation”, where a brane represented by a point in the Azumaya locus “fractionates”
when it moves to the non-Azumaya locus.

Sierra’s picture can also be viewed as a depiction of the stack X'. The line given by collapsing the
“fractional points” is the coarse moduli space Speck[z] of X’ and the two points at n correspond to the
skyscraper sheaf O, =k[z]/(z —n) endowed with the trivial and sign representations of the isotropy
group at n, and A € k — Z corresponds to O, =k[z]/(z — 1). If xsn and xuiv denote the sign and
trivial representations of the appropriate isotropy groups, then under the equivalence of categories
GrA = QcohX’ there are correspondences
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On® Xmiv ifn <0,

X(n) e~ {On@))(sgn ifn>1,

On® xsgn ifn <0,
Y(n s
() e~ {On®Xtriv ifn>1.
Under the direct image functor for the morphism from X’ to its coarse moduli space “half’ the X(n)s
and “half’ the Y (n)s are sent to zero.

Under the equivalence with GrC, X(n) corresponds to C/(x,) when n <0 and to an/(x%) when
n > 1; similarly, Y (n) corresponds to C/(x;) when n>1 and to an/(xﬁ) when n < 0.

1.7. Further evidence of a possible relation between GrA and QcohX is the behavior of the Ext-
groups between simple modules. Sierra showed that the only non-trivial extensions between non-
isomorphic simple graded A-modules are the following: For all i, j € Z

k ifi=j, and

exty (X(0), Y(j)) Zexty (Y (), X()) = { 0 ifit] (1-3)

where ext}‘ denotes Ext}\ in GrA [5, Lem. 4.3]. This is “the same” as the behavior of the ext-groups
between the simple objects in QcohX.

1.8. Using the equivalence between GrA and QcohY, the direct image functor for the morphism
from X to its coarse moduli space transfers to a functor GrA — Modk[z]. That functor sends a graded
A-module to its degree zero component. For example, A viewed as a graded right A-module is sent
to k[xy] which identifies with k[z]. We therefore write z for the element xy of A and think of it both
as an element of A and as the coordinate function on the affine line that is the coarse moduli space
for X, i.e. k[z] = C® = Cy. We note that k[z] is equal to k[x2] for all n € Z.

19. Having obtained the equivalence between GrA and QcohX or, equivalently, with Gr(C, Zgy),
one can obtain alternative proofs of many of Sierra’s results by transferring results from Gr(C, Zgy,)
to GrA. This is a good thing because the fact that C is a graded PID makes the study of its graded
modules quite straightforward.

To illustrate this point we compute the Grothendieck and Picard groups of Gr(C, Zg,) directly
using C rather than using the equivalence of categories and quoting Sierra’s result that computes
those invariants for GrA.

1.10. Section 2 is preparatory, setting up notation, and recalling some well-known facts. Section 3
concerns the Picard group Pic(R, ") of the category Gr(R, ") of graded modules over a ring R
graded by an abelian group I'. The results there may be of independent interest. The notion of
an “almost-automorphism” of (R, I') is introduced and we show that every almost-automorphism
determines an auto-equivalence of Gr(R, I"). Proposition 3.5 shows that a pair of auto-equivalences
F and G such that F(R(i)) = G(R(i)) for all i € I' are naturally isomorphic if the endomorphism
ring of every homogeneous component R; is isomorphic to Rg. There is a group homomorphism
Pic(R, I') — AutEnd(idgr(r, r)). In Proposition 3.9 a criterion, which is satisfied by (A, Z) and (C, Zgp),
is given that implies there is a ring isomorphism Ro — End(idgr(r,r)). In particular, in this situation
every graded right R-module can be given the structure of an Ro-R-bimodule.

Section 4 concerns the structure of C as an ungraded ring and also examines the “variety” X c C%
of which C is the coordinate ring. By definition, X is the zero locus of the equations xﬁ +n= x,zn +m,
m,n € Z. The topological structure of X is examined when CZ is given various topologies and X is
given the subspace topology. For example, when CZ is given the product topology the fibers of each
projection x, : X — C are Cantor sets. With the box topology X becomes discrete. With an appropriate
embedding in ¢°°(Z), X has uncountably many connected components, all homeomorphic to one
another and permuted by the action of the group {£1}Z acting by coordinate-wise multiplication.



S.P. Smith / Journal of Algebra 345 (2011) 1-48 5

Each component can be given the structure of a Riemann surface with respect to which the coordinate
functions x, are holomorphic.

Section 5 establishes the properties of C as a graded ring and culminates in a proof that the cate-
gories Gr(A, Z) and Gr(C, Zg,) are equivalent. However, that equivalence is not used in Sections 6—8.
Thus, the results in those sections are independent of Sierra’s work, and provide alternative proofs of
several of her results.

Section 6 classifies the simple graded C-modules and focuses on those that are supported at the
stacky points on X'. We call those special. They correspond to the graded A-modules labelled X (n) and
Y (n) above. As in Sierra’s analysis, they play a central role in this paper. For example, Corollary 6.9
shows that an auto-equivalence of Gr(C, Zgy,) is determined up to isomorphism by its action on the
isomorphism classes of the special simple modules.

The special simples may be characterized as those simple graded modules S such that ext!(S, )
is non-zero for some simple module S’ that is not isomorphic to S. They may also be characterized as
those simple graded modules S such that hom(P, S) =0 for some non-zero projective graded module
(Proposition 6.3). Sierra exploits the first characterization in her paper whereas we choose to exploit
the second characterization in this paper so as to provide a different perspective.

Section 7 computes the Grothendieck group of the category of finitely generated graded C-
modules or, equivalently, that of the G-equivariant locally free sheaves on SpecC. We compute that
Grothendieck group as an explicit quotient ring of the group algebra ZZg,. In passing, we prove that
the isomorphism classes of finitely generated projective graded C-modules or, equivalently, locally
free G-equivariant sheaves on SpecC, are in natural bijection with the finite multi-sets of integers.

Section 8 shows that the translation and reflection symmetries of Sierra’s picture (1-2) can be
implemented at the functorial level by the functor 7, induced by the automorphism 7 :z+ z+1,
or X, — Xp—1, of C, and by the functor ¢, induced by the almost-automorphism ¢ : x, > x_p, x% —
—x2,, z+> —z, respectively. The reflection symmetry cannot be induced at the functorial level by
an automorphism of C unless k contains +/—1. The main result in Section 8 is the computation of
Pic(C, Zgn). We show it fits into a sequence

1 — Zgn — Pic(C, Zgp) — Iso(Z) — 1

where Iso(Z) is the isometry group of Z, the infinite dihedral group, abstractly.

Section 9 makes a direct comparison between Gr(A,Z) and Gr(C, Zg,). Proposition 9.2 shows
how the special simples over each ring correspond under the equivalence of categories—the corre-
spondence is not what the notation might lead one to expect. Theorem 9.6 shows that the auto-
equivalences ¢, | € Zgy,, found by Sierra correspond to the Serre twists (J) on Gr(C, Zgy). Proposi-
tion 9.5 shows that the Serre twist, (1), on Gr(A, Z) corresponds to the auto-equivalence ({1}) o T,
of Gr(C, Zgp). Proposition 9.3 shows that the auto-equivalence of Gr(A,Z) induced by the automor-
phism x+ y and y — —x corresponds to the auto-equivalence 7,¢, of Gr(C, Zg,) induced by the
almost-automorphism tg.

The equivalence between Gr(A, Z) and Gr(C, Zg,) was proved in Section 5 by starting with C and
then showing that A was the endomorphism ring of a certain bigraded P-module. In Section 10 we
take the opposite approach and show that C can be constructed from Gr(A, Z) as a sort of twisted
homogeneous coordinate ring.

1.11. The results about graded C-modules can be translated into results about QcohX’ or, equiva-
lently, about the G-equivariant sheaves on Spec C. For example

(1) the Grothendieck group Ko(X) is a free abelian group of countable rank, and we present it as an
explicit quotient of the group algebra ZZg, in Theorem 7.4;

(2) the invertible O y-modules are, up to isomorphisms, the twists of Oy by the characters of G or,
equivalently, Pic X = Zg, (Corollary 5.7);

(3) every locally free O xy-module is a direct sum of invertible O y-modules (Proposition 5.5);

(4) the locally free Oy -modules are, up to isomorphisms, in natural bijection with the finite multi-
sets of integers.
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2. Preliminaries
2.1. The Weyl algebra A
The Z-grading on A given by
degx=1, degy =—1

is sometimes called the Euler grading because A consists of those operators/elements a such that
[D, a] =na where D is the Euler vector field/derivation

D=t—.
dt
2.2. The twist functor on GrA

For each n € Z, we define Serre’s twist automorphism M +— M(n) on GrA by declaring that M(n)
is equal to M as a right A-module but the grading is now given by

M(n); = Mp;.

This notation differs from Sierra’s: her primary twist functor is denoted by M +— M(n) where M{(n) = M
and

M(n)i = Mi_n.
Thus (n) = (—n).
2.3. The Zgy-grading on C

Let Zg, be the group of finite subsets of the integers with group operation
e J:=10]-INn]J=Ud-DHU—D.
The identity is the empty set &. It is easy to see that Zg, is the direct sum of the two-element

subgroups {@, {i}}, i € Z.
Define the commutative ring

C:=k[x, |n€Z] modulo the relations,
X2 4n=x%+m, foralln,meZ.

We make C a Zgp-graded ring by declaring that

degx, = {n}.

The identity component, Cg, is equal to k[x%] for all n € Z. For each I € Zg, we define

X] = Hxi

iel
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with the convention that xg = 1.2 The homogeneous components of C are C;:= Cgx;. We will see
below that C is a domain so each Cj is isomorphic to Cz as a Cz-module.

2.3.1. The ring Zsup

Let Zg,, denote the set of all subsets of Z. Then Zg,, is a commutative ring with identity with
respect to the product given by intersection and addition given by . Its identity is Z and its zero ele-
ment is &. Thus Zg, is a subring of Zs,, without identity. Since every element of Zg,; is idempotent,
Zsup is a Boolean ring.

We note the identity [ — =1 UN))=INZS ]).

2.3.2. Notation for Zgn
If ] € Zgn and n € Z we adopt the notation:

en+J:={n+jljej}
enj:={njlje]}

2.4. Categories of graded modules

If R is a ring graded by a group I" we write Gr(R, I') for the category of I"-graded right R-modules
with degree-preserving homomorphisms. If I" = Z we often write GrR for Gr(R, Z).

We will write homg (M, N) for the degree preserving R-module homomorphisms from one I'-
graded R-module M to another N. We denote the right derived functors of homg by extlk, i>0.

There is a category of graded rings in which the objects are pairs (R, I') consisting of a group I
and a I'-graded ring R. Morphisms are pairs (o, @) : (R, I") — (R’, I'") where & : I’ — I'’ is a group
homomorphism and o : R — R’ is a ring homomorphism such that a(r;) C R}; for all i e I'.

Associated to (o, &) is a functor a* : Gr(R, I') — Gr(R’, I'’) and its right adjoint a, : Gr(R’, I'") —
Gr(R,IN). If M € Gr(R', I'’), then (asxM); := Mg; for all i e I" and R acts on o, M via the homomor-
phism «.

If me Mg; we will label it as a,m when we think of it as an element in oM. Hence x.ot,m =
o (a(x)m).

2.5. The affine group scheme G

The group algebra of Zg, is

klu; |ieZ
KZgy = 2[u1|1§ 1
(uy —1]iez)

where u; is an alias for the element {i}. The group algebra is given its usual Hopf algebra structure
and we define the affine group scheme

G :=SpeckZgp.

The letter G will denote both the group scheme and the group of k-valued points of SpeckZgp,.

Let {1}% be the group of functions Z — {#1}. There is an isomorphism G — {+1}% that sends
g € G to the function Z — {£1} given by i — u;(g). Thus, G is isomorphic to a countable product
of copies of {+1}. When we consider an element g € G as a function Z — {£1} that function will
always be given by g(i) = ui(g).

2 Whenever things are indexed by elements of Zg, we write x; rather than x(i for the element indexed by {i}.
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2.6. The stack

We define an algebraic action of G on SpecC by declaring that g € G acts on x; by

g.x; = g(i)x;,

and define the quotient stack

S
X::[ pecC:|.
G

The category of quasi-coherent O y-modules is denoted by QcohX and is equivalent to the category
of G-equivariant C-modules—we will usually think of it in this way.

The invariant subring of C is C¢ =Cg = k[xﬁ] for all n. The coarse moduli space of X" is therefore
the affine line Speck[x3].

We will denote k-valued points in SpecC by tuples (a;) € kZ, a; € k, such a point corresponding to
the maximal ideal

Y xi—ap.

i€Z

The relations for C imply that at most one a; is zero. Therefore the points having a non-trivial isotropy
group are those for which one a; is zero. The isotropy group at such a point is isomorphic to Z;. Such
points are those where x(z) takes an integer value. Hence all the stacky structure on X occurs at the
integer points x(z) =n, n € Z, on the coarse moduli space Speck[x%].

2.7. Because O(G) is the group algebra kZg, a rational representation of G is the same thing as
a Zgn-graded vector space. In particular, the Zgn-grading on C is that induced by the action of G on
O(0).

It is a standard result that the category of G-equivariant C-modules is equivalent to the category
of Zgn-graded C-modules, so there is an equivalence of categories

QcohX = Gr(C, Zgp)

where the latter denotes the category of Zg,-graded C-modules.
Our main result, namely that

GrA = QcohX,

will be proved by showing that GrA = Gr(C, Zgp).
3. Auto-equivalences of categories of graded modules

The Picard group of a category is its group of auto-equivalences modulo natural isomorphism.

Let (R, I") be a graded ring. We write Pic(R, I') for the Picard group of Gr(R, I'). As remarked
in Section 2.4, an automorphism (o, &) of (R, I") induces an automorphism o, of Gr(R,I"). We
write [a,] for the isomorphism class of «. This passage o ~~ [a,] can be mimicked for certain maps
o : R — R that are not automorphisms.
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3.1. Almost-automorphisms of (R, I')

Let k be a subring of Rg that is central in R. Let k* denote the group of units in k.
An almost-automorphism of (R, I') is a triple (&, &, A) consisting of

(1) an automorphism & of I,

(2) a k-module automorphism « : R — R of R such that «(R;) = Rg; for all i, and
(3) a normalized 2-cocycle A:I" x I" — k*, (i, j) = Ajj, i.e, Aoo =1 and

Ahikjhij = A, jAni (3-1)

for all h,i, j € I', such that

a(xy) = Ao (x)a(y)
forall xe Ry and all y e R; and all h,ie I.
3.1.1. Because Agg = 1, the restriction of o to Rg is a k-algebra automorphism of Ry.
3.1.2. An automorphism (&, &) of (R, I') is an almost-automorphism with Ap; =1 for all h and i.
3.1.3. I am grateful to Margaret Beattie for the following observation.
Suppose X is a normalized 2-cocycle and (o, @) a pair satisfying conditions (1) and (2) in Sec-
tion 3.1. Let v=2Ao (@ ! x @ ). Then v is also a normalized 2-cocycle and there is a standard

construction of a new graded k-algebra (RY, I') which is (R, I') as a graded k-module, but endowed
with a new multiplication

Xx Yy = VjjXy

for x € R; and y € R;. Beattie observed that (o, &, 1) is an almost automorphism of R if and only if
(¢, @) is an isomorphism of graded k-algebras (R, I') — (R, I').

Lemma 3.1. The set of k-linear almost-automorphisms of a graded k-algebra (R, I") form a group with respect
to the product

(a,A)*(B,v) :=(ap, &), whereé; :=}\/§i’ﬁjv,‘jforalliand j-

Proof. It is straightforward to check that (¢, &) is an almost-automorphism. The identity automor-
phism (idg, id/) has the property that (idg, 1) * (¢, 1) = (0, A) % (idg, 1) = («, A), so is an identity for
the product .

If (v, A) is an almost-automorphism so is (@™, ¢) where

|
Gij = )Ldfli,érlj

for all i and j. It is easy to see that (o, A) % (@~ 1, ¢) and (¢~ 1, ¢) = (, A) are equal to (idg, 1). The
set of almost-automorphisms is therefore a group. O

We write Aut(R, I') for the group of almost automorphisms of (R, I').
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3.2. For each (i, j)e I' x I', let R; j := R;—; and define
R= @ Ri).
i,jel’
The components Ri,]- can be viewed as the sets of morphisms j — i in the category C(R, I') whose
objects are the elements of I, and in which composition of morphisms is given by multiplication

in R. Thus R is a ring but does not have an identity if I" is infinite, though it does have “local” units.
Let (a0, @, 1) be an almost-automorphism of (R, I"). Define a k-linear map & : R — R by

a(x) = Aij, joe(x)
for x € R; j. Then & is an algebra automorphism of R.

We define an automorphism F = Fy 3,5 : C(R, I') = C(R, I") of C(R, I') by declaring that Fi := i,
ieI, and on a morphism x € R; ; its action is

X Fx:=i_j ja(x).
3.3. Automorphisms of Gr(R, I') induced by almost-automorphisms

Let o be an almost-automorphism of (R, I'). Let M € Gr(R, I"). We define o.M to be M endowed
with the grading

(@xM)p := Mah-

We write a,m for an element m € M viewed as an element of «,M. It is easy to see that o.M
becomes a graded R-module when the action of x € R; on an element «,m € (o, M), is defined to be

(0tym).x == oty (M (X)) .

The only point to be checked is the associative law, ((a,m).x).y = (a,m).(xy), which follows from the
identity (3-1).

Lemma 3.2. Let o be an almost-automorphism of (R, I'). If f : M — N is a homomorphism of graded R-
modules, then the map o, f defined by

(ot f)(atxm) == ot (fm)
is a homomorphism a, M — a.N. With these definitions, o, becomes an automorphism of Gr(R, I').

3.3.1. There is another way to view the auto-equivalence o, associated to an almost automorphism
by using Beattie’s observation in Section 3.1.3. First, there is an identification Gr(R, I') = Gr(R", I')
because every left R-module M may be viewed as a left RV-module with respect to the action

X*1M 1= VjjXm

for x € R; and m € M;. To avoid confusion, we will write M for M viewed as an R”-module and write
m” to denote the element m in M viewed as an element in M". We now label the homomorphism
(o, @) of graded rings as (8, B) : (R, I') — (RY, I'). As remarked at the end of Section 2.4, there is an
equivalence B, : Gr(RY, I') — Gr(R, I') given by the following rule: if M is an RY-module, then 8.M
is an R-module with x € R; acting on B.m € (BxsM); = Mg; by x.8.m = B.(B(X)m).
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If we now identify the domain of B, with Gr(RY, ") of v with Gr(R, ") then B, is the auto-
equivalence . To see this suppose that M € Gr(R, I') and consider the action of x € R; on an element
Bx(m") in B (MV)j = (MV)Bj =Mg; = Mgj. We have

XBu(m”) = Bu(BX) xm") = Bu (v 5;(BIM) ") = dij B (@ m)").

Stripping away the superfluous notation this reads x.m = A;;a(x)m which is, indeed, the action of x
on oM.

3.3.2. Warning
Some care must be taken when identifying o.M with its underlying set M, even when « is an
automorphism. Suppose ¢ € R belongs to the center of R. Then the multiplication map pocp : M —
M(j), pc,m(m) :=mc is a homomorphism of graded R-modules. By definition, a.(oc,m) is the homo-
morphism a,M — a,.(M(j)) given by
(@ (pe,m)) (m) = et (e, (M) = et (me) = s (m).oe~ '

SO

C(*(IOC,M) = p(x—lc,a*M'

Thus o, (pc, ) is multiplication by «~'c on oM but when/if oM is identified with its underlying

set M, a.(pc,m) is multiplication by c. When (o, A) is an almost automorphism o (oc,m) acts on
(oxM); as multiplication by Aijoflc.

Lemma 3.3. Let (o, 1) be an almost-automorphism of (R, I') and h € I"'. The map 6 : R(h) — o (R(ah))
defined by

0(x) := A jas(@x) ifx € R(h);

is an isomorphism of graded right R-modules. In particular, « viewed as a map R — R is an isomorphism
of right R-modules.

Proof.> Let x € R(h);. Then x € Ry, SO ax € Rgniai = R(&h)gi. Hence o, (ax) € oy (R(@h));. Thus 0
preserves degree.

Because « is bijective 6 is too.

To see that € is a right R-module homomorphism, suppose that x € R(h); and y € R;. Then

O(x.y) = ot (ot (XJ’)))‘E,}'H’
A (X)a(}’)))\i-rh,j)‘l;,}ﬂ
= o (@ (X (1) Ay A
= oz*(om).ykhfi1

=0(x).y

so 0 is an R-module homomorphism. O

3 This proof does not use the fact that Agg = 1.



12 S.P. Smith / Journal of Algebra 345 (2011) 1-48

Proposition 3.4. Let («, 1) be an almost-automorphism of (R, I') and h € I". There is an isomorphism of
functors

(h) oy = 0ty o (xh).
If a is an automorphism, then (h) o oy = oy o (¢th).

Proof. First we show there is an isomorphism of graded R-modules

(M) (h) = o (M(ath))

for every M € Gr(R, I').

Let i € I'. The degree i components of a.(M(ah)) and (a.M)(h) are equal to Mgh4qi- Let m €
Mgh.qi. For the purposes of this proof, we will write m for m viewed as an element of (&, M)(h) and
m for m viewed as an element of o, (M(ah)).

The map

¥ (@ M) (h) — a (M(@h)), () :=A,;}ﬁ form e (a.M)(h);

preserves degree and is bijective because the Ap;s are units. Furthermore, if y € R;, then

Y (F.y) =¥ (ma () risn
=ma(Y)hgy |, i j
= ma(y)hijhy |
=m.yr;;!
=y (m).y

so ¥ is an R-module homomorphism, and hence an isomorphism of graded R-modules.

Let f: M — N be a homomorphism between graded R-modules. We write f and f respectively
for the homomorphisms obtained by applying the functors (h) o o and @, o (@h) to f. Of course,
f and f are just the map f on the underlying set M. It is easy to see that

(@M)(h) —— s (@.N)(h)

o [

o (M(ah)) ﬁ o (N(ah)) (3-2)

commutes. Hence the /s collectively give a natural isomorphism (h) o oy, — a4 o (&h).
When « is an algebra automorphism we can take Ap; =1 for all h,i € I, so the map ¢ is the
identity map idy. Hence (h) ooty = @y o (@¢h). O

Lemma 3.3 is a consequence of Proposition 3.4 and the fact that o : R — 4R is an isomorphism
of graded right R-modules.



S.P. Smith / Journal of Algebra 345 (2011) 1-48 13

3.4. Isomorphisms between auto-equivalences

Let (R, I") be a graded ring and M a graded R-module. For each y € Rj and each i € I', define

fiy :R@) — RE+J), fiy®) :=yx.
Then f; , is a homomorphism of graded right R-modules.

Proposition 3.5. Let F and G be auto-equivalences of Gr(R, I") such that

F(R(®)) = G(R())

forallieI'.If the map Rg — Endg, (R ) sending a € Ro to the map b — ab is an isomorphism for all j e I,
then

F=G.
Proof. If the proposition is true when G = idgr(r, ), then it holds for all G because the general result
is obtained by applying the special case to F'G where F’ is a quasi-inverse to F. We will therefore
assume that F(R(i)) = R(i) for all i € I" and show that F = idg(, ).

By hypothesis, there are isomorphisms ¢; : R(i) — F(R(i)) for allie I".
FixieI'. Let y € R;. Then

¢, 0 F(fiy) o di: RG) — R+ )

is a homomorphism of graded right R-modules, so is left multiplication by a unique element
0i(y) € Rj. That is,

¢,'1]j o F(fi,y) o¢i = fiay)-

We therefore have a map 6; : R(j) — R(j) for all je I". If a € Ro, then fjay = fiyjao fiy, SO fig@y) =
fi.a6;(y)- Hence 6; is a right Ro-module homomorphism.

If w € R}, then ¢y jo fiwog; ' : F(R(i)) — F(R(i+ j)), but F : hom(R(i), R(i+ j)) — hom(F(R(i)),
F(R(i + j))) is bijective because F is an auto-equivalence so

irjo fiwod ' =F(fiy)
for some y € Rj. Hence fiw = fjg;y). This proves that 6; is bijective and hence an isomorphism of
right Rp-modules.
In particular, 6p : R(j) — R(j) is an isomorphism of right Ro-modules for every j, so there are

units u;j € Rp such that 6p(y) =u;y for all y e R;.
Let ze Ry. Then fiyj .y = fkz0 fi,y so

0i(zy) = 0i+j(2)6;(y). (3-3)

In particular, taking i =0 we see that

Ujirzy =0j(2)ujy

for all y e R; and all z € Ry.
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For each j e I" define 7;: R(j) = F(R(j)) to be tj:=uj¢;. Let z < Ry. Then the diagram

Tj
R(j) —————— F(R())

fj.zJ/ J/F(fj.z)

R(j+k) %’ F(R(j+k))
j+k

commutes because if y € R(j), then

(F(fj0)ot))) = (F(fj2) oujg;)(y)
= (F(fj.2) o dj)(u;y)
= (@j+k o fio;2)WUjy)
=¢jk(0j(Dujy)
= ¢jk(Uj1kZy)
= Tj+k(2y)

= (Tj+k o f},2) ().

Thus, the 7;s taken together provide a natural isomorphism from the restriction of F to the full
subcategory of Gr(R, I') consisting of the R(j)s to the identity functor on that subcategory.

Because the R(j)s generate Gr(R, I") the isomorphism t extends to an isomorphism 7 : F —
idgr(r, ). (One defines Ty : M — FM for a general M by writing M as the cokernel of a map P — Q
where P and Q are direct sums of various R(j)s.) O

The hypotheses of Proposition 3.5 hold if Rg is an integrally closed commutative noetherian do-
main and each R; is isomorphic to a non-zero ideal of Ry.

3.4.1. Proposition 3.5 applies to A and C

Both Ap and Cgz are isomorphic to a polynomial ring k[z] and all the homogeneous components
of A and C are rank one free k[z]-modules so the hypotheses of Proposition 3.5 are satisfied by A
and C.

Sierra uses the conclusion of Proposition 3.5 for the Weyl algebra although her proof that the
conclusion of Proposition 3.5 holds for the Weyl algebra is rather different from our proof of Proposi-
tion 3.5.

3.5. The Picard group Pic(R, I'")

There are several well-understood connections between Pic(R, I") and other invariants of (R, I').
For example, there is a group homomorphism I — Pic(R, I') that sends i € I' to the twist functor
M +— M(i). The kernel of this map is the subgroup of I" consisting of those i for which R; contains a
unit. The homogeneous units in (A, Z) and (C, Zg,) belong to the identity component of the ring so
the map I — Pic(R, I') is injective in those two cases.

The assignment (o, @, A) ~ [a4] gives a map Aut(R, I') — Pic(R, I') and by Proposition 3.4 the
image of this map is contained in the normalizer of the image of I" in Pic(R, I').
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3.5.1. Notation
If T:F — G is a natural transformation we write t); for the associated map FM — GM.

Proposition 3.6. Let A be an additive category. There is group homomorphism

@ : Pic(A) — Aut(End(ida))

defined as follows: If F is an auto-equivalence of A, G a left adjoint to F, and hence a quasi-inverse to F, and
n :idp — FG the unit,

@([F1) : End(ida) — End(ida), @ ([F1)(*)m := 1y o F(tem) o N

Proof. It is easy to check that @([F]) is an automorphism of the ring End(ida) and we omit the
details. It is easy to check that @ ([F][F']) = ®([F])@([F']) provided ® is well defined. To check & is
well defined it suffices to show that @ ([F]) is the identity if F =ida.

Let 6 : F — ida be an isomorphism. Let T € End(ida). The large rectangle in the diagram

nm oom
M——FGM — GM
|

I

|

I

|

4

M————— 5 FGM —— GM
M Ocm

commutes because t is a natural transformation. If the dashed arrow is F(z¢py) then the right-hand
square commutes because 6 is a natural transformation F — ida. If the dashed arrow is FG(ty)
then the left-hand square commutes because 71 is a natural transformation ida — FG. Because the
horizontal arrows in the diagram are isomorphisms, it follows that

F(tem) = FG(Tm).

In particular,

@ ([F1)(T)m =y o F(tem) o im = 0y 0 FG(Tm) 0 v = T

This holds for all M so @ ([F])(t) = . But T was arbitrary, so @([F]) is the identity. Hence & is a
well-defined homomorphism. 0O

One should check that the definition of @ ([F]) does not depend on the choice of G.
Suppose Ry is central in R. For each a € Ro and M € Gr(R, I'), let pq.m : M — M be g m(m) :=ma
for m e M. Let g :idgrr,ry — idgrr,r) be the natural transformation (ttq)m := ta,m. Then the map

i :Ro — End(idgrr, ), ar> Ha (3-4)

is a ring isomorphism.
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Proposition 3.7. Let (R, I') be a graded ring and suppose that Ry belongs to the center of R. Let @ be the
group homomorphism in Proposition 3.6, and let (4 be the isomorphism in (3-4). Then the map

o :Pic(R, I') — Aut(Ro), [Flr>ap:=pu ' o®([F])op
is a group homomorphism and, if M € Gr(R, I"), then Ma = 0 if and only if (FM).ar(a) = 0.

Proof. Let F be an auto-equivalence of Gr(R, I"), G a left adjoint to F, and 7 : idgyr,r) — FG the
unit. By definition, w o ¢ = @ ([F]) o i, so

(FM).ctp () = Image (i (e (@)) )
= Image(® ([F1)(ta)Fm)
= Image(nyy; © F(ia,GFM) © NFM).

Hence (FM).ar(a) =0 if and only if (g, crm =0, if and only if (GFM).a =0, if and only if Ma=0. O

More succinctly, ar(a) is the unique b € Ry such that @ ([F])(itg) = Up.

The next section examines a situation where there is a homomorphism Rg — End(idg(r,r)) with-
out the hypothesis that Ry is central in R. The result applies to (A,Z) and is used implicitly in the
proof of [5, Thm. 5.5].

3.6. Rg-R-bimodules
Sierra exploits to advantage the fact that every graded right A-module can be made into an Agp-
A-bimodule. Proposition 3.9, the hypotheses of which are satisfied by A and C, gives a criterion on

a graded ring (R, I') that implies every graded right R-module can be made into an Rp-R-bimodule.
First we need a lemma.

Lemma 3.8. Suppose that
Ro is commutative;
R; is a torsion-free left Ro-module foralli e I';

1)
2)
3) Rox=xRg forallxe Rjandallie I';
4)

(
(
(
(4) RoxNRoy #0forallx,y e Ri —{0}andallie I.

Then there is a homomorphism I — Aut(Ry), i — 6;, such that xa = 6;(a)x for all a € Ry, all x € R;, and all
ierl.
Proof. Fix i € I'. Let a € Rg.

Claim. There is a unique a’ € R such that xa = a’x for all x € R;.

Proof. Let x, y € R; — {0}. By hypothesis (2), there are elements a’,a” € Rg such that xa = a’x and
ya =a"y. By hypothesis (4), there are b, c € Rg such that bx = cy # 0. Therefore

abx=bdx=bxa=cya=ca’y=a"cy =a"bx,
and (a’ —a”)bx = 0. But bx # 0 so hypothesis (2) implies that a’ =a”. O

It follows that there is a well-defined map 6; : Rg — Ro such that xa = 6;(a)x for all a € Ry and all
X € R;. Let b € Rg. It is clear that 6;(a + b) = 6;(a) + 6;(b). Also, 6;(ab)x = xab = 0;(a)xb = 6;(a)0;(b)x
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so, by hypothesis (2), 6;(ab) = 6;(a)6;(b). Hence 6; is an endomorphism of Rg. By hypothesis (3), 6; is
surjective. By hypothesis (2), 6; is injective. Hence 6; € Aut(Rp).
Let jeI'. Let ae Ro, x€ R, and y € Rj. Then

Oi+j(@xy =xya=x0;(@)y = 6;0;(a)xy
so, by hypothesis (2), 6;yj = 6;0;. Hence i+ 6; is a group homomorphism, as claimed. O

Proposition 3.9. Suppose that (R, I') satisfies the hypotheses in Lemma 3.8 and let 6; € Aut(Ry), i € I, be
defined as in Lemma 3.8. Then

(1) every M € Gr(R, I') is an Ro-R-bimodule with respect to the action
am:=mb_j(a) forme M;anda € Ro;

(2) the map

W :Ro— End(ideir, ), m@m:M— M, p(@y@m):=am,
is an isomorphism of rings.

Proof. (1) If a, b € Ry, then

(ba).m = (ab).m = m6_;(ab) = mb_;(a)6_;(b) = (a.m)0_;(b) = b.(a.m)

so M is a left Ro-module. If y € R}, then

a.(my) =my6_;_j(a) =my6_;6_ij(a) =mé_i(a)y = (a.m)y.

Hence M is an Rg-R-bimodule.

(2) Because left multiplication by a € Rg is an R-module endomorphism of M, w(a) is a natural
transformation. It is easy to check that w is a homomorphism. It is obviously injective.

To see that w is surjective, let T :idgyr,ry — idgrr,ry be a natural transformation. Define a :=
Tr(1). Let r € R;, and let A; : R(—i) — R be the map A,(x) =rx. The diagram

i
R(—i) —— R

commutes so

rtR(—iy(1) = TrAr(1) = TR (r) = Tr(1.1) = ar =r10_;(a).

Hence tg(—j)(1) = 6_i(a). Now consider an arbitrary graded right R-module M and an element
m € M;. Let Ap; : R(—i) —> M be the map f(x) = mx. The diagram
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Am
R(—i) —— M

rR(—i)J JTM

R(—=i) —— M
Am
commutes so

a.m=ml_;(@) = Am(Tri)(1)) = TMAm(1) = Tm (M)
for all m € M. It follows that Ty = u(a)y and that T = u(a). Hence p is surjective. 0O

3.7. There is one further way in which an auto-equivalence of Gr(R, I') can induce an automor-
phism of Rg. The map

Aj:Ro— hom(R(j),R(j)), Aj(@(x):=ax
is an isomorphism of rings. The following result is therefore clear.

Lemma 3.10. Let F be an auto-equivalence of Gr(R, I'). Let f : hom(R, R) — hom(FR, FR) be the isomor-
phism g+ Fg. If FR = R(j), then )»171 o f o Ag is an automorphism of Ro.

4. C as an ungraded ring

In this section, as in others, we assume that k is of characteristic zero.

The results in this section are not required for the proof of the main result in the paper but C is
an interesting example of a class of commutative rings not commonly encountered so we establish its
basic properties here.

4.1. If I ¢ Z — {0}, we write R; for the subring of C generated by {xo} U {x, | n € I}.

Proposition 4.1. The ring C is an ascending union of Dedekind domains, and is flat over each of those Dedekind
domains.

Proof. It is clear that C is the ascending union of the subrings R; where the union is taken over any
ascending and exhaustive chain of finite subsets I C Z — {0}. Such a subring is isomorphic to the ring

B klt, Xy |nel]
- a

51 .
where a is the ideal generated by the elements

gn::Xﬁ—tz—i-n, nel.

(The element ¢t corresponds to Xp.)
Let I be a finite subset of Z — {0}. Let k(t) be the rational function field over k and let F be a
splitting field for the polynomial

FO=]](x* = +n).

nel
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Constructing F as a tower of quadratic extensions, it is easy to see that the integral closure of k(t) in
F is isomorphic to S;, and hence to R;. Therefore R; is a Dedekind domain.

If I C J CZ— {0} are finite subsets, then R; is contained in R; and Rj is a finitely generated
torsion-free, and hence projective, R;-module. Hence, for every I, C is a directed union of finitely
generated projective Rj-modules, and is therefore a flat Rj-module. O

4.1.1. There are other ways to prove Proposition 4.1. For example, one can prove directly, using the
Jacobian criterion, that the rings S; in its proof are regular of Krull dimension one.

4.1.2. Suppose k is algebraically closed and fix elements /—n in k. Let k[[z]] be the ring of formal
power series. There is a homomorphism ¢ : C — k[[z]] given by

2\ 172
P(x0) =2, (P(Xn):=\/__n<1_%> . n#0,

where (1 — z2/n)!/2 denotes the Taylor series expansion for /1 — z2/n centered at z = 0. The restric-
tion of ¢ to the Dedekind domains S; appearing in the proof of Proposition 4.1 is injective, so ¢ is
injective on C.

Proposition 4.2. The ring C has the following properties:

(1) Itis an integrally closed non-noetherian domain.

(2) Its transcendence degree is one.

(3) Suppose k = C. If m is a maximal ideal in C, then dimy(m/m?) = 1.

(4) Every finitely generated ideal in C is projective and generated by < 2 elements.

(5) Letd be a positive integer. The ring homomorphism y : C — C defined by y (x) := xnd/«/a is an isomor-
phism from C onto its subalgebra k[x,q | n € Z].

Proof. (1) Of course, C is a domain because it is an ascending union of domains. It is integrally closed
because it is a directed union of integrally closed rings. ~

To show C is not noetherian it suffices to show that C ®j k is not noetherian so we may, and will,
assume k is algebraically closed.

For each integer N, let ay be the ideal generated by the elements x; + +/—d for d < N. Then
ay C an+1 but ay # an41.

(2) Since the field Fract C is the union of finite extensions of k(xp), it is clear that xo is a transcen-
dence basis for FractC.

(3) Because C has countable dimension whereas the rational function field C(t) has uncountable
dimension, m is generated by {x, — z, | n € Z} for suitable elements z, € C. We write z for the point
(zw)nez € CZ and think of it as a closed point of SpecC.

The same argument as for the polynomial ring in a finite number of variables shows that m =
m? + 3, k(% — zn).

Fix an integer r. Because z € SpecC, z2 +n = z2 +r for all n, whence

2_ 2 _ 2,2
Z,—Zy=r—n=x; —X.

Therefore m? + k(x, — z;) contains

%((Xr - Zr)2 — (%n — Zn)z) +zr(Xr — zr) = Zn(Xn — zp).

If z, #0, then x, — z, € m. In particular, if all z, are non-zero, then m? + k(x; — z;) =m.
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On the other hand, suppose zr = 0. Then z, # 0 for all n #r so the argument just given shows
that x;, — zn € m? + kx,. Of course, X, € m? + kx, too, and therefore m? + kx, = m.

(4) A finitely generated ideal in C is generated by an ideal in R; for some finite subset I C Z — {0}.
However, every ideal in R; is projective. If a is an ideal in R = Ry, then the kernel of the multiplication
map C ®g a — Ca is isomorphic to Torf(C, R/a) which is zero because C is flat over R. Thus Ca =
C ®g a and hence a is a projective C-module.

Every ideal in a Dedekind domain can be generated by < 2 elements.

(5) This is straightforward. O

4.2. The results in this section will not be used elsewhere in this paper.
Let k= C, and give C its usual topology.
Let's write CZ for the linear dual of the vector space @D,z Cxn and view the x,s as coordinate
functions on CZ. The C-valued points of Spec C are the points in

X :={z=(zn)nez | 22 =2 —nforallne Z} c C%.

We now consider the question of whether X can be given the structure of a Riemann surface. In
order to preserve the usual connection between complex algebraic curves and Riemann surfaces, we
are particularly interested in whether X can be made into a Riemann surface in such a way that
the coordinate functions x, are holomorphic. We will show this cannot be done when CZ is given
the product or the box topologies. On the other hand, if CZ is identified with £°°(Z) in a suitable
way, then X has uncountably many connected components, all homeomorphic to one another, and
each component can be given the structure of a Riemann surface in such a way that each x, is a
holomorphic function.
I thank Robin Graham for telling me the following result and allowing me to include it here.

Proposition 4.3. If CZ is given the box topology, then X is discrete.

Proof. For t € C and r € R.¢, let D(t,r) denote the open disk of radius r centered at t. Fix a point
z=(zy) in X.If z; =0, let r,, := Z\JT If z, #0, let

. 1
I'n = mln{|zn|, m}

Since |z;| — o0 as |n| — oo, 'y = |z,| for only finitely many n. Since

U= l_[ D(zp, 1)

nez

is an open neighborhood of z in the box topology, to show X is discrete it suffices to show that
UnX={z}.

Suppose that y = (y,) € X — {z}. There are two cases.

(1) Suppose yé =z(2). Then y, = —z; # 0 for some n. For that n, |y, — zy| = 2|z,| S0 yn ¢ D(zy, ).
Hence y ¢ U.

(2) Suppose y3 #z3. If a,b € C are fixed and w € C, then

Ja+w++b+w N

w

0

regardless of which branches of the square root function are chosen, and regardless of whether the
branches chosen for /a+ w and +/b + w are the same or not. Therefore, if |n| > 0,
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|J’n_zn|=|\/Y%_n_\/zé_n|

_‘ Yo~ %
Jyd—n+./zd—n
1
-
In|
1
> —F.
2In| +1

Hence y ¢ U, and X is discrete, as claimed. O
I thank Lee Stout for telling me the following result and allowing me to include it here.
Proposition 4.4. Let C have its usual topology, CZ the product topology, and X the subspace topology.

(1) Every fiber of every xy, is homeomorphic to a Cantor set.
(2) X cannot be made into a complex manifold in such a way that any of the coordinate functions is holomor-
phic.

Proof. Fix a point y = (y;) € X and an integer k. Let x; : X — C be the function taking the k-th
coordinate.
(1) Let F be the fiber of x; over the point yi. Then

F=T[t=yn ya} x (i} x [ [{=yn, yn}-

n<k n>k

However, at most one y, is zero so F is homeomorphic to a countable product of copies of the
discrete space {+} endowed with the product topology. Therefore F is a Cantor set.

(2) Let U be any open neighborhood of y. By shrinking U we can assume there is a positive integer
N > |k| and € > 0 such that

U=XN{(z)|lzn—ynl <eif —N<n< N}

Then U contains a point z such that z, # yi. For each integer n in [—N, N], choose the branch of the

square root function such that y, = ,/x,% +k —n and define s,(¢§) = /€2 +k —n for £ in a sufficiently

small disk centered at yj.
Hence U contains the set

F':={(xn) | % = yn if —N <n<N}.

This is also a Cantor set, and z; — yj vanishes on it. But every point of F’ is a limit point in F’. An
analytic function on an open set U that vanishes on a subset having a limit point is identically zero
in a neighborhood of that limit point (the coefficients in the Taylor series expansion around the limit
point are zero). Hence z; — yy vanishes on U. But that is absurd because U contains a point (x;) with

Xk # Yk O

The space of doubly infinite C-valued sequences & = (&;) such that |&,| is bounded is denoted by
£*°(Z). 1t is a Banach space with respect to the norm

€1l = supy {&n}-
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Let f: X — £°°(Z) be the map

Zn
f(z):<2n+1>'

Write Y := f(X). If y,, n € Z, are the obvious coordinate functions on ¢°°(Z), then Y is the locus cut
out by the equations

(1+2n)?y2 =y —n. (4-1)

The ring C[y, | n € Z] where the yys satisfy the relations (4-1) is isomorphic to C.

We write {£1}%) for the subgroup of {£1}% consisting of the functions Z — {#1} that take the
value —1 only finitely often. It is a countable direct sum of copies {£1}.

The next result is due to Robin Graham. I am grateful for his allowing me to include it here.

Proposition 4.5. Let £°°(7Z) have its usual topology, and give Y the subspace topology. Then

(1) Y has uncountably many connected components,

(2) all those components are homeomorphic to one another,

(3) they are permuted transitively by the action of {£1}Z,

(4) each component is stable under the action of {+1}®), and

(5) each component can be given the structure of a Riemann surface in such a way that C consists of holomor-
phic functions.

5. The Zg, graded ring C

In this section we establish the basic properties of C as a graded ring. One of the main results
is that every graded ideal of C is principal. Because C is also a domain the standard results about
modules over a PID carry over to the category of graded C-modules. In particular, every projective
graded C-module is a direct sum of twists of C.

We end the section with the proof that GrA = Gr(C, Zgy). This is done by exhibiting a bigraded
A-C-bimodule that is, as a C-module, a projective generator in Gr(C, Zgy)and has A as its graded
endomorphism ring.

Most questions about C reduce to combinatorial questions about Zgp,.

5.1. The homogeneous components of C are

C] = CgX].
Lemma5d.Let I, J,I', J' € Zgy. Then

(1) x1x =X?NXI@]:

(2) (Cxpy = CQX%_JX];

(3) the following conditions are equivalent:
(@) x;x) =xpxyr;
by InJ=I'NJandI®d J=I"® ]
@InJ=INJandlUj=IU].

Proof. (1) This follows from the identity IU J =N J)u & J).
(2) We have (Cx;)j = Cigx1 = CoXig X = ngf_]x].
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(3) The equivalence of (b) and (c) follows from the identity

Iuj=I®Jj®dn].

The equivalence of (a) and (b) follows from (1). O

The identity component of the ring obtained by inverting all non-zero homogeneous elements of
C is the field of fractions of Cg, the rational function field I<(x§).

5.2. Graded ideals in C

Because each x; is a regular element of C,

Cx =C().

Here C(I) is the degree-shifted module: C viewed as a graded module with 1 placed in degree
I(=-1).

Lemma 5.2. Let I, | € Zgp. Then

(1) Cx; 4+ Cxj =Cxynj and
(2) Cx;NCxj =Cxpyy.

Proof. (1) Since I=(I— J)u({dNn]J)and J=(J—DHudnN J), we have

Cx;+Cxj = (Cxj—j +Cxj_Dxiny.

However, I — J and ] — I are disjoint so x?_] and x?_, are relatively prime elements of Cy whence
Cxj—j+Cxj_; =C. Hence Cx; + Cxj = Cxn;.
(2) Since

(Cx;NCx))g = ngf_KxK N ngﬁ_,(xK
= CQX%I—K)U(]—K)XK
= C@x%IU])foK
= (Cxjupk

for all K € Zgy, Cx; N Cx; = Cxjyj as claimed. O
Proposition 5.3. Every graded ideal of C is generated by a single homogeneous element.

Proof. Let a be a non-zero graded ideal of C. Let d be a non-zero element of Cy = k[z] of minimal
z-degree with the property that dx; € a for some I € Zg,. Let ] be of minimal cardinality such that
dx;ea.

]Let fx; be an arbitrary element of a with 0# f € Cx. Let h be the greatest common divisor of
d and f in Cy. Both x; and x; divide x;uj so dx;u; and fxjy; belong to a. Therefore hx;u; belongs
to a. But degh < degd so the choice of d implies that degh = degd. Therefore d divides f.

Write f =dg where g € k[z]. Then

dxy, fxp) = dxj—1, fxi—Pxiny = (xj—1, gX1— ) dxinyg.
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However, x; is a unit modulo x; if i # j, so x;_; is a unit modulo x;_;. Hence

(dxy, fx)) = (xj_1, 8 dxin).

But
x; g)z{(xj) if 3.
» C  otherwise,
50
(Xj-1,8) = (xk) where K ={j e ] —1I|x} divides g}.
Therefore

(dxj, fx;) = (dxjnyxg) = (dxr)

where L = (I N J)UK C J. By the choice of ], the cardinality of L can be no smaller than that of J
so L= ] and (dxj, fx;) = (dxj). It follows that a = (dx;). O

Proposition 5.4.Let I, |, I', |’ € Zg.

(1) There is an isomorphism of graded C-modules

CX[@CXJ ECX[UI@CXIQJ. (5-1)

(2) There is a surjective degree zero C-module homomorphism

Cx; @ CX] — Cxg

ifandonlyifINJCK CIU J.
(3) There is an isomorphism of graded C-modules

Cx; @ Cxj =Cxp & Cxp
ifandonly if IU J=1'U J'and IN J=1"N]J.
Proof. (1) By Lemma 5.2, the exact sequence

0—=CxiNCx; = Cx; &Cx; — Cx;+Cx; — 0

can be rewritten as

0— CX[UI%CXI@CX]%CXIQI—)O.

The right-most term is projective, so the sequence splits giving the claimed isomorphism.

(2) («=) This follows from (1) because the hypothesis on K implies there is a set L € Zg,, such that
KNL=INnjJand KUL=IU J,namely L=(1U J—-K)udn]).

(=) Suppose there is a surjective degree zero C-module homomorphism Cx; & Cx; — Cxg. Be-
cause Cx; = C(I), and so on, there is a surjective degree zero C-module homomorphism C(I & K) ®
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C(J ® K) — C and hence a surjective degree zero C-module homomorphism f : Cxjgx ® Cxjgx — C.
Since f is completely determined by f(x;gk,0) and f(0,x;gk) which must belong to Cigx and
C ek respectively, i.e., to Caxjgk and CyX gk, the image of f is contained in Cx;gk + Cx gk Which
is equal to Cx(gK)n(jek) by Lemma 5.2. Hence Cxgk)n(jek) = C. Therefore IS K)N(J S K) =90
and this implies that IN JCc K cC U J.

(3) («) This follows from (5-1).

(=) Suppose that Cx; @ Cx; = Cxy @ Cx . Because Cxy and Cxj are quotients of Cx; @ Cxj, (2)
implies that InJcl'clUJand INJC J/ clIU],ie,INJcI'n]J,and I'UJ" C1U J. By symmetry,
the reverse inclusions also hold.* O

5.3. Torsion-free and projective graded C-modules
A graded module over a graded ring is said to be a

(1) free graded module if it has a basis consisting of homogeneous elements;
(2) projective graded module if it is projective as an object in Gr(C, Zgp).

Let M be a graded module over a commutative graded ring R. A homogeneous element m € M is
torsion if xm =0 for some homogeneous regular element x € R. A graded module is torsion if every
homogeneous element in it is torsion and torsion-free if its only torsion element is 0. The submodule
of M generated by the torsion elements is a torsion module and is called the torsion submodule of M.
We will denote it by T for now. The quotient M/TM is torsion-free.

Presumably the following result is already in the literature.

Proposition 5.5. Let (R, I') be a graded ring. Suppose R is commutative, that all homogeneous elements of R
are regular, and that every graded ideal of R is principal. Then

(1) every graded submodule of a finitely generated free graded module is a free graded module’;
(2) every finitely generated graded R-module is a direct sum of a graded torsion module and a free graded
module.

Proof. (1) Let f1,..., f, be a homogeneous basis for a graded module F. We argue by induction on n
to show that every graded submodule of F is a free graded module. The result is true by hypothesis
if n=1 so suppose n > 2.

Let E be a graded submodule of F. Let « : F — Rf; be the projection with kernel F/ :=Rf, @---®
Rfyp. If E C F’ then E has a homogeneous basis by the induction hypothesis, so we may suppose that
E ¢ F'. Then a(E) is a non-zero graded submodule of Rfy, so is equal to Raf, for some homogeneous
a € R. But Raf, is isomorphic to a twist of R so the map «/|g : E — «(E) splits and E =« (E)® (ENF’).
By the induction hypothesis, E N F’ has a homogeneous basis. Hence E has a homogeneous basis.

(2) Let M be a finitely generated graded R-module. Since M/t M is torsion-free it suffices to show
that a torsion-free finitely generated graded R-module is a free graded module. So, we assume M is
torsion-free.

Let {m1,...,my} be a homogeneous set of generators of M and assume they have been ordered so
that {my, ..., ms} is a maximal subset of linearly independent elements. Write L = Rm +--- + Rms. If
s=n we are done, so suppose otherwise. Hence, for i > s, there is a non-zero homogeneous element
Xi € R such that x;m; € N. Set X = X541 ---X;. Then xM C N. By (1), xM is a free graded module. Let
8§ = degx. Since M is torsion-free the map M(8) — xM given by multiplication by x is an isomorphism.
Hence M(§), and therefore M, is a free graded R-module. O

4 Although the equalities IN J=1'NJ and IU J=1"U J’ imply that [ @ J =1 & J/, this latter equality follows directly
from the isomorphism Cx; @ Cx; = Cxp & Cx ) because taking the second exterior power implies that Cx;x; = Cxyx;» whence
degxjx; =degxyxp and [® J=1"® J'.

5 The finitely generated hypothesis can be removed.
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Corollary 5.6. Every finitely generated graded projective C-module is isomorphic to a direct sum of twists of C.
In particular, a rank one projective graded C-module is isomorphic to C(I) for a unique I € Zgy.

Proof. The only point to be checked is that C(I) = C(J) if and only if I = J. However, the map

p : Cigy — hom(C(1),C())).  p(a)(m) :=am,
is an isomorphism and p(a) is an isomorphism if and only if a is a unit, but the only homogeneous

units in C are the elements of k which have degree @. Hence C(I) = C(J) if and only if I & | = &,
ie,ifandonlyif I=]. O

Corollary 5.7. Pic X = Zgp.

Proof. Let I € Zg,. Multiplication in C provides an isomorphism C(I) ®¢ C(I) =5 C so C(I) is an
invertible object in Gr(C, Zg,). It remains to show that the C(I)s are the only invertible objects in
Gr(C, Zgn). However, if P ®c Q = C, then P is projective and necessarily of rank one since it embeds
in C. Hence P is isomorphic to some C(I) by Corollary 5.6. O

Proposition 5.8. Let S C Zgy,. Then the set of projectives {Cx; | | € S} generates Gr(C, Zgy) if and only if

ﬂl:@ and UI:Z.

IeS IeS

Proof. (=) By hypothesis there is a surjective map
Pcx—c

for some subset F C S. But the image of every non-zero degree preserving homomorphism Cx; — C
is contained in Cx;, so

> cx=cC.
leF
Since C is cyclic we can assume F is finite. Hence by repeated applications of Lemma 5.2(1), the

intersection of the Is belonging to F is empty.
Fix an integer n. By hypothesis there is a surjective map

EB Cx; — Cxy

IeF

for some subset F € S. In other words, there is a surjective map

@ cay— c(iny)

IeF

and hence a surjective map

P oin)—c

leF
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Since C(I @ {n}) = Cxjgn), it follows from the previous paragraph that the intersection of all the
I @ {n}, I € F, is empty. However, if n does not belong to any of the Is that belong to F, i € I ® {n}
for all n, a contradiction. It follows that n must belong to some I.

(<) To prove that {Cx; | I € S} generates Gr(C, Zgy,) it suffices, by Corollary 5.6, to show there is
a surjective map

69 CX] — CXK

leS

for every K € Zg,. By hypothesis, there are elements Iy, ..., Iy, Im41, ..., Ip of S such that ;1 N---N
InCKClpy1U---Uly. Write I=I1N---N1I, and J =17 U---UI,. By Proposition 5.4(1), both Cx,
and Cxj are quotients of

n
@Cx,j.
j=1

However, IN ] C K C 1U J so Proposition 5.4(2) says that Cxy is a quotient of Cx; & Cx;. Hence Cx
is generated by the Cx;, [ € S. O

Corollary 5.9. The set of projectives Cx,, n € Z, generates GrC.
Lemma 5.10. Let I, | € Zgp. Then

homc (C(1), C(J)) = Cob)
where 6 : C(I) — C(]) is the map 0;(c) = cXg . Furthermore,

©5101) —0jk0xk ) (C) = (X?@] - X?@K)C

Proof. If P and Q are graded C-modules, the Cg-module structure on hom(P, Q) is given by
(c.f)(p)= f(cp) for ce Cy, f ehom(P, Q), and p € P. It is a standard fact that the map p: Cig; —
hom¢ (C(I), C(J)) given by

p(@)(c) =ac

is an isomorphism of Cg-modules. Since Cig; = X1q;Ce, homc(C(I), C(])) is generated by p(xjq))
which is exactly the map 6;;. The final identity follows immediately from the definition of the §s. O

5.4. The elements X

We introduce the notation:

1,...,n} ifn>1,
nl:=1{2 iftn=0, (5-2)
n+1,...,0} ifng<—1.

Lemma 5.11. The following identities hold:

(1) [nl=[—-nl+n;
(2) m—1]@{n}=[n];
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(3) Iml @ [n] =[n—m]+m;

(4) [m+n]=[m] @ ([n] +m);

(5) —=[n]=[-n] -1

Corollary 5.12. The set {Cx[y | n € Z} generates GrC.

Proof. This follows from the criterion in Proposition 5.8. O

5.5. Functors between categories of graded modules

Let (R, A) and (S, I') be graded k-algebras. A bigraded R-S-bimodule is a k-vector space P that is
an R-S-bimodule and has a vector space decomposition

P= @ Py

S, y)eAxI’

such that

Ro-Ps,y)-Sp C Pats,y+p)

forall @,6 € A and B,y €TI.
For each § € A, the subspace

P =EP Pe.y)

yell
is an S-module and we view it as a I"-graded S-module by declaring that its degree-y component

is P(s,y). The left action of an element r in Ry on Ps ) is therefore a degree preserving S-module
homomorphism P s +) = P(a+s,%), and we therefore obtain a linear map

Ry — homg (P s 4), P(a45,%)- (5-3)

Let M be a I'-graded right S-module. We define

Hs(P, M) := @) homs (P s 4, M)
SeA

with A-grading given by
Hs(P, M) :=homg(P s ), M).
Composition of S-module homomorphisms gives maps
homs (P(—s,5), M) x homs (P (—g—5.4), P(=5,%)) = homs(P(—q—s 4, M)
and therefore maps
Hs(P,M)s x Ry = Hs(P, M)a+s

that give Hs(P, M) the structure of a A-graded right R-module.
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In summary, we obtain a functor

Hs(P,—):Gr(S,I") — Gr(R, A)

between the categories of graded right modules. A result of del Rio tells us when this is an equiva-
lence of categories.

Theorem 5.13. (See [2, Thm. 4.7], [3].) With the above notation, suppose that

(1) Ps,%) is a projective S-module for all § € A and
(2) {Ps,%) | 6 € A} generates Gr(S, I').

Then Hs(P, —) is an equivalence of categories.
Theorem 5.14. GrA = Gr(C, Zgp).

Proof. Let e,C, n € Z, be a rank one free C-module with basis vector e, placed in degree [n]. We
define a Z x Zg, graded vector space P by setting

P,y :=enCign)-

Thus P, «) = e,C is isomorphic to C([n]) as a graded right C-module. We give P the structure of
an A-C-module by declaring that x and y act on e,C by

X-ep:=eny1Xnr1 and y-ep:=ep_1Xy.

This does make P a left A-module because

(xy — yX)en = en(xf, — xﬁﬂ) =ep.

With this action P is a bigraded A-C-bimodule.
The action of Ay on P provides a map

P Ag — home (Pm,«), Pietm,)-
Since P = C([n]), homc (Pgn,«), Pe4m,«) is generated as a Cy-module by the map Opmye),(m) in
Lemma 5.10.
If £ >0, then

Vi
X" - m = em4+eXm+1 - Xm+e = €o4mX[¢+m]®[m]

and

4
Y rem =€m—¢Xm - Xm—t+1 = €m—eX[m—e]1®[m]-

The actions of x* and y* on Pn ) are therefore the same as the actions of Gm.r¢).(m) and Gum—e).(m)

respectively.
Since xy acts on P, as multiplication by x2,

p(x" Ao) = Bm-e1,(mik[Xz] = Bm-t21,m1 o
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Similarly,

p(y Ao) = Q[mfi],[m]k[xg] =Om—¢),imCo-

Hence p is an isomorphism from A; to homc (Pm,«), Pm+e,%))-
Since this is the case for all £ and m, and since the P, s provide a set of projective generators
for Gr(C, Zg,) the theorem follows from del Rio’s result [2, Th. 4.7] (see also [4, Prop. 2.1]). O

Corollary 5.15. GrA = QcohX.
6. Simple and projective graded C-modules

As for a Dedekind domain, the classification of all graded C-modules follows easily once one has
determined the simple and projective ones. By a simple graded C-module we mean a non-zero graded
C-module whose only graded submodules are itself and the zero module. We define a class of simple
graded modules that we call special. These are the simple Oy-modules that are supported at the
stacky points of X. The importance of these modules is apparent from Proposition 6.8 and Corol-
lary 6.9.

Under the equivalence QcohX = Gr(C, Zg,) the projective graded C-modules correspond to the
locally free O x-modules.

6.1. The simple graded modules

Proposition 6.1. The maximal graded ideals of C are the ideals (p) as p ranges over the irreducible elements
inCyg — {x% | n € Z} and the ideals (x,) forn € Z.

Proof. The ideals in the statement of the proposition are certainly graded ideals.

To show a graded ideal a is maximal among graded ideals it suffices to show that every homo-
geneous element of C — a is a unit in C/a. Every homogeneous element of C is of the form fx; for
some f € Cz and some [ € Zgp.

Let a = (p) where p is an irreducible element of Cy but not one of the xﬁ. Every element of
Cz — a is a unit modulo a. If i € Z, then x,.2 €Cg — (p) so xiz, and therefore x;, is a unit modulo a. It
follows that every x; is a unit modulo a. Hence if f € Cy and fx; ¢ a, then fx; is a unit modulo a.
This completes the proof that (p) is a maximal graded ideal.

Now let a = (xp). If i € Z — {n}, then xiz is congruent to a non-zero scalar modulo a so is a unit.
Since Cy = k[x,z]], aNCg is a maximal ideal of Cy. Hence every element in Cz —a is a unit modulo a.
Therefore, if f € Cx and fx; ¢ a, then fx; is a unit modulo a. This completes the proof that (x,) is a
maximal graded ideal for all n € Z.

Now let a be an arbitrary maximal graded ideal of C. Then (C/a)x is a field, so a contains an
irreducible element of Cg, say p, and a D> (p). If p ¢ {x,z1 | n € Z}, then (p) is maximal so a = (p). On
the other hand, if p = xﬁ, then x, € a because C/a has no homogeneous zero divisors, and therefore
a=(xp). O

6.2. The ordinary simple graded C-modules

The simple graded modules of the form C/(p) where p is an irreducible element of Cy play
virtually no role in this paper. However, the following facts are easily verified:

(1) if p and p’ are relatively prime irreducibles, then C/(p) 2 C/(p’) and ext}(C/(p),C/(p")) =0;
(2) for all J € Zgn, (C/(p)(J) =C/(p);
(3) extg(C/(p). C/(p) = C/(p).



S.P. Smith / Journal of Algebra 345 (2011) 1-48 31

The simple modules of the form C/(p) correspond to the non-stacky points of the coarse moduli
space for X.
For each A € k — Z, we define

C

0 1= ——.
Y

6.3. The special simple graded C-modules

A simple graded C-module is special if it is isomorphic to one of the modules

C C
Xn = )’ Yni= ((Xn)>({n}), neZ.

The following observations follow immediately from the definition:

(1) There are non-split exact sequences

and

C

00— Xp —— (<x_%))({”}) —— Y, —— 0.

(2) As Cx-modules, the homogeneous components of X, are

<xn>,z{%/<><£) ifngl.
0 ifnel.

(3) As Cg-modules, the homogeneous components of Y, are

(Yo = i Co/(x3) ifnel,
! 0 ifngl.

(4) Yn 2 X, because (Xp)g =k but (Y,)g =0, and
(5) Yn({n}) = X, because 2{n} =0.

One may define and/or characterize the special simple modules in terms of their properties inside
the category Gr(C, Zg,). For example, working with GrA, Sierra characterizes them as the simple
graded modules S for which ext! (S, M) # 0 for some simple graded module M 2 S. In order to offer
an alternative to Sierra’s characterization we will characterize them as those simples S for which
hom(P, S) =0 for some non-zero projective graded module P (Proposition 6.3).

As we shall see, the isomorphism class of a special simple module is determined by the degrees
in which it is zero, and a simple graded module is special if and only if some of its homogeneous
components are zero.

Proposition 6.2. Let | € Zg, and letn € Z.

k
0.
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~ | Xn ifngl,
3) X"(I)_{Yn ifnel.
(4) hom(Cxj, X,) = {’5 ?}Zi;

(5) I'={neZ|hom(Cx;, X;;) =0}.
(6) I ={n e€Z|hom(Cxy, Yy) # 0}.

Proof. (1) We have hom(C, Xp) = (Xp)g = C/Cox2 = k.

(2) We have hom(C, Yy) = (Yn)o = (Xn)my =0.

(3) If m #n, then the image of x, in C/(x;) is a unit so multiplication by x;; is an isomorphism
Xn({m}) = Xy In general, if I = {iq, ..., i}, then

Xn(D) = Xn({i1}) - ({ic})

so the result follows from the previous sentence.
(4) Since hom(Cx;, X)) = hom(C, X,(I)), this follows from (1) and (3).
(5) and (6) follow from (4). O

Proposition 6.3. Let S be a simple graded module. The following three conditions are equivalent:

(1) S is special;
(2) hom(P, S) = 0 for some non-zero projective graded module P;
(3) S; =0 forsome ] € Zgp.

Proof. By Corollary 5.6, every projective graded C-module is a direct sum of various C(J)s, so (2)
holds if and only if hom(C(J), S) =0 for some ] € Zg,. However, hom(C(J), S) = S so (2) holds if
and only if S; =0 for some | € Zg,. This proves the equivalence of (2) and (3).

Suppose S is not special. Then S = C/pC for some irreducible p € Co and S; = C;/pC; for all
J € Zgyn. But Cj is isomorphic to Cy as a Cy-module so Sj # 0 for all J € Zg,. On the other hand,
if S is special, then S; is zero for some J by parts (5) and (6) of Proposition 6.2. This proves the
equivalence of (1) and (3). O

The next result corresponds to Sierra’s result [5, Thm. 5.5]. Our proof is a little different. For
example, we characterize the special simple graded modules S using Proposition 6.3(2), and we also
exploit the fact that C is commutative by using the map Pic(C, Zg,) — Aut(Cy), [F]+— af, defined in
Proposition 3.7.

We write Iso(Z) for the isometry group of Z with respect to the metric is d(m,n) = |m — n|. The
isometries are exactly the maps n+ e¢n+d where ¢ = £1 and d € Z. As an abstract group, Iso(Z) is
isomorphic to the dihedral group D«.

Theorem 6.4. There is a group homomorphism
Pic(C, Zgn) — 1so(Z), [F]— (n+— en+d), (6-1)
where ¢ € {1} and d € Z are determined by the requirement that
FXn® FYn = Xentd ® Yentd (6-2)
foralln € Z and
FO) = Ogpyd (6-3)

forall » ek —Z.
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Proof. Let S and S’ be special simple graded modules. By parts (5) and (6) of Proposition 6.2, S@ S’ =
Xm @ Y, for some m € Z if and only if dimy hom(C(I),S & S’) =1 for all I € Zgj,. Since

dimy hom(F (C(I)), FX, @ FYy) = dimg hom(C(I), X, @ Yn)

and since F permutes the isomorphism classes of rank one projective graded modules, it follows that
FXn® FYy = Xgn) @ Ygm for a unique g(n) € Z. Since F is an auto-equivalence g is a permutation
of Z.

By Proposition 3.7, F determines an automorphism af of Cy having the property that a € Cy
annihilates a module M if and only if ar (a) annihilates FM. Since x? annihilates X, @ Yp, ap (x2) is a

; 2
multiple of Xam)-

Write z = x%. Since Cg is the polynomial ring k[z], there is € € k — {0} and d € k such that ap(z) =
ez +d. Therefore €z — n +d, which is ar(z —n), is a scalar multiple of z— g(n). Hence ez —n+d =
eg(z—g(n)) for all n € Z. Thus g(n) = %(n —d) for all n € Z. It follows that e =+1anddeZ. O

Theorem 8.4 shows that the map (6-2) is surjective and that its kernel is the image of Zgy,.
6.4. Projective graded modules

By Corollary 5.6, every projective graded C-module is a direct sum of various C(I)s. The next two
results are immediate consequences of parts (5) and (6) of Proposition 6.2.

Corollary 6.5. If P is a rank one projective graded C-module, then

hom(P, X,) #0 < hom(P,Y,)=0.

Corollary 6.6. A rank one projective graded C-module maps surjectively onto infinitely many X,s but only
finitely many Yys.

Remark 6.7. By Corollary 6.6, the X;s play a different role in Gr(C, Zg,) from the Y,s. The X;s are
the simple G-equivariant C-modules on which the corresponding isotropy groups act trivially, whereas
those isotropy groups act on the Y,s via the sign representation.

Sierra labels the simple graded A-modules X(n) and Y (n), n € Z, but her labelling is not compati-
ble with ours—her X(n) corresponds to X, if n > 0 and to Y, if n < 0. Her labelling, which is designed
to remind the reader that X(n) (resp., Y(n)) is isomorphic as an ungraded A-module to A/xA (resp.,
A/yA), makes the different properties of the X;s and Y;s less apparent.

Proposition 6.8. Let P and Q be finitely generated projective graded C-modules having the same rank. Then
P = Q ifand only if dimhom¢ (P, Y,) =dimhom¢(Q, Yy) forall n.

Proof. (<) Suppose dimhomc (P, Y;) = dimhom¢(Q, Y,) for all n. We will argue by induction on
r:=rank P.

By Corollary 5.6 and parts (5) and (6) of Proposition 6.2, the result is true when r =1, so we
assume that r > 2.

Let a be the largest graded ideal of C that is the image of a degree-preserving homomorphism
P — C. Since P = Q, a is also the largest graded ideal of C that is the image of a degree-preserving
homomorphism Q — C. Since a is projective, there are graded projectives P’ and Q' of the same
rank such that P= P’ @ a and Q = Q' @ a. It is obvious that dimhomc¢(P’, Y,) = dimhom¢(Q’, Yy)
for all n so, by the induction hypothesis, P’ = Q’. It follows that P = Q.

(=) This is obvious. O
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Corollary 6.9. Let F and G be auto-equivalences of Gr(C, Zgp). Then F = G if and only if FS = GS for all
special simples S.

Proof. Suppose FS = GS for all special simples S. Then for every finitely generated graded C-module
M and every special simple S,

dimhom(FM, FS) =dimhom(M, S)
=dimhom(GM, GS)

=dimhom(GM, FS).

But F and G permute the special simples by Theorem 6.4, so

dimhom(FM, X;) =dimhom(GM, X;)

and

dimhom(FM, Y;) =dimhom(GM, Y;)

for all i. Now take M = R(j), j € I'". Because F(R(j)) and G(R(j)) are rank one projectives, it follows
from Proposition 6.8 that F(R(j)) = G(R(j)). Proposition 3.5 now implies that F=G. O

Corollary 6.10. Let A be a category and suppose that F, G : Gr(C, Zgn) — A are equivalences of categories.
Then F = G ifand only if FS = GS for all special simples S.

Proof. Let G~ be a quasi-inverse to G. Then F = G if and only if G~!'F = idg,c. Hence F =G if and
only if GT1FS S for all special simples S. The result follows. O

7. The Grothendieck group of X’

The Grothendieck group of X, denoted Ko(X), is, by definition, the Grothendieck group of the
category of locally free coherent Oy-modules. Under the equivalence QcohX = Gr(C, Zgy) locally
free coherent O y-modules correspond to finitely generated projective graded C-modules.

We write gr(C, Zgp), or grC, and P respectively for the full subcategories of Gr(C, Zg,) consisting
of the finitely generated modules and the finitely generated projective graded modules.

Because C is a graded principal ideal domain, every graded C-module M is isomorphic to P/Q
where P and Q are projective, even free, graded modules. The natural map Ko(P) — Ko(grC) is
therefore an isomorphism.® In particular,

Ko(X) = Ko(grC).
7.1. Classification of projective graded modules

If I and ] are multi-sets, i.e., sets whose elements have multiplicities, their union as a multi-set
will be denoted by I H J.

6 Hence the natural map Ko(X) — Ko(cohX) is also an isomorphism.
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Proposition 7.1. Let I, ..., Iy, J1,..., Jr € Zgn. Then

P =Pcun
n=1 n=1

if and only if

LhB. -BL=/,8 8.

Proof. By Proposition 6.2(6), dimhom(C(J), Y;) is 1 if i € J and O otherwise, so the result follows
from Proposition 6.8. O

Let r € N and write Zpic, for the set of all finite multi-sets M of integers such that every element
of M has multiplicity < r. Define

D, Zmultgr — Gr(C, Zfin)

by declaring that

@:(M):=C(I)&---dCg) dC

where I4, ..., I4 are the unique elements of Zg, such that

I1D---Dlg#2 and I1HB---Blg=M.

Corollary 7.2. Fix a non-negative integer r. Then ®; gives a bijection between the elements of Zmyic<r and the
isomorphism classes of finitely generated projective graded C-modules of rank < r. The inverse to &, sends a
module isomorphicto C(J1) ®---® C(Jy) to J1 B ---8 J,.

If P is a finitely generated projective graded C-module we write [P] for its class in the
Grothendieck group Ko(grC).

Corollary 7.3. Let P and Q be finitely generated projective graded C-modules of the same rank. Then [P] =
[Qlifandonlyif P= Q.

Proof. If [P] =[Q], there is a finitely generated graded projective M such that P® M = Q & M.
It follows that dimhom¢ (P, Y;) = dimhom¢(Q, Y,) for all n so P = Q. The reverse implication is
trivial. O

Because C is commutative, Ko(gr C) is a commutative ring with product [P].[Q] =[P ®¢ Q] where
the tensor product is the usual tensor product of graded modules. By Proposition 5.4,

il ifm=n.
[Cmp]{c ()] = { [C(mD] + [C(nH] — [C] ifm #n.

In due course, we will see that the classes [C({n})], n € Z, provide a Z-basis for Ko(grC).
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7.2. The homomorphism T

As in Section 2.5, we write u; for the element of the integral group ring ZZg, corresponding to I.
There is a surjective ring homomorphism

T : ZZgan — Ko(grC), up— [CD].
Theorem 7.4. The kernel of the homomorphism T : ZZgn, — Ko(gr C) is the ideal generated by the elements
ur+uy—uiny —uy, I, J € Zgn.
Equivalently, ker(Y") is generated by {umun +1 — um — uy | m#n}.
Proof. Let a be the ideal generated by the elements u; +u; — ujn; — ujuj. Then a C ker T because
Chec(Hh=cdn])—Ccdu]). (7-1)

In order to shorten the notation we will write I + J rather than u; 4 u; in this proof.
Let x € ker 7. By Proposition 7.1 and Corollary 7.3,

x=U+-+—-Ui+-+]Jn)

for some n € N and some elements I, J € Zg, with the property that

LB Bly=]1B -8

It follows that [1N---NI=JiN---NJpand [{U---Ulp=J{U---U Jp.

We will argue by induction on n to show that x € a. If n < 1, there is nothing to prove and when
n =2 the result follows from (7-1). Suppose that n > 3.

A sequence of elements K1, ..., K; belonging to Zg, is said to be decreasing if K1 D K2 D --- D K.
There is a unique decreasing sequence K, ..., K, such that

HB.---Bl,=K{H8---HK,.
By Proposition 7.1, (I +---+Ip) — (K1 +---+ Ky) and (J1 +---+ Jn) — (K1 4+ --- + K;;) belong to
kerY.If (I1+---+1p) — (K1 +---+Ky) and (J1 +---+ Jp) — (K1 +--- + K;) belong to a so does x.
It therefore suffices to show that x belongs to a when Iy, ..., I, is decreasing. We assume that is the

case.
Let L:=11N---NI, and define I} :=I;— L and J,:= Js — L for 1 <s<n, and write

X=++0) = (Jy+-+ )

Notice that x =u;x’.
It is clear that I7,..., I} is decreasing, I} D J1, I, =@, and

n8---\8I,=J8---8]J,.
Let K =17 — J{. Then

KBI,8..-BI, ,=],8---8J,

n
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SO

yi=(K+I 41 ) = (Jy+-+ Jp)

belongs to ker Y. It follows from the induction hypothesis that y € a. But (I} + @) — (J; + L) € a and
X=y+U}+@)—(J]+1L),s0x €a too. Since x=xur, xca. O

Corollary 7.5. The elements [C] and [C({m})], m € Z, provide a Z-basis for Ko(gr C).
Proof. Let a =Kker(Y : ZZgn, — Ko(grC)). Since upuy =ty + uy — 1 modulo q, it follows that ZZg,/a

is spanned by the images of upy, m € Z, and 1.
If there is a relation in Ko(grC) of the form

[C(tm)]+ -+ + [C(tme})] +dICT = [C(tm})] + -+ + [C(ins})] + el C]
for some positive integers d and e, and elements m; and n; in Z, then r +d = s +e and the multi-sets
{{m1,...,m;}} and {{nq,...,ns}} are equal. Hence d =e, and it follows from this that the images of
Um, meZ,and 1 in ZZgy/a are linearly independent. O
Corollary 7.6. If . € k — Z, then [0,] = 0 but [Xp] = —[Yn] # 0 for every n € Z.
Proof. Since O, = C/(xé —X) and deg(x% —A) =, [0;]=0. On the other hand, since the [C({n})]s
form a basis and X, = C/Cxpn, [Xn] = [C] — [C({n})] # 0. By definition, Y, = X,({n}), so [Y,] =
—[Xal. O

8. Symmetries and automorphisms of Gr(C, Zg,)

Consider the diagram

in which the underlying line is SpecCy = Speck([z] and the two fractional points at the loci xﬁ =0,
n € Z, represent the special simples X, and Y;,. There are two obvious symmetries: translation n
n+ 1, and reflection about 0. The automorphism z+— z + 1 of k[z] extends to an automorphism T
of C, and the automorphism z — —z of k[z] extends to an almost-automorphism ¢ of C. (If /—1 €k,
the automorphism z +— —z of k[z] extends to an automorphism x, =w:/z—nt> /z+n=+/—1x_,
of C such that w, = ¢,.)

Theorem 8.1. There is an automorphism t and an almost-automorphism ¢ such that

T Xn = Xn+1, TeYn = Ynqa, 700 = O 41,
@ Xn = X, O Yn =Y _p, 00, =0,
forallne Zand > ek —Z.

Proof. Define the automorphism t by

T(Xp) =Xp—1, nez.

Let 7, be the associated automorphism of Gr(C, Zgy,) defined in Section 3.
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Then 7, X, is simple, and its degree I component, (7, Xp);, is equal to (X,)z; which is (Xp);—1. By
Section 6.3, (Xp)—1 is zero exactly when ne I —1, i.e, when n+1 € I. Hence 7, X, = X;+1. The proof
for 7Yy, is similar. Since O, is annihilated by x — A, 7,0, is annihilated by t=1(x3 — 1) =x3 —A =
X2 —1— . Hence 7,0; = Oj41.

The existence of ¢ is proved in Proposition 8.2 below. There is an associated automorphism ¢,
of Gr(C, Zgp). Only two properties of ¢ are needed for the proof this theorem: ¢(C;) = C_; for all
I € Zgn and (p(x(z)) = —x%. Because ¢(C;) = C_; the degree I component of ¢, Xy, which is, of course,
a simple graded C-module, is equal to (X,)_;. By Section 6.3, (X;;)_; is zero exactly when n € —1, i.e.,
when —n € I. Hence ¢, X, = X_,. The proof for ¢.Y, is similar. Finally, since O, is annihilated by
X2 — X, 9,0, is annihilated by ¢~ 1(x3 —A)=—x3—1. O

Proposition 8.2. Write z = x(z). There is an almost-automorphism ¢ : C — C defined by the conditions:

e ¢ :k[z] — k[z] is the k-algebra automorphism ¢(z) = —z and
e @(ax)) =@(@)x_ foralla e k[z] and | € Zgp.

Furthermore,

(1) ifce Cyand d € Cy, then p(cd) = (=" p(c)p(d);
(2) p(x3)=—x, foralln € Z;

(3) ¢* =idc.

Proof. Let I, J, K € Zg,. We write A1 j := (—1)"J!. Since

[Knd® D|=IKnI|+|KN ]| (mod?2)

it follows that

[Knde D|+IINJI=|(KeDhN]J|+|KNI| (mod2)

and hence that

AK I AL = AK@l, JAK,I-

To show that (¢, A) is an almost-automorphism of C it therefore suffices to prove (1). But first we

observe that (2) is true because x% =z—-n

(1) It is enough to check this for ¢ =x; and d = x;. In that case

QX)) = (xin X))
= (—1)|’m1|x3(,ﬂ])x_(,@])
— (_])IWJIX_IX_]
=(=D"pxnex)).

(3) This is clear. O

Proposition 8.3. If «/—1 € k, there is an algebra automorphism

w:C—C, wkxp) =+—1x_y,
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such that

Wy = Q.

Proof. It is easy to see that w does extend to an algebra automorphism. To show that w, = ¢, it
suffices to show that their actions on isomorphism classes of the special simple graded modules are
the same. However, ® = ¢ because w(C;) = C_; = ¢(Cy) for all I € Zg, so the same argument as
was used in Theorem 8.1 for the action of ¢, on the special simples shows that w,X; = X_, and
wsYn = Y_,. The result follows. O

Theorem 8.4. There is an exact sequence

1 — Zgn — Pic(C, Zan) — Iso(Z) — 1

where the map into Pic(C, Zgy,) sends | to the twist functor (J) and the map out of Pic(C, Zgy) is described
in Theorem 6.4 (equivalently, it sends F to the automorphism ar of Cx defined in Proposition 3.7).

Proof. Since Iso(Z) is generated by the maps n+— n+ 1 and n + —n, it follows from Theorem 8.1
that the map Pic(C, Zgn) — Iso(Z) is surjective.

Suppose o =1, i.e., F is an auto-equivalence of Gr(C, Zg,) such that FX, & FY, = X, ® Y, for all
nez.

Suppose FC = C(I). Since hom(C, Y,) =0 for all n, hom(C(I), FY,) = 0 for all n € Z. However,
hom(C(I),Yp) #0 if nel so, if n eI, then FY, = X;. If n ¢ I, then hom(C(I), X;;) #0 so FY, =Yy if
n¢l. Hence FY, = X, if and only if n € I. But Y,(I) = X, if and only if n€ I so FY, = Y,(I) for all
n € Z. It follows that FX, = X;,,(I) for all n € Z. Since FS = S(I) for all special simples S, F = (I). O

There is a Z-linear action of Pic(grC) on Ko(C, Zg,) given by

[F]-[M]:=[FM].

It is simpler to write this as F.[M]:=[FM].
Let p denote the kernel of the rank function

rank : Ko(grC) — Z.

Since auto-equivalences preserve rank, p is stable under the action of Pic(C, Zg,). Because the rank
function is surjective p is a prime ideal and

Ko(grC) =p@Z-[Cl.
Proposition 8.5.
(1) The elements [Xy], n € Z, are a basis for p.
(2) The elements [Xy] and [Y,], n € Z, form a full set of pairwise distinct representatives of p/2p.
(3) {[Xnl,[Yn] | n € Z} and p/2p are Pic(C, Zgp)-torsors.
(4) p* =p.

Proof. (1) If we identify ZZg,/ker T with its image in Ko(grC), then

1 —up=[Xnl=—[Ynl
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for all n € Z. Since {1,u, | n € Z} is a basis for ZZg,/ker Y and rank(X;) =0, the elements [X;],
n € Z, form a basis for p.

(2) This follows immediately from (1).

(3) By Theorem 8.1, Pic(C, Zgy) acts transitively on the set {[X;], [Yn] | n € Z}. An auto-equivalence
is determined up to isomorphism by its action on the special simples (Corollary 6.10) so the only
auto-equivalence that acts trivially on {[Xy], [Yn] | n € Z} is the identity.

(4) This follows from the fact that X;® Y;=Y;and Vi®QY; = X;. O
9. The correspondence between GrA and Gr(C, Zg;,)

In this section we examine the correspondence implemented by the equivalence Hom(P, —) be-
tween various significant features of C and A. The key to doing this is to match up the special simple
C-modules with the corresponding simple A-modules.

9.1. The special simple graded A-modules

Following Sierra we define the graded simple A-modules

x=2 v (&)
T XA’ ’_<yA)( )-

We call the X(n)s and Y (n)s, n € Z, the special simple A-modules.
Recall that Ag = k[xy].

Proposition 9.1. (See [5, Lemma 4.1].) The simple graded A-modules are

(1) the modules X(n) and Y (n), n € Z, and
(2) the modules A/mA where m is a maximal ideal of Ao but not one of the ideals (xy — n)Ag for anyn € Z.

We note that

XMm+#0 < m<—n

and

YMm#0 & m>=-n+1

whereas the non-special simple graded A-modules are non-zero in all degrees. It follows that the
special simple A-modules can be recognized by the degrees in which they are non-zero.

Proposition 9.2. Let H(P, —) : Gr(C, Zgn) — GrA be the equivalence in the proof of Theorem 5.14. Then

~|Yn) ifn>0,
H(P’X“)Z{X(n) ifn<o,

and

X)) ifn>0,

H(P, Yn) = { Y() ifn<0.
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Proof. Since X, is simple, so is H(P, X;;). Now

H(P, Xn)m = hom(P(_m ), Xn) = hom(C([—m]), Xn) = (Xn)[—m-
Therefore

m>-n+1 ifn>0,
hom(P, Xp)m #£0 ¢ n¢[-m] & {mg_n by

Hence H(P, X;) is as described. The argument for H(P, Yy) is similar. O

Let o be the automorphism of A defined by o (x) = y and o (y) = —x. For every n € Z, 0.(X(n)) is
isomorphic to A/yA as an ungraded A-module and o, (Y (n)) is isomorphic to A/xA as an ungraded
A-module. But 6 (m) = —m for all m € Z, so

o (X)) ZY(-n+1) and o, (Y() = X(-n+1) (9-1)
for all n € Z.

Proposition 9.3. Let P be the bigraded A-C-bimodule in the proof of Theorem 5.14. Then

ox0oH(P,—) = H(P,—) o T4(x.

Proof. By Corollary 6.10, it suffices to show that o.H(P, S) = H(P, t.¢,S) for every special simple S.

If n >0, then o,H(P, Xp) = 0, (Y(N)) = X(—n+ 1) and o, H(P,Yn) Z 0,(X() ZY(—n+ 1. If
n<0, then o,H(P, Xp) Z0,(X(n))=Y(—n+1) and o, H(P,Yp) Z 0, (Y(N)) = X(—n+1).

Now we consider the action of H(P, —) o T,¢,. By Theorem 8.1, 7,0, X; = X_p4+1 and 7,0,Y, =
Y_n41. lf n <0, then —n+ 1 > 0 so, by Proposition 9.2, H(P, =) o T, Xy = Y(—n+1) and H(P, —) o
T« Yn = X(—n+1). If n > 0, then —n 4+ 1 <0 so, by Proposition 9.2, H(P, —) o T,@: Xn = X(—n+1)
and H(P, —) o 7,9, Yy, = Y(—n + 1). Comparing the results in this and the previous paragraphs, it
follows that o, 0o H(P, =) £ H(P, =) o T4@y. O

Lemma 9.4. Let
2= ({1}) o 7.

Then X' is an automorphism of Gr(C, Zgn) and it permutes the isomorphism classes of the special simple
modules as in the diagram:

X1 Xo Xi s Xy —— -

X

Y 4 Yo Y1 — Yy —— -+

Proof. By Theorem 8.1, X' X, = Xp41({1}). Hence X' Xo = Y;. By the remarks at the beginning of Sec-
tion 6.3, if n #0, then X' X;; = X;41. Similar considerations apply to XY,. O
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Proposition 9.5. Let H(P, —) : Gr(C, Zgn) — GrA be the equivalence in Theorem 5.14. Then there is an iso-
morphism of functors

H(PP,—)o X =(1)oH(P,—).

Proof. By Corollary 6.10, it suffices to show that H(P, S)(1) = H(P, X¥'S) for every special sim-
pleS. O

9.2. The automorphisms ¢ |

The key to much of Sierra’s analysis of GrA is her discovery of the automorphisms ¢, J € Zgp, of
GrA that she describes in [5, Prop. 5.9]. These have the following properties:

) Lz =idara;

) th =) otgo(—n) forall ne Z7;
) ty=Tlje ¢ forall J € Zgn;

)

2
to

(1
(2
3
(4 Zidgra. This is not an equality.

The third condition says that the map J — ¢; from Zg, to the automorphism group of GrA is a
homomorphism of monoids, and the fourth condition implies that the map Zg, — Pic(GrA), J — g,
or, more precisely, | — the image of ¢; in Pic(GrA), is a group homomorphism.

The functor (¢ is defined first as an automorphism of the subcategory of GrA consisting of the pro-
jective graded modules and as an automorphism of that subcategory it is a subfunctor of the identity
functor. It follows that every ¢ is also a subfunctor of the identity functor on that subcategory.

Sierra shows that hom(P, X @& Y) = k for all rank one graded projectives P (cf. Corollary 5.6 and
parts (5) and (6) of Proposition 6.2). The functor (¢ is then defined on a rank one projective by

toP :=ker f where f: P — X @Y is any non-zero graded homomorphism.
Equivalently, (o P is the unique graded submodule of P that fits into an exact sequence
0> wP—>P—>XQY

in which the right-most map is the unique (up to scalar multiple) non-zero map P — X & Y. From
the exact sequence 0 — (o(P(—n)) — P(—n) —> X @Y, we see that (, P is the unique submodule of P
fitting into an exact sequence

0=, P—>P—>Xn)dYn)
where the right-most map is non-zero.
Theorem 9.6. Let | € Zgy. Then

HP,—)o(J)=tj0oH(P,—-).

Proof. By [5, Prop. 5.9], t, interchanges the isomorphism classes of X(n) and Y(n) and fixes the
isomorphism classes of all other X(m)s and Y (m)s. On Gr(C, Zgy), the twist ({n}) interchanges X, and
Y, and fixes the isomorphism classes of all other special simples. It now follows from Proposition 9.2

7 Because our (n) is equal to Sierra's (—n), our t, is her (_.
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that (;H(P, S) = H(P, S({n})) for all special C-modules S. Hence by Corollary 6.10, ¢, o H(P, —) =
H(P,—) o ({n}). Thus, if | ={j1,..., j¢}, then
tjoH(P,—=)=tj,0---0tj, o H(P,-)
= H(P,—)o ({j1})o---o({j1})
=H(P, =)o ().

as required. O
9.3. The monoidal structures

The equivalence of categories does not respect the “natural” internal tensor products on GrA and
Gr(C, Zgpn). The tensor product on Gr(C, Zgy,) is the usual graded tensor product over C. The tensor
product on GrA is that which exists on the category of Dy-modules for any smooth variety Y, namely
MN =M ®p, N with a derivation § acting on the tensor product as § ® 1+ 1 ® 3. Specializing
to A and taking k[y] as the coordinate ring of the line on which A acts as differential operators (and
X acts as —d/dy), the internal tensor product on GrA is — ®[y) — with x acting on the tensor product
ABXR1T+1Qx.

Both tensor products are commutative and

X(m) ® X(n) = X(m +n),
YmYm=Ym+n-1)=Xm—-1)®Y(n)

whereas
Xi®X;j=Yi®Y; =§;X;, Xi®Yj=6;Y;.
The identity for the tensor product in GrA is the simple module X = A/xA, whereas the identity for
the tensor product in Gr(C, Zg,) is the projective module C.
The tensor product of two finitely generated C-modules is finitely generated but that property
does not hold for A-modules.

9.4. Preparations for Section 10

9.4.1. The left k[z] action on graded right A-modules
Throughout we will write

The degree zero component of A is therefore

Ao = k[Z]

Sierra [5, Sect. 4, p. 14] makes the fundamental observation that every graded right A-module M
can be given the structure of a left k[z]-module in such a way that M becomes a k[z]-A-bimodule.
The left action of z on an element m € M; is

zm:=m(z — j). (9-2)
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The left k[z]-action commutes with the right A action because for all homogeneous a € A,

[a,z] = (dega)a. (9-3)

Homomorphisms f : M — N in GrA are also homomorphisms of left k[z]-modules. Hence hom(M, N)
has induced left and right k[z]-module structures given by

(zy)(m)=z.y(m) and (Y.2)(m) =1y (z.m).

Since i preserves degree these two k[z]-module structures are the same.

When M = A the left action of z on A given by (9-2) is the ordinary left multiplicative action,
i.e., z.a = za. This follows from (9-3). However, the left action of z on A(n) given by (9-2) coincides
with left multiplication by z + n. For example, if 1 denotes 1 viewed as an element in A(n) then
z.1=1(z+n) because 1 € A(n)_p.

If zM =0, then (z—n).M(n)=0.

Recall that O, = A/(z— 1)A. It is straightforward to see that

(z=1).0p=(zZ—1n).Op+1(-1) =0

and, as a consequence of either of these facts,

(z—n).X(n)=(z—n).Y(n) =0.

9.4.2. Isomorphisms between products of the ¢ ;s
For each | € Zg,, define

hy=[Te-p. (9-4)

jel

This polynomial belongs to k[z] = Ao.
Because the left action of (z —n) annihilates the non-split extensions between X(n) and Y (n) it
follows that

2P =(z—n)P.
There is therefore a unique isomorphism

7]” : Lg — idGrA

such that (n™")p ZL%P — P is left multiplication by (z—n)~! for every projective P. To be precise, n" is
first defined as a natural transformation between the restrictions of the functors to the subcategory
of projectives, and as such n" is multiplication by (z—n)~!. The natural transformation 7" “extends”
uniquely to a natural transformation between the functors defined on all of GrA but, as a natural
transformation on GrA, n™ is not “multiplication by (z —n)~!". Similarly, if I, J € Zg,, we define the
isomorphism

T]U gy —> Lty

to be left multiplication by the polynomial h; in (9-4).
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We define the automorphism o, : LﬁA — A to be the isomorphism n" at A, i.e., o, = (n")a. Thus
oy is left multiplication by (z —n)~!. We also define

o ::HajitiA—)A (9-5)
jel

and oy =idg4.
10. C is a twisted homogeneous coordinate ring for GrA

In this section C is constructed directly from A as a sort of twisted homogeneous coordinate ring
for GrA. We will show that C is isomorphic as a graded ring to the ring B defined in (10-1).

10.1. The Zgy-graded ring B

We define the Zg,-graded ring

B:= P Byj= P hom(A.(;A) (10-1)

J€Zgin J€ZLgin

endowed with the following multiplication: if f € B; and g € B}, then

f-g8=ugjimnpotj(fog, (10-2)

where ojn is defined in (9-5).
The identity component of B is

Bz =hom(A, A) = Ay =k[z].
Lemma 10.1. The product (10-2) on B is associative.
Proof. It suffices to check that the natural transformations 1!/ defined in Section 9.4.2 satisfy the
conditions mentioned after [5, Prop. 2.2]. This reduces to checking that the analogue of the commu-

tative diagram [5, (2.5)] really does commute, and that reduces to showing that

I,JeL 1®],L

u(n?tyon"I® =nlly on

which, in turn, reduces to showing that

hjnhinger) = hinjhae pot-
This equality follows from the fact that
Jnpnin(JeLbh=dnphnde Hnl=go
and
Jgnpu(In(Jel)=dnpHhu(de )HNL).

The last two expressions both equal (IN J)UUNLYU(JNL). O
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Lemma 10.2. With the above notation,

(1) (¢jA)o = hk[z] where h is as defined in (9-4).
(2) The map

pj:(tjA)o — hom(A,jA), p;(m)(a) =ma,

is an isomorphism of Ag-modules.
(3) As aright Bz-module, B is freely generated by the elements

bj:=p ).
(4) b2 +n=>b% +mforallm,neZ.
(5) biby = b} bie-
(6) by :Hjejb]"
(7) B is a commutative k-algebra generated by {b, | n € Z}.

Proof. (1) As noted in the proof of [5, Lemma 5.14],

A+ (xy+nA ifn>1,
XA ifn=0,
yA ifn=-1,
Yy TA4+ (xy +mA  ifn < -2.

hA = (10-3)

Hence (t,A)o = (z — n)k[z] and the result follows from the fact that

LjA= ﬂ LjA.
Jjel
(2) This is trivial. We will use the isomorphism pg : Ag = k[z] — B to identify k[z] with Bg.
(3) The multiplication B; x B — B sends (f, g) to f o g. Since By =k[z] and B; = p;(h k[z])

the result follows.
(4) The multiplication B, x B, — Bg is given by

b.b' =0opoty(b)ob’
o
(bn.bn) (@) = oy (hga) =(@z-n"'hla=haeBy.
Hence b% = pg(hp) = pz(z—n) = pz(z) —n and

b2 +n=pg(z) =bg+m

for all m,n € Z.
(5) By definition of the product in B,

bibj =tgj(Giny) oty(by) oby
=g (o1ny) o ty(p1hn) o py(hy).
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But pj(hj) is “left multiplication by h;”, pj(h;) is “left multiplication by h;”, ¢t;(p;(h;)) is the re-
striction of pj(h;) so is also “left multiplication by h;”, and ojnj, and hence tjg)(0in)), is “left

multiplication by h,’g] ”. Hence

bibj = (left multiplication by hjuj) : A — (19 A
= p1oy (hiup).

Hence binjbig; = p1uj(hiuy) =bjuj and therefore

binsbie) =binsbiuy
= p(lﬂ])®(1U])(h(m])U(IU]))
= pigjhu))
= byb,
as claimed.

(6) This follows from (5) and an induction argument on |J|.
(7) It follows from (5) that byyby, = bbby, for allm,neZ. 0O

Proposition 10.3. As Zg,-graded k-algebras, B = C.

Proof. By parts (5) and (6) of Lemma 10.2, the function v (x;) := b, extends to a well-defined homo-
morphism ¢ : C — B of Zgy-graded k-algebras. By part (7) of Lemma 10.2, ¢ is surjective.

Since Cyx is a polynomial ring in one variable the restriction of ¢ to Cg is an isomorphism
Cy — Bg. The kernel of ¢ is the sum of its homogeneous components. If C; N kery were non-
zero multiplying it by x; would produce a non-zero element of Cg Nkeryr; but the latter is zero, so
CyNkery =0 and we conclude that v is an isomorphism, as claimed. O

Lemma 10.4 (Sierra). (See [5, Prop. 4.1].8) The set of modules {tjA| ] € Zan} generates GrA.

Because the isomorphisms 7'/ : Lig) — tjty satisfy the conditions verified in the proof of
Lemma 10.1 there is a well-defined functor
F : GrA — Gr(B, Zgn),

FM:= P hom(A, ¢(;M).
J€Zgy

Because {tjA | ] € Zay} is a set of projective generators for GrA, it follows from del Rio’s result
(Theorem 5.13) that F is an equivalence.

10.2. Final remarks
Is there an a priori reason why the Weyl algebra with the given Z-grading might be so intimately

related to a ring like C (or, equivalently, a stack like X’)? One explanation is this. A Z-grading typically
forces graded modules to behave somewhat like ungraded modules over a ring of dimension one less.

8 This result is also a consequence of the equivalence GrA = Gr(C, Zg,) and the fact that the C(J)s are a set of generators
for Gr(C, Zgp).
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Since the Weyl algebra has Gelfand-Kirillov dimension two, and since rings of Gelfand-Kirillov dimen-
sion one behave a lot like curves, GrA might reasonably be expected to exhibit curve-like features.
The stacky behavior corresponds to the existence of non-split extensions between non-isomorphic
simples.
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