SOME FINITE DIMENSIONAL ALGEBRAS RELATED TO
ELLIPTIC CURVES

S. PAUL SMITH

ABSTRACT. The Koszul dual of a Sklyanin algebra A is a finite dimensional
graded algebra depending on an elliptic curve, a translation automorphism,
and an integer n > 3; it may be defined as Ext” (k, k). The representation the-
ory and structure of these algebras is studied by using the functor Ext (—, k)
to transfer results from the Sklyanin algebras to the finite dimensional alge-
bras. We show that their representation theory is closely related to the elliptic
curve and the automorphism.

0. INTRODUCTION

Given an elliptic curve E over an algebraically closed field &, a translation auto-
morphism ¢ of E| and an integer n > 3, we define in Section 10 a finite dimensional
algebra B, (F, o) depending on this data. Its Hilbert series is the same as that
of the exterior algebra A(k™). In particular, B,(E, o) is local. Tt is also of wild
representation type, and a Frobenius algebra (in fact, symmetric when n = 3). The
construction is such that E is naturally embedded in P(B;), the projective space
of 1-dimensional subspaces of the degree one component of B, (E, o).

These properties of B = B, (F, o) are proved in an indirect fashion; the starting
point is that B is a Koszul algebra, and its properties are consequences of properties
of its Koszul dual A,,(F, o). Since this paper is aimed at those whose main interest is
finite dimensional algebras, we will treat B, (F, o) as the primary object. However,
An(E, o) is the object of primary interest to the author. Tt is a Sklyanin algebra,
and has been the object of intense study over the past 6 or 7 years. A survey of
what is known about A4(F, o) may be found in [24].

Each A = A,(F,0) is a connected graded algebra whose defining relations are
homogeneous of degree two; its Koszul dual is, by definition, Ext% (k, %) endowed
with the Yoneda product. The contravariant functor Ext% (—, k), sending graded
A-modules to graded B-modules, is the vehicle used for transferring properties from
A to B.

The basic properties of A, (F, o) are reviewed in Section 8. The key result,
due to Tate and van den Bergh [35], is that A,(F,0) is a quantum polynomial
ring (Definition 8.5); the terminology suggests that A, (F, o) is a non-commutative
deformation of a polynomial ring—Tlike the polynomial ring, it is generated in degree
one, has Hilbert series (1—1)~", is right and left noetherian, is a domain, has global
homological dimension n, is Auslander-Gorenstein (Definition 4.2), and Cohen-
Macaulay (Definition 8.4). The Frobenius property for B, (F, o) is equivalent to
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the Gorenstein property for A,(F, o) (Proposition 5.10); the Hilbert series for
B, (FE, o) is obtained from that for A,(F, o) via the functional equation for Koszul
algebras (5-1).

Although the representation theory of A, (F, o) is not well-understood (except
for n = 3 and 4), there is, for each n, a particularly important class of graded
modules which is understood. These are the linear modules (Definition 9.1). They
are analogues of linear subspaces of the projective space P*~!. Their properties are
discussed in Section 9. The most important point for the present paper is that linear
modules have linear resolutions (Definition 1.6), and Ext (—, k) is a duality between
the categories of graded modules over A and B having linear resolutions (Corollary
6.4). For each effective divisor D on E of degree d < n, there is an associated
linear module M (D); the B-module L(D) := Ext}(M(D), k) is indecomposable,
cyclic, graded, and has Hilbert series (1+¢)"~¢ (hence dimension 2"~%). These are
the B-modules about which we have most information. (For the exterior algebra,
the analogous modules are A(k™)/I where T is the left ideal generated by a d-
dimensional subspace of k", the degree one component of A(k").) That part of
the Auslander-Reiten quiver for Bs(F, o) containing the modules L(p), p € E, is
described.

Our approach to the study of B,(F, o) requires some technical background,
which the earlier part of the paper provides. Section 1 gives basic terminology
and results on the category of graded modules, with particular attention paid to
linear resolutions. Section 2 recalls the Yoneda product, and gives a result com-
paring two Yoneda Ext-algebras, one for left, and one for right, modules. Section
3 considers the Frobenius property for connected graded algebras, and defines a
‘symmetrizing automorphism’ v which measures the failure of a Frobenius algebra
to be symmetric—w is inner if and only if the algebra is symmetric. The Auslander-
Reiten translation (D oT'r)M is isomorphic to v.(Q? M), where v, is the pull-back
functor along v and Q? is the second syzygy functor. Section 4 considers conse-
quences of a version of the Gorenstein property for non-commutative connected
graded algebras. Theorem 4.3 shows that if A is such an algebra (also left noe-
therian and of finite global dimension), then Ext% (k, k) is Frobenius; in particular
B, (F, o) is Frobenius. Section 5 gives some background on Koszul algebras—we
restrict attention to those which are k in degree zero. In Section 6 we show that for
a Koszul algebra Ext’ (—, k) is a duality for modules having a linear resolution. The
close relation of this to the Koszul duality results of Beilinson-Ginsburg-Soergel [5]
is briefly discussed in Section 7. Sections 8 and 9 discuss the Sklyanin algebras,
and in Section 10 we finally get to the finite dimensional algebras B, (E, o).

Sections 11 and 12 attempt to put some of the results for Sklyanin algebras
in context. The general features of A,(F, o) show up in many other situations.
First, there are many quantum polynomial rings. The 3-dimensional ones have
been classified by Artin-Schelter [1] and Artin-Tate-van den Bergh [2]: they are
classified by geometric data consisting of a scheme and an automorphism of it, the
scheme being either P? or a cubic divisor in P2. The most interesting case is that of a
smooth cubic with a translation automorphism, which gives the algebras As(F, o).
An interesting class of quantum polynomial rings are the homogenized enveloping
algebras in Section 12. All quantum polynomial rings are Koszul algebras (Theorem
5.11), and their duals are finite dimensional graded algebras which are Frobenius
and have the same Hilbert series as an exterior algebra.
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Part of the motivation for this work is the way in which the cohomology ring
H*(G, k) = Extys(k, k) of afinite group is used to study its k-linear representations.
For any (finite dimensional) algebra R with a distinguished module, say & itself for
simplicity, one may assign to an R-module M the graded module Exty (M, k) over
the graded algebra Ext}(k, k) with its Yoneda product; if one knows a lot about
Exty(k, k) this provides a method for analyzing M.

Acknowledgements. I would like to thank J. Zhang for several helpful conver-
sations concerning this work. In particular, Theorem 5.11 is his result, Theorem
4.3 is based on unpublished work of his, and the proof of Lemma 2.1 is his.

The results in Section 6 were intended to appear as part of [29]; I am grateful to
J.T. Stafford for agreeing to allow them to appear in the present paper.

1. GRADED ALGEBRAS

Throughout we work over a fixed field k. Unadorned tensor products will denote
tensor products over k.

Let A be a Z-graded k-algebra. We are interested in the category GrMod(A) of
graded A-modules, and its full subcategory grmod(A) of finitely generated modules.
The morphisms in these categories, denoted Homg,(N, M), are the A-module maps
f: N — M such that f(N;) C M; for all i. More generally, if f: N — M satisfies
F(N;) C Miyq for all i € 7, we say that the degree of f is d; we write Hom4 (N, M)q4
for the A-module maps of degree d , and define

Hom , (N, M) = @5 Homu (N, M),
del

We write MQ(N, M) for the derived functors of Hom, (N, M). Since GrMod(A)
has enough projectives and enough injectives, MQ(N, M) may be computed from
a projective resolution of N (or an injective resolution of M) in GrMod(A). If @, —
N is such a projective resolution, then the grading on each Hom ,(@,, M) induces
a grading on Ext, (N, M); we denote the degree j component by Ext’, (N, M);,
and view Ext’y (N, M) = @pez Ext’, (N, M) as a bigraded vector space with (p, j)™
component Ext’, (N, M);; we will refer to j as the degree and p as the position.

If N is finitely generated, then Hom, (N, M) = Homu (N, M), the space of all
A-module homomorphisms, and similarly Ext’ (N, M) = Ext’ (N, M).

A tensor product of graded vector spaces is always given the tensor product
grading (U @ V), = Zi+j:n U; @ Vj. The left derived functors of ®4 behave as

usual, giving Tor groups which are endowed with a graded vector space structure.

A graded vector space V is bounded below if V; = 0 for ¢ < 0.
A graded vector space V is locally finite if dimg (V;) < oo for all . The Hilbert
series of a locally finite vector space V' is the formal series

Hy(t) ==Y (dimg Vi)',
The shift functor [1] on GrMod(A) is defined by M[1] = M as an A-module, but
with grading M[1]; = M;y1. Thus
Hom , (N, M) = P Homa: (N, M[n)).
nezn

If M € GrMod(A), M* denotes Homy (M, k); this has a natural structure of a
graded right A-module.
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Definition 1.1. A k-algebra R is augmented, if there is a distinguished k-algebra
map € : R — k, the augmentation. There are two distinguished modules over an
augmented algebra, namely the left and right trivial modules R/ ker(g). We will
denote these by k and kg respectively.

A graded algebra A is connected if Ag = k and A; =0 for ¢ < 0; in that case, A
is an augmented algebra, with ker(e) = Ax;.

Typical examples of augmented k-algebras are commutative local rings, Hopf
algebras (group algebras and enveloping algebras) where ¢ is the co-unit, and con-
nected graded algebras. Later, we will consider Ext%(k, k); for example, if R is the
group algebra kG, this is the cohomology ring H*(G, k).

Definition 1.2. A complex -+ — P41 i) P, i) P,_1 — .-+ of modules over an
augmented k-algebra is minimal if, for each n, ker(d) C ker(e)P,. In particular,
there is a notion of a minimal projective resolution of a module, any two of which
are isomorphic.

For each n > 0 we define the syzygy functors Qf by Q"M = ker(P,_1 — P,_2),
where - -+ — P| = Py — M — 0 is a minimal projective resolution of M.

Connected algebras behave somewhat like commutative local rings: for example,
there is a version of Nakayama’s Lemma, and this has the usual consequences.

Lemma 1.3. If A is connected, and M € GrMod(A) is bounded below, then A>1 M =
M if and only if M = 0.

Proposition 1.4. If A is connected and Ext\*'(k, k) = 0, then projdim(M) < n
for all M € grmod(A).

Proposition 1.5. If A is connected, then all projectives in GrMod(A) which are
bounded below are free.

A free module in GrMod(A) can be written as A®g V' where V is a graded vector
space and A ®, V is given the tensor product grading.

Definition 1.6. A module M € GrMod(A) has a linear resolution if it has a projective
resolution of the form
e A Voo o AV 2 A Vo> M >0 (1-1)

in which each V; is concentrated in degree i. We write Lin(A) and lin(A) for the full
subcategories of GrMod(A) and grmod(A) consisting of the modules having linear
resolutions.

If (1-1) is a minimal resolution of M, then Extf, (M, k) = v and Tor;‘(kA, M) =
Vp, so we have the following result.

Lemma 1.7. Let M € GrMod(A). The following conditions are equivalent:

1. M has a linear resolution;
2. the minimal projective resolution of M is linear;
3. Tor;‘(kA,M)j =013 j#p, for al p;
4. Ext) (M, k) = Ext’, (M, k)_, for all p.
If M has a linear resolution, then Hps(t) = HA(t)~Hmz(M,k)(—t)~

Lemma 1.8. Let 0 — L[—1] > M — N — 0 be an ezxact sequence in GrMod(A).

1. If L and M have linear resolutions, so does N .
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2. If M and N have linear resolutions, and L is generated in degree zero, then
L has a linear resolution.

Proof. We will apply Lemma 1.7 to the exact sequence
-+« = Torp(ka, M) — Torp(ka, N) = Torp_1(ka, L)[—1] = Tor,_1(ka, M) — ---

(1) Since L and M have linear resolutions, Tor,(ka, M) and Tor,_1(ka, L)[—1]
are concentrated in degree n, whence so is Tor, (ka, N).

(2) By hypothesis, Tor,(k4, N) is concentrated in degree n and Tor,_1(ka, M)
is concentrated in degree n — 1, so the only degrees in which Tor,_1(ka, L)[—1]
might be non-zero are n — 1 and n. However, L[—1] is generated in degree 1, so the
(n — 1)*® term in its minimal projective resolution is zero in degree < n — 1. Thus
Tor,—1(ka, L)[—1] is concentrated in degree n, so I has a linear resolution. O

Remark 1.9. The category Lin(A) is rarely abelian. On the positive side Lin(A)
has cokernels. To see this, suppose that 0 = L -+ M — N — 0 is exact, and that
L and M have linear resolutions. From the long exact sequence for Torf(kA, -),
one sees that Tor;?(kA, N);=0ifj#p—1or j# p. However, M (and hence N)
is generated by its degree zero component so, if -+ = @1 = Qo > N — 0 is a
minimal projective resolution, then the degree j component of ), is zero whenever
J < p; thus Tor;‘(kA, N)p—1 =0, whence N has a linear resolution by Lemma 1.7.

But Lin(A) does not have kernels: if A = k[z], the kernel of the augmentation
e : A — k is Az which is zero in degree zero, so cannot have a linear resolution.
Although Az[1] has a linear resolution, the full subcategory of modules which are
shifts of modules in Lin(A) is still not abelian: the kernel of (8) CAGk > ks
Az @ k, no shift of which is in Lin(A).

2. THE YONEDA ProDUCT

In this section, R will initially denote an arbitrary ring, Mod(R) its category of
left R-modules, and mod(R) its full subcategory of finitely generated modules.

Let X, Y, and 7 be left R-modules. The Yoneda product is, by definition, a map
Exth, (Y, Z) ® Exth(X,Y) = Extbt(X, Z), (2-1)

which is associative in the obvious sense. Thus Ext™(Y,Y’) becomes a graded alge-
bra, with degree p-component Exth,(Y,Y), and Extf(X,Y) becomes a graded left
Exty(Y,Y)-module.

The Yoneda product (2-1) may be defined as follows. Let Py, > X and Qy =Y
be projective resolutions. Suppose that [] € Exth(Y, Z) and [a] € Ext%(X,Y)
are represented by § € Homg(Q;, Z) and o € Homg(P;,Y). There is a lift o; :
Pii; = Qiof a,s0 Boa;: Piy; — Z gives a class in Extgj (X, 7). By definition
[A][a] := [B o a;]. The following picture illustrates what is happening:

Pi+j vy PJ vy X ]
Qi Qo Y 0

ﬁl (2-2)
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For an augmented k-algebra R, the Yoneda product on Exty(k, k) has a direct
description using the syzygy functors. First, Exth(k, k) = Homp(Q"k, k) for each
n > 0. Second, there is a natural map

Homp (Q'k, k) x Homp(Q7k, k) — Homp(Q 7k, k),
namely (o, #) — a o0 Q(B), which puts an algebra structure on
P Homp (Q'k, k) 2= Extyy(k, k).
i>0
It is easy to show that this agrees with the product defined earlier.

The above considerations apply to a connected graded algebra A. If X, Y,
and Z are graded modules, then the Yoneda product respects the grading on each
Ext-group; that is,

Ext’, (Y, Z); ® Exty (X,Y); = Extt (X, 2)iy;. (2-3)

Thus Ext’ (Y,Y") becomes a bigraded algebra and Ext% (X,Y) becomes a bigraded
left Ext’ (Y, Y)-module.

Lemma 2.1. If A is a locally finite, connected, graded k-algebra, then there is an
isomorphism of graded algebras

Exct’y (ka, ka) = Ext?, (k, k)°P.

Proof. (Zhang) Let 4C denote the full subcategory of GrMod(A) consisting of the
locally finite modules M such that M, = 0 for n < 0. Let D4 denote the full
subcategory of GrMod(A°P) consisting of the locally finite modules M such that
M, = 0 for n > 0. The functor Homg.(—, k) is an equivalence of categories
4C = D, sending k to k4.

The modules in the minimal projective resolution of k& belong to 4C, so 4C has
enough projectives, and Extj(k, k) = Ext%(k, k). Similarly, the modules in the
minimal injective resolution of k4 belong to Da, so Ext} (ka, ka) = Ext’ (ka, ka).
The equivalence Homg,(—, k) ensures that Ext(k, k) = Exthep(ka, ka); the result
now follows from the fact that Exthep (ka, ka) = Exth(ka, ka)°P. O

3. FROBENIUS ALGEBRAS

Definition 3.1. A finite dimensional k-algebra R is Frobenius if| as left R-modules,
R = R*, where R* = Homy (R, k) is given the left module structure induced by the
right regular action of R on itself.

A Frobenius algebra is characterized by the fact that there is a non-degenerate
bilinear pairing (a Frobenius pairing) (—,—) : R x R — k such that (ab,c) = (a, be)
for all a,b,¢c € R (which shows that R is Frobenius if and only if R°P is) — the
isomorphism gR — R* is given by r + (—, 7). For more details see [8, Section 60].

A Frobenius algebra is injective as a module over itself.

Lemma 3.2. Let R be a finite dimensional, connected graded k-algebra such that
Ry, # 0 but R>py1 = 0. The following are equivalent:

1. R s Frobenuus;

2. dimg(R,) = 1 and the map (—,—) : R x R — k, defined by

(a, b) = the component of ab in R,,

1s a Frobenius pairing;
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3. R= R*[—n] as graded left R-modules.

Proof. First (2) implies (3) because the map a — (—,a) is a degree zero left R-
module map R — R*[—n], injective by the non-degeneracy hypothesis, and hence
an isomorphism by finite dimensionality. Clearly (3) implies (1), so it remains to
prove that (1) implies (2).

Since R is graded, R>; is a nilpotent ideal, whence k is the unique simple R-
module by the connectedness hypothesis. Thus R is the only indecomposable pro-
jective, so by the Frobenius hypothesis (which implies that R is quasi-Frobenius),
the socle of R is 1-dimensional [8, Theorem 58.12]. But R, is in the socle, so
dimg(R,) = 1. Since R is injective, it is the injective envelope of its socle, whence
R, is essential in R. Therefore, if 0 # @ € R;, there exists b € R, _; such that
0 # ab € R,,, whence the bilinear map (—, —) is non-degenerate, as claimed. O

If R is as in Lemma 3.2, the connectedness hypothesis implies that there is a
unique isomorphism R — R*[—n] up to scalar multiples, and hence that the non-
degenerate pairing in (2) is unique up to scalar multiples.

If R is a Frobenius algebra, then R* is isomorphic to R both as a left and as a
right R-module but not necessarily as an R-R-bimodule. However, any bimodule
isomorphic to R on both the left and the right is of a special form.

Notation . Let R be a ring and v € Aut(R) an automorphism of R. We write YR*
for the R-R-bimodule which is R as an abelian group, endowed with the action

a.x.b=a"zb (3-1)
for a,b € R and z € YR' = R, where the right hand side of (3-1) is given by the

usual multiplication in R. In (3-1), @” denotes the image of a under v.

Lemma 3.3. Let R be a Frobenius algebra with Frobenius pairing (—,—). There
exists v € Aut(R), unique up to an inner automorphism, such that R* = YR'.
Moreover,

1. (a,b) = (b, a) for all a,b € R;

2. (a,b) = (a”,b") for all a,b € R;

3. if R 1s connected graded, then v can be chosen so it preserves degree, and

4. if Ry, 1s the socle of R, then ab = b¥a whenever a € R; and b € R,,_;.

Proof. Since YR' = #R! if and only if 4~ 'v is an inner automorphism, up to an
inner automorphism, v does not depend on the choice of Frobenius pairing.

Since the pairing is non-degenerate, for a given b € R, there is a unique element
b” € R such that (6", =) = (—,b); this defines a k-linear map v : R — R. Clearly
1 =1.1fa,b,c € R, then

((be)”,a) = (a,be) = (ab,c) = (¢, ab) = (c"a,b) = (b",c"a) = (b”¢", a)

whence v(be) = v(b)v(c), showing that v is an algebra homomorphism.
The map ¥ : R — R* defined by ¥(a) = (a,—) satisfies
(a.¥(b).c)(z) = U (b)(cxa) = (b,cxa) = (bex,a) = (a”be,z) = ¥(a”be)(z),
so is a bimodule map YR' — R*, and hence an isomorphism, as claimed.
Part (2) is straightforward.

If R is connected graded, then (3) and (4) follow easily using the Frobenius
pairing described in Lemma 3.2. (]
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The automorphism v is called the symmetrizing automorphism. It measures the
failure of a Frobenius algebra to be symmetric (R is symmetric if and only if v is
an inner automorphism). For example, if R = A(k") is the exterior algebra, then
on R;, v is multiplication by (—l)i(”_l); thus v is the identity when n is odd, and
is multiplication by (—1)! on R; when n is even.

The automorphism v~! : R — R is a left module isomorphism YR' =5 R.

Consider the functor v, = YR! ®g — : Mod(R) — Mod(R). Clearly v.(R) = R,
however, if p : R — R is right multiplication by r, a little care is required to observe
that v.(p) : R — R is given by right multiplication by v~'(r).

It is not difficult to check that v, is naturally isomorphic to the functor induced
by v : R = R which sends modules over the second copy of R to modules over the
first copy of R by pulling back along v; thus v, M is M as an abelian group, but the
R-action 1s given by z.m = z¥m for x € R and m € M, where z¥m is computed
using the original action of R on M.

Proposition 3.4. Let R be a Frobenius algebra with symmetrizing automorphism
v. Then the Auslander-Reiten translation D o T'r applied to a finite dimensional
module M 1s given by

(DoTr)M = v, (Q*M),
where Q> M denotes the second syzyqy of M.

Proof. Let 0 = Q?M — P, = Py - M — 0 be the start of a minimal projective
resolution of a left R-module M. Write F' := Homy(Hompg(—, R), k). This is an
exact covariant functor since R is injective as a left R-module. Hence we obtain an
exact sequence

0— F(Q*M) = FP, — FPy = FM — 0.
By definition F(Q?M) = (Do Tr)M.

Now, consider F' applied to a homomorphism p : R — R which is given by right
multiplication by r. By the Frobenius property, F R = R. Identifying F'R with R,
then F(p) is right multiplication by »~!(r), which by the comments prior to the
proposition is v.(p). It follows that F' is naturally equivalent to v, which completes
the proof. O

4. (FORENSTEIN ALGEBRAS

Definition 4.1. An augmented k-algebra R is Gorenstein if injdim(R) = n < oo and,
as right R-modules,

0 ifi#n,

4-1
kr ifi=n. (1)

Exth(k, R) = {
Definition 4.2. A noetherian ring R satisfies the Auslander condition if, for all M €
mod(R) and all N C Ext},(M, R), Extr(N, R) = 0 whenever i < j. If R is both
Gorenstein and Auslander, we say it is Auslander-Gorenstein.

Warning: Our use of the terminology ‘Auslander-Gorenstein’ is non-standard.
Usually, one requires only that R satisfy the Auslander condition and be of finite
injective dimension.

A commutative ring R is usually said to be Gorenstein if injdim(Ry,) < oo for all
maximal ideals m. For a commutative local ring, the condition (4-1) is equivalent to
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the requirement that injdim(R) < oo [19, Theorem 18.1]. A commutative Goren-
stein ring satisfies the Auslander condition but, for a general augmented algebra,
the condition injdim(R) < oo need not imply the Auslander condition.

Nevertheless, the situation for non-commutative rings is similar to the commu-
tative case. For example, Stafford and Zhang [33] have shown for a connected,
graded, noetherian algebra which is finite over its center, finite injective dimen-
sion implies the Auslander condition (and also the Cohen-Macaulay property as
defined in (8.4)). Furthermore, if R is left noetherian, and M € mod(R), then
E ®r M = Homp(Homp(M, R), E) whenever E is an injective right R-module,
whence Torf(E, M) = Homp(Exth (M, R), E); the argument in [10, page 40] then
shows that if 0 > Rr — E* is a minimal injective resolution, then R satisfies the
Auslander condition if and only if flat. dim(E?) < i for all i.

There is a nice connection between Gorenstein and Frobenius algebras which is a
consequence of the following modification of a result of J. Zhang [37]; T am grateful
for his allowing me to use his unpublished ideas in its proof.

Theorem 4.3. Let R be a left noetherian, augmented k-algebra. Suppose that R
is Gorenstein and gldim(R) = n. Then

1. Ext?(k, k) = k;

2. for each 0 < p < n, there is an isomorphism of functors
np : Exth(— k) = Exty P (k,—)* (4-2)

on mod(R);
3. if M € mod(R), then the natural equivalence in (4-2) is implemented by the
Yoneda product

Exth, (M, k) x Exty, " (k, M) — Exth(k, k).
That is, ny([a])([A]) = [@][8) whenever [a] € Extl, (M, k) and [B] € Exty " (k, M).

Proof. (1) First, Ext(k, k) # 0 by Proposition 1.4 and the hypothesis that gldim(R) =
n. Let

0— P, — - o> Py—k—0 (4-3)
be a minimal resolution of k. By the Gorenstein hypothesis,
0 —» Hompg(Py,R) = - - -+ = Homp (P, R) = 0 (4-4)

is exact except at the n*® position where the homology is Ext(k, R) = kr. Hence
(4-4) is a projective resolution of kg, which is minimalsince (4-3) is. The minimality
of (4-4) ensures that Homp(P,, R) = R, whence P, = R. Therefore, applying
Homp(—, k) to (4-3), Exti(k, k) = k.

(2) and (3) We identify Exti(k, k) with &, and fix 0 < p < n. For each M €
mod(R), the Yoneda product gives a map

nu : Exth (M, k) — BExty P (k, M)*,

namely nar([2])([8]) = [«][F]. We will show that this yields a natural transforma-
tion n : Extl(—, k) — Exty 7 (k, —)*.
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Let f: M — N be an R-module map, and consider the diagram
Exth (N k) —2— Ext% "(k, N)*
Ext;(j,k)l JvExt;_p(k,f)* (4_5)
Exth (M, k) —— Exty (k, M)*

M
Let [a] € Extl,(N,k) and [B] € Exty P(k, M). By [6, page 114], the induced
maps Ext?(f, k) : Extl, (N, k) — Exth, (M, k) and Ext"P(k, f) : Exty P (k, M) —
Exty, P (k, N) are given by [a] — [a][f] and [3] — [f][B]. Hence, going clockwise
round (4-5), the image of [a] sends [A] to

v ([o)([A118]) = [o]([F18),

and going counter-clockwise round (4-5), the image of [a] sends [f] to

e ([e][A)(8]) = ([][1)[5);

by the associativity of the Yoneda product, these agree, so the diagram commutes.
Thus the various nas produce a natural transformation 7,, as in (4-2).

To show that each 7, is a natural isomorphism, we first consider the case p = 0.
It is easy to check that (o)g : Homg(R, k) — Extk(k, R)* is an isomorphism,
whence so is (10)ar for all M € mod(R): to see this consider a presentation F; —
Fy - M — 0 with Fy and Fjy finitely generated free R-modules. Thus 7 is a
natural equivalence.

The long exact sequence for Ext’y*(k, —)* shows that {Ext} " (k,—)* | i > 0}
is a §-functor. Furthermore, the Gorenstein hypothesis ensures that Ext'}{i(k, -)*
is co-effacable for each i > 0, so these give a universal d-functor [11, Chapter III,
Theorem 1.3A]. But {Ext’(—, k) | i > 0} is also a universal é-functor, so by the
uniqueness of the lifting(s) of 7o (and n;') in the definition of a universal é-functor
[11], each 7, is a natural isomorphism. O

Corollary 4.4. Let R be a left noetherian, augmented k-algebra, and suppose that
R is Gorenstein and that gldim(R) = n. Then

1. Extyp(k, k) is Frobenius;

2. if v is a symmetrizing automorphism for Exty(k, k) preserving degree, and
M € Mod(R), then the map nar : Extyp(M, k) — Ext},™"(k, M)*, defined by
(4-2), induces an isomorphism

vy Exty (M, k) = Exty " (k, M)*
of left Exty(k, k)-modules.
Proof. (1) The Yoneda product on Exty(k, k) gives a map
(—,—) : Extly (k, k) x Ext}y " (k, k) — Exty(k, k),

which we can extend to Exty(k,k) x Exty(k, k) — Extf(k, k) by insisting that
(a,b) = 0 whenever a and b are homogeneous elements such that deg(a) + deg(b) #
n. By the associativity of multiplication, (ab,c¢) = (a,bc) for all a,b,c. The non-
degeneracy of (—, —) follows from (4-2).
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(2) Let [a] € vi ExtR(M, k), [B] € Extir(k, M), and [¢] € ExtR(k, k) be homoge-
neous elements such that deg([a]) + deg([3]) + deg([¢]) = n. Then
n(€]-[a])([8]) = n([€)" [a])([8])
= []"[][7]

= [2][8][€] by Lemma 3.3,
= ([ -n([a])([2)),
whence 7 is a left Ext} (k, k)-module homomorphism. O

Specializing the preceeding results to a connected graded algebra, we recover the
following result of Zhang.

Theorem 4.5. [37] Let A be a left noetherian connected graded k-algebra of global
dimension n. Suppose further that A is Gorenstein and that Ext’y (k, A) = kalf].
Then for each 0 < i < n, there is an isomorphism of functors

mi : Extly (— k) = Ext" ' (k[{], —)".

Corollary 4.6. Let A be a left noetherian connected graded k-algebra of global
dimension n. Suppose further that A is Gorenstein and that Exty (k, A) = ka[n].
Then M € GrMod(A) has a linear resolution if and only if Ext! (k, M), = 0
whenever p+ q # 0.

Proof. By Theorem 4.5, MQ(M, k); = (Mz_i(k[n], M)_j)*, so by Lemma 1.7,
M has a linear resolution if and only if Ext’ " (k[n], M)_; = 0 whenever i + j # 0.
But this equals Ext’, ™" (k, M)_,_; = 0, so the result follows. O

5. KoszuL ALGEBRAS

Definition 5.1. A graded k-algebra is quadratic if A =T(V)/(R) where

e V is a finite dimensional k-vector space, concentrated in degree 1,
e T(V) is the tensor algebra on V| with the induced grading, and
e (R) is the ideal generated by a subspace RC V@ V.

The dual of such a quadratic algebra is A' := T(V*)/(R*), where
L={AeV*'@V*|A(r)=0forall r € R}.
We identify (V @ V)* with V* @ V* by defining (a ® 8)(v @ v) = a(u)B(v) for

a,f € V* and u,v € V (not all authors adopt the same convention).
From now on all algebras will be quadratic (and therefore connected).
Proposition 5.2. [18] Let A be a quadratic k-algebra. Then the subalgebra of

Ext’ (k, k) generated by Mﬁ,(k,k) equals @p>0 Extl) (k,k)_,, and is isomorphic
to A -

Remark 5.3. 1f in the definition of A" we identify (V ®@V)* with V*®@V* by defining
(a® B)(u @ v) = a(v)B(u), then Ext’ (k, k) is isomorphic to (A')°P.

Definition 5.4. A quadratic algebra A is Koszul if k& has a linear resolution.
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Definition 5.5. Let A be a quadratic algebra. The Koszul complex is
K(A) = A® (A",
where the n'P term is K, (A) = A®(A})*, which is naturally a subspace of AQV®",
and the differential
On : Kp(A) = Kn1(A)
is the restriction of the map A @ V®* — A @ V®?~! defined by
QUL R - QUy > a1 QU2 Q- Q Vp.

Each K, is a graded free left A-module with the tensor product grading, where
deg(A.)* = n. Furthermore, each , is a left A-module homomorphism of degree
7€ero.

Since Ky(A) = A® k, there is an augmentation map € : Kg(A) — k.

Lemma 5.6. The augmented Koszul complexr really is a complez in GrMod(A).

Proof. Since (AL)* C R® V®*~2 and the image of R in A is zero, 82 = 0, as
required. O

Remark 5.7. Tf {x,} is a basis for A; and {£,} its dual basis in A%, then the element
e:=>, zx ®&, is independent of the choice of basis. Since K(A4) = A ® (A')* is
a right A ® A'-module, e acts on it from the right, and as such is a left A-module
homomorphism. It is easy to show that this action of e is the same as the action

of the differential 9.

Remark 5.8. The dual of the surjection (V*)®? = (V®)* — Al is an inclusion
(AL)* — V®" the image of which is

n—2

(Ve ReVE"~i=2

=0
Theorem 5.9. Let A be a quadratic algebra. The following are equivalent:

1. A is Koszul;
2. A°P s Koszul;
3. A" is Koszul;
4. Exty(k, k) = (A') as graded k-algebras;
5. the augmented Koszul complezx 1s a minimal resolution of k;
6. Ext’ (k,k); =0 ifp+j#0.
Further, if A 1s Koszul, then

Ha(t)Ha(=t) = 1. (5-1)

Proof. (1) & (2) By considering Tor (ka, k), it follows from Lemma 1.7 that k4
has a linear resolution if and only if & does.

(1) & (3) Certainly A has a linear resolution, so this follows from Theorem
6.3(4) below (the proof of which is independent of the fact that A' is Koszul) since,
in the notation there, AT = 4.k.

(1) & (6) This is the equivalence of statements (1) and (4) in Lemma 1.7.

(4) < (5) The hypothesis ensures that k£ has a linear minimal resolution. Since
there is a morphism from that resolution to the Koszul complex, comparing homol-
ogy of the two complexes, it follows that that morphism is an isomorphism.

(4) < (6) This is Proposition 5.2.
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(5) = (6) If the Koszul complex is exact, then it is a linear resolution of k.
Equation (5-1) is a restatement of the final remark in Lemma 1.7. O

Proposition 5.10. Let A be a Koszul algebra of finite global dimension. Then A
is Gorenstein if and only if A' is Frobenius.

Proof. Since gldim(A) < oo, A' is finite dimensional (1.4). Let n denote the global
dimension of A.

The groups m@(k’,A) are the homology groups of the complex obtained by
applying Hom 4 (—, A) to the Koszul complex for A. That is, they are the homology
groups of the complex

02ASA 0435 - LA 0450 (5-2)

of right A-modules, where the differential d is left multiplication by >~ &\ @ .
Therefore A is Gorenstein if and only if (5-2) is exact except at the final position
where its homology is ka[n]. But A°P is Koszul, so k4 has a minimal resolution
given by the Koszul complex

05Uy oAd S UAYyeAS Ak, o0 (5-3)
where § is left multiplication by ), é&x ® z5. Thus A is Gorenstein if and only if
(5-2) and (5-3) are isomorphic as complexes of right A-modules.

Thus A is Gorenstein if and only if there is an isomorphism ® : A' — (A')*[—n]
of graded vector spaces such that ® ® 1 4 is an isomorphism of complexes; that is,
such that d o (P ® 1) = (® ® 1) o d. Given the above descriptions of d and 4, if
a®a€ A ® A, then

Bo(@@M)(a®a)=> &P(a)®ra

and

(®@1)@d)(a@a) =) @(éa)® zra.

Hence A is Gorenstein if and only if there exists an isomorphism ® : A' — (A')*[—n]
of graded vector spaces such that £,®(a) = ®(¢xa) for all @ € A' and all A\. But
this is precisely the requirement that ® be a left A'-module isomorphism so, by
Lemma 3.2, the existence of such a ® is equivalent to the condition that A' is
Frobenius. (]

Theorem 5.11. (J. Zhang) Let A be a graded k-algebra. Suppose that A is noe-
therian, Gorenstein, gldim(A) = n, and Ha(t) = (1 —t)~". Then A is Koszul.

Proof. Let 0 - P, — --- = Py = k — 0 be a minimal projective resolution of k.
Write P, = A®g V; and PY = Hom 4 (P;, A) £ V;* @ A. Then
Ha(t)y™ = 3 (1) Hy, (1), (5-4)
i=0
Let a; (resp. b;) denote the least (resp. largest) degree of a component of V;. Since
the resolution is minimal 0 = by = ag < a1 < -+ - < an. In particular, a, > n.
Since A is Gorenstein, 0 — Fy — --- — PY — ka[f] — 0 is a projective
resolution of k4[] for some integer £. The minimality of P, ensures that P is also
minimal, so PY = A[{], whence { = a, = b, > n, and b, < --- < —b; < —bg = 0.
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By hypothesis, the highest degree term occuring in H4(¢)~! is t". Since P, =
A[—£] contributes a term (—1)"#¢ to the sum (5-4), which cannot be cancelled out
by any other terms in the sum because ¢ = b, > b; for all ¢ # n, it follows that
£ < n. Therefore £ = n, and a; = ¢ = b; for all . In other words, P, is a linear
resolution of k. O

We finish this section with two results which are useful for recognizing Koszul
algebras.

Theorem 5.12. [28] Let A be a Koszul algebra, and suppose that z € Ay is a
central reqular element. Then

1. B:= A/(z) is Koszul, and
2. A'> B'/(w) where w € B is central and regular.

Theorem 5.13. [15] Let A be a Koszul algebra, and suppose that z € Ay is a
normal regular element such that B := A/(z) is Koszul. Let R and R’ denote the
quadratic relations for A and B respectively. Then A is Koszul if and only if the
natural map (A1 @ R)N(R® A1) = (B1 @ R') N (R' ® By) is surjective.

6. A DUALITY FOR MODULES HAVING A LINEAR RESOLUTION

We will show that, for a Koszul algebra A, the functor Ext’ (—, k) is a duality
between Lin(A) and Lin(A').

Notation . Let R be an augmented k-algebra. We denote the functor Exty(—, k) :
Mod(R) — Mod(Ext},(k, k)) by

M — MT .= Exth(M, k).

For example, Rt = k and k' = Ext}(k, k). For connected graded algebras, M +
M1 sends graded modules to graded modules.

Lemma 6.1. Let A be a connected graded k-algebra. Suppose that L, M and N are
graded A-modules having linear resolutions, and that 0 — L[—1] - M — N — 0 s
an exact sequence. Then there is an eract sequence of left Ext’ (k, k)-modules

0— Li[-1]—= Nt = MT 0.
Proof. Applying Hom 4 (—, k) to the initial exact sequence gives an exact sequence

i Mﬁ_l(M’ k)—P - Mi_l([/[_l]:k)—? - MZ&(N’ k)—P -
(6-1)
— Ext’ (M, k), — Ext’) (L[-1],k)—p — -

However, since M and I have linear resolutions, the first and last terms in (6-1)
are zero, whence we have an exact sequence

0L =N s M -0
Summing over all p gives the result. O

For quadratic algebras the left action of A' on MT has a simple description in
terms of the differential on the minimal resolution of M.
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Proposition 6.2. Let A be a quadratic algebra and (A®V,, d) a minimal resolution
of M € GrMod(A). There is a commutative diagram

1 d*
A @V? — T

l l (6-2)
Exty (k, k) @ Ext’y (M, k) —— Ext}} (M, k)
where p denotes the Yoneda product and the vertical maps are induced by the iso-

morphism V;* — MQ(M, k), a = [e®al.

Proof. Let € € A} and a € V;*. The image of £ ® a going in the counter-clockwise
direction is p(§ ® [@]), namely [(e ® §) o 1] where «; is the lift of a in the following
commutative diagram:

Viprhk —2 A0V

061J( Jvom:l@oc

Ag®@ Ay —— A1 Ay —— k
9

e®1
€®El

k
(We have ommitted those parts of the resolutions which are irrelevant to the present

proof.) Since (1 ®@a)=a®@1for I@a € A® A1, e ®& = (£ ®¢) od. Therefore
p(€ @ [a]) = [(e ® &) 0 o]
=[((®¢e)odoa]
=[®e)o(l®a)od]

=[((®a)od]

=[d"(§ ©@ a)].
However, [d*(£ ® )] is the image of € ® a under the clockwise composition of maps,
thus proving the commutativity of the diagram. O

Theorem 6.3. Let A be a Koszul algebra, and let M € Lin(A).
1. The minimal projective resolution of M is A Qy (M.T)* with differential given
by right multiplication by e (see Remark 5.7);
2. HM(t) = HA(t)HMT(—t);
3. IfA® D - A® C — M 1s the start of a minimal resolution of M, then the
minimal resolution of M1 begins A' @, DY — A' @, C* - MT;
4. M' has a linear resolution as a left A'-module, and Mt 22 M.

Proof. (1) If L is a left A'-module with structure map p : A' ®@ L — L, it is a
triviality that p(§ ® £) = 3", A (§)éx £ = e.(§ ® £). Hence the map p in (6-2) is left
multiplication by e, and the dual of (6-2) is the commutative diagram

Vi, —2— A0V

1 J =

(M) —— Ay o (M])*
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where the bottom map denotes right multiplication by e, and the vertical maps
are isomorphisms. Hence the vertical maps induce an isomorphism of complexes of

graded A-modules

e ARV —2 s ARV, —

1 1 o

—— Ao (M) —— Ao (M) ——

Therefore A ® (M.T)*, with differential e, is a minimal resolution of M, as claimed.

(2) This is a trivial consequence of (1).

(3) From the minimal resolution of M, one sees that My = C and that there
is an exact sequence 0 - D — A3 ® ¢ — M; — 0. Hence M = C* and
M; =Dt C (A ®C)* =2 A ® C*. By (1) and (3), the minimal resolution of M1
begins A' @ M} — A' ® M§ — M' — 0, whence the result.

(4) We will show that the minimal resolution of M7 is given by the complex
(A'® M}, d), where 9 is right multiplication by 3~ &\ @ z; that is, we will prove
the exactness of

A (M)t =5 A e (M) — A'® (Mo)* — M — 0.
By part (3), the right hand end of this is the beginning of a minimal resolution of
Mt
We consider the two spectral sequences associated to the bicomplex (C**,d’, d"),
where CP? = A]!g ® A" ® ]\JqT and d' : C?"? — Cpi14 is right multiplication by
S(éx @y @ 1) and d” : CP9 — CP9F is left multiplication by Y (1 @ zx @ &)).
We begin with the first filtration. The p'" column is A]!O ®A® (M.T)*)*7 where

A® (M.T)* is the projective resolution of M in part (1), so the columns are exact
except in the 0*P row. Therefore

HP(Ay @ M*,0) if ¢ =0,

'EY = HYH(C**) =
o' = Hi Hp(C*°) {0 it 20

and H"(Tot(C**)) = H™(A, ® M*,d). With respect to the second filtration,
Hi(ako M}y ifp=0,
0 if p#£0,

because A, ® A* with differential right multiplication by >~ &, @z, is the graded k-
dual of the Koszul complex (which is a projective resolution of k£ 4). The differential

on 4k ® MJ induced by d” is left multiplication by > ®&y; this is zero since 4k
is killed by . Therefore H?(4k ® M.T) = MqT.

Comparing the two spectral sequences H"(A, @ M*) = H"(Tot(C**)) = M,
which is what we needed to prove. O

"By = Hi,(H" (A, © A") @ M]) = {

Corollary 6.4. If A is a Koszul algebra, then Ext® (—, k) : Lin(A) — Lin(A") is a
duality.
7. KoszuL DuaLiTy

The functor Ext’ (—, k) is closely related to the functor in [5] which is used to
establish an equivalence between certain derived categories over a Koszul algebra
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and its dual. The results in [5] are not used in the rest of this paper; this section
is intended to place the methods we use in a broader context.

Warning: Our definition of A' in (5.1) is not the same as that given in [5, page 5].
Their A' is the opposite of ours. In what follows we will use A' the same way as we
have been, so when we quote results from [5] we will need to replace their use of A'
by (A')°P. (See Remark 5.3.)

Definition 7.1. Let B be an N-graded k-algebra. If (M, ) is a complex of graded
B-modules we will write M = @M; where ¢ denotes the position in the complex,

and j denotes the degree for the B-module action; thus 0 : MJZ — M;‘H.
We define the following categories:

e C(B) = the homotopy category of complexes of graded B-modules, mor-
phisms being homotopy classes of maps of complexes;

e C'T(B) = the full subcategory of C'(B) consisting of complexes M such that
M;:Oifi>>00ri+j<<0;

e ('~ (B) = the full subcategory of C'(B) consisting of complexes M? such that
M;:Oifi<<00rz'+j>>0;

e D*(B) and D™ (B) are the quotient categories of C*(B) and C~(B) obtained
by localizing at the quasi-isomorphisms (they are triangulated categories).

Theorem 7.2. [5] If A is a Koszul algebra, then there is an equivalence of cate-
gories Dt (A) — D~ ((A')°P).
The equivalence of categories is induced by the functor by F : CT(A4) —
C~((A")°P) defined as follows: if (M,d) € C*(A), then
FM = ((A)°? @ M, d)
where

d(a ® m) :a®3m+(—1)i+j2«£>\a®x>\m, (7-1)
A

whenever a @ m € (A')°P ® Mf_l_j, and FM is viewed as a complex of left (A')°P-
modules, which in position p 1s
(FMy = P A'e M. (7-2)
i+j=p
(In (7-1) the product &ya is computed in A'; in [5], it appears as ay, using the
product in (A')°P.)
There is a full embedding of GrMod(A) in D*(A) sending a module M to the

complex which 1s M in position zero, and zero elsewhere. When F is applied to a
single module M, we obtain the complex

o AM, 5 A@Myyy = -, (7-3)
with differential being left multiplication by >, {&x ® xx. Sometimes this is quasi-

isomorphic to a single A'-module.

Proposition 7.3. Let A be a Koszul algebra of finite global dimension. Further-
more, suppose that A is Gorenstein with Ext’ (k, A) = k[n]. If M € GrMod(A),
then FM 1s

L. quasi-isomorphic to the complex, with zero differential, which in the p™ posi-
tion 1s @ Ext?, (k, M),_;;
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2. quasi-isomorphic to a single A'-module if and only if M[r] € Lin(A) for some
r.

Proof. Consider Ext’ (k, M). This is computed by taking homology after applying
Hom ,(—, M) to A® (AL)*; that is, it is the homology of the complex

0>M—oA oMo A, oM — - (7-4)

with differential left multiplication by >, {x ® . Since deg(A}j) = —j, it follows
that Ext”(k, M), is a subquotient of A}, ® Mptq. We can rearrange the complex
(7-4) so it is precisely the complex (7-3). Hence, taking homology of (FM)*, which
is the same thing as homology of (7-3), we obtain &; E_xt‘z(k, M),_; in position p.

Therefore, FM is quasi-isomorphic to a single A'-module if and only if, for some
p,

Ext’y (k, M [p) = €P) Ext)y (k, M[p]) ;.

By Corollary 4.6, this is equivalent to the requirement that M[p] have a linear
resolution. O

8. SKLYANIN ALGEBRAS

From now on we will assume that & is algebraically closed.

Definition 8.1. Let n > 3, F an elliptic curve over k, and ¢ : F — F the translation
automorphism by a fixed point ¢ € Pic(F) = E. We also introduce the following
data and notation:

L is a line bundle on E of degree n;

V =H%E, L), whence V@V = H*(E x E,LRL);

Ay = {(p,e" %(p)) | p € E}, adivisor on E x E;

M = the fixed points of the involution (p, q) = (¢%(q), o~ %(p));

a divisor D on E x F is allowable if D is stable under the involution and M
occurs in D with even multiplicity;

e R:={feVe@V]|div(f) = As + D with D allowable}.

The n-dimensional Sklyanin algebra is

Ap(E o) :=T(V)/(R).

By the Riemann-Roch Theorem dim(V) = n and, since £ is very ample, there
is a natural embedding E — P(V*). We will always view F as a subvariety of
this particular copy of P”~!; as such it is a degree n curve, meaning that every
hyperplane meets E at n points counted with multiplicity.

The dependence of A, (F, ) on the choice of the line bundle £ is illusory because
any two degree n line bundles are pullbacks of one another along an automorphism
of E. Hence for each n there is a 2-dimensional family of Sklyanin algebras, one
dimension coming from the choice of E| the other from the choice of (.

The 3- and 4-dimensional Sklyanin algebras can be defined more simply, either
by generators and relations, or by simplifying the geometric method of Definition
8.1. Until one is familiar with the Sklyanin algebras it is a good idea to concentrate
on the 3-dimensional case.
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Example 8.2. [2] Suppose that n = 3. Then there are scalars a,b, ¢, depending
on E and o, such that A3(E, o) = k[z,y, z] with defining relations

ax? 4+ byz + czy =0,
ay? + bzx + cxz =0, (8-1)
az? + bry + cyx = 0.

The algebra depends on the point (a, b, c¢) € P2 but not all points of P? arise from
a choice of F and o. We should think of the algebras corresponding to the missing
points as degenerations of Sklyanin algebras. (The polynomial ring occurs when
(a,b,¢) = (0,1, —1); this corresponds to the case when o is the identity.)

In this case, E C P? is a smooth cubic curve, and the space of relations R
consists of all f € V ® V which vanish on the shifted diagonal {(p,c(p)) | p € E}
in E x E; here we are thinking of V' = A; as linear forms on P? = P(V*), and of
V @V as bilinear forms on P? x P2, which contains a copy of E x E. In other words
R=H(E x E,(LEL)(-A,)).

Example 8.3. [27] Suppose that n = 4. Then there are scalars (a1, as, as) € k3
such that A4(FE, o) = k[zg, 21, 22, £3] with relations

oz — 120 = ay(T23 + 2322) X1+ X1y = Tak3z — T3>
Toxy — Xa¥o = aa(T3x1 + T123) ZoTz + TaTo = T3T1 — T1T3
Toxs — x3x0 = ag(T122 + z221) ToT3 + T3Tg = T1Ts — Toxy (8-2)

The parameter « lies on the surface a; + as + az + ajasaz = 0, but not all points
of this surface arise from some (F, o).

In this case, E C P? is a smooth quartic curve. It is the intersection of two
quadrics, so is contained in the pencil they generate. Exactly four members of this
pencil are singular, the singular locus of each being a single point. We will label
these points {eg, €1, €2,€e3}. Let I' C P3x P3 denote the union of {(p, 0?(p)) | p € E}
and the four points (e;,e;). Then A4(E,0) = T(V)/(R) where R = {f e V ®
V| flr = 0}.

The Sklyanin algebras are remarkably well-behaved and share most good proper-
ties of the polynomial ring, except that they are highly non-commutative. Theorem
8.6 makes this precise.

Definition 8.4. Let A be a graded k-algebra of finite injective dimension. The grade
of a non-zero A-module M is

F(M) :=min{j | Ext/(M, A) # 0}.
We say that A is Cohen-Macaulay if GKdim(M) + j(M) = GKdim(A) for all 0 #
M € grmod(A).
(Here GKdim(—) denotes Gelfand-Kirillov dimension, which is a non-commutative
analogue of Krull dimension—if Hp(t) = f(¢)(1 —¢)~", where r > 0, f(t) €
Z[t,t71], and f(1) # 0, then GKdim(M) = r.)

Definition 8.5. A graded k-algebra, A say, is a quantum polynomial ring if it satisfies
the following conditions:
e A is left and right noetherian;
Ha(t) = (1 —t)~" for some n;
gldim(A) = n (we call this the dimension of A);

A is Auslander-Gorenstein and Cohen-Macaulay.
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A quantum polynomial ring is a domain [13, Theorem 4.8], a maximal order in
its division ring of fractions [32, Theorem 2.10], a Koszul algebra (Theorem 5.11),
and Ext’y (k, A) = k[n] (by the proof of Theorem 5.11).

Theorem 8.6. [35] Let A= A,(E,0). Then

1. A is a quantum polynomial ring of dimension n;
2. A is a finite module over its center if o is of finite order (the converse is
known to be true whenn =3 or 4).

Remark 8.7. There are plenty of other quantum polynomial rings. Some popular
ones are the coordinate rings of quantum affine space and coordinate rings of quan-
tum matrices. The homogenized enveloping algebras in Section 12 are also quantum
polynomial rings.

It follows from Theorem 8.6 and (5-1) that the dual of A,(E, o) has Hilbert
series (1 +¢)™. Before turning to these finite dimensional algebras which are the
subject of this note, we need some information about modules over A, (F, o).

9. LINEAR MODULES OVER SKLYANIN ALGEBRAS

Definition 9.1. Let A be a graded k-algebra. A module M € grmod(A) is d-linear
if

e it is cyclic, and

o Hy(t)=(1- t)_d.

A point module (resp. line module) is a linear module for which d = 1 (resp. d = 2).

The second condition in Definition 9.1 says that M has the same Hilbert series
as the homogeneous coordinate ring of a linear subspace of projective space. There
is a correspondence between linear modules and linear subspaces of P(A3): a linear
module, M say, determines the subspace V(Ann 4, (Mg)) C P(A7), the zero locus of
{a € Ay | aMy = 0}. For example, a point module determines a point, and a line
module determines a line, et cetera. It is also clear that if M — N is a surjection
from a line module to a point module, then the corresponding point lies on the
corresponding line. (The obvious generalization to other linear modules is true.)

For the polynomial ring S(V') this correspondence sets up a bijection between
isomorphism classes of linear modules and linear subspaces of P(V*), the subspace
V(z1,...,2xq) corresponding to S(V)/(z1,...,24), where z1,...,24 € V. Here,
degree zero maps between linear modules correspond to inclusions of subspaces.

For the Sklyanin algebras linear submodules are of great importance; they play a
role analogous to Verma modules (see [30] for example). A key result is to classify
them. Tt turns out that the correspondence above sets up a bijection between
isomorphism classes of linear modules and certain linear subspaces of P(A}). Before
describing which subspaces these are we mention the n = 3 case. If o is not of order
3, then the point modules for A3z(F, o) are in bijection with the points of F and
the line modules are in bijection with the lines in P?; the algebra A itself is a linear
module which corresponds to the whole projective plane. (If o is of order 3, then
the point modules are in bijection with the points in P2.) We usually write M (p) for
the point module corresponding to the point p € E and M () for the line module
corresponding to the line £. There is a non-zero map M (¢) — M (p) if and only if
peELNE.
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Definition 9.2. A linear subspace I C P(V*) is a secant to F if deg(E N L) =
dim(L) + 1, where E N L is the scheme-theoretic intersection of E and L. In this
case, we say that L is spanned scheme theoretically by EN L.

Theorem 9.3. [35] [34] If L is a secant to E, then AJAL* is a linear mod-
ule, where Lt C Ay denotes of the linear forms vanishing on L. Moreover,

GKdim(A/AL) = dim(L) + 1.

Notation . If D € Div(E) is an effective divisor of degree < n, we write M (D) for
the corresponding linear module; that is, M (D) = A/ALL where L is the linear
subspace of P(V*) whose scheme theoretic intersection with F is 1. Notice that

GKdim(M (D)) = deg(D).

Theorem 9.4. [35] [34] Let D be an effective divisor of degree <n —1 on E, and
let z € E. Then there is an exact sequence of linear modules

0= M(D” + (2% "))[=1] > M(D + (z)) = M(D) = 0.
Moreover, Homg, (M (D + (2)), M(D)) = k.

Example 9.5. Consider a point module M (z), with z € E. Since M (z)g = k, there
is a surjective map M (z) — k. By Theorem 9.4, the kernel of this is isomorphic to
M(z°""")[~1]. Hence M(2)5,[—r] = M(zo(Q_n)r) for all r > 0.

Theorem 9.4 also shows that if n = 3 and y,z € E, then there is an exact
sequence 0 — M ((y7") + (27 ))[=1] = M((y) + (z)) = M(z) —= 0.

Warning. The modules M (D) are not all the linear modules except when n = 3.
For n > 4, we call the linear modules not of the form M (D) exceptional. For n = 4,
there are four exceptional linear modules, namely the point modules corresponding
to the 4 points e; in Example 8.3. With respect to the coordinates zg,... , z3,
these points are (1,0,0,0),...,(0,0,0,1), and the corresponding point modules are
AJAz, + Azy + Azs, ..., AJAzq + Az + Azy. For n > 5 the exceptional linear
modules are classified in [34], but we do not need that result here.

Theorem 9.4 is useful for proving homological properties of linear modules by
induction. The next definition isolates the property which permits such induction
arguments.

Definition 9.6. Let A be a quantum polynomial ring of dimension n. We say that
A has the catenarity property for linear modules if, whenever N and N’ are linear
modules such that

e N is d-linear, with 0 < d < n, and

e there is a non-injective, surjective map f : N’ — N (for example, take N’ =

A),

then there exist linear modules L # 0 and M, and a short exact sequence 0 —
L[-1] = M & N — 0 and a factorization f = gh for some h € Homg.(N', M). A
Hilbert series calculation shows that I and M are both (d + 1)-linear.

Definition 9.7. Let A be a graded k-algebra. A module M € grmod(A) is Cohen-
Macaulay if Ext’, (M, A) = 0 whenever p # j(M). If M is Cohen-Macaulay, we
define the graded right A-module

MY = Exti™ (M, A)[—j(M)].
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For a fixed integer n > 0, the functor M + MV is a duality between the left and
right Cohen-Macaulay modules of projective dimension n [14, Proposition 1.10].

Lemma 9.8. [14, Lemma 1.12] Let 0 — L[-1] - M — N — 0 be an ezact
sequence in grmod(A). Suppose that j(N) = j(M) + 1. Then

1. of L and M are Cohen-Macaulay, so i1s N;

2. there is an ezact sequence 0 — MY [-1] = LY — NV — 0.

Proof. Write p = j(M). The long exact sequence for Ext (—, A) gives a short exact
sequence

0 — Extf, (M, A) = Ext’, (L[-1], A) = Ext}T (N, A) = 0,
so the result follows by shifting degrees by —p — 1. O

Proposition 9.9. Let A be a quantum polynomial ring of dimension n, and sup-
pose that A has the catenarity property for linear modules. If N is a d-linear module,
then

1. N is a Cohen-Macaulay module with j(N) =n —d;
2. N has a linear resolution;
3. NV is a linear right A-module.

Proof. We proceed by downward induction on d. If d = n, then N = A, and
conditions (1)-(3) hold in this case. Now let d < n, and suppose the result is true
for linear modules of GK-dimension > d.

By the catenarity hypothesis, there is an exact sequence 0 — L[—1] — M —
N — 0, with L and M both (d + 1)-linear. By the induction hypothesis, L and M
satisfy (1)-(3). Since A is Cohen-Macaulay, j(N) = n— GKdim(N) = n—d. Hence
by Lemma 9.8, N is Cohen-Macaulay. By Lemma 1.8, N has a linear resolution
since L and M do.

It remains to prove (3). It follows from Theorem 6.3 that the minimal resolution
of N is of the form

0= Al-n+d - Al-n+d+1]""4>...... S A[-1]"" "5 A= N = 0.
Applying Hom 4 (—, A) to this complex gives a complex

0—An—d — An—d—-1]""%—...... — A — A0
(9-1)

which has homology only at the A[n — d] position, since N is Cohen-Macaulay
of grade n — d; in other words, (9-1) is a projective resolution of M’j‘_d(]\f, A).
Therefore Mg_d(N, A) is a cyclic right A-module, generated in degree d —n, with
Hilbert series " (1 — ¢)~4¢. Shifting the generator to degree zero, we see that
Ext%%(N, A)[d — n] is a linear module as claimed. O

The notion of linear modules also applies to right modules. By [35, Proposition
4.1.1], Ap(E,0)°? = A, (E,071), so there is a version of Theorem 9.4 for linear
right modules too. Hence for each effective D € Div(FE) of degree < n, we will
write X (D) for the right linear module A/LA where L is the linear subspace of
P(A%) spanned by D. Tt is not immediately apparent that the right linear module
M (D)Y is one of those linear modules corresponding to a secant (i.e., it is not
exceptional); it is though, and for each effective divisor D of degree < n we define
DV by the requirement that M (D)Y = X(DV).
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Proposition 9.10. If D € Div(E) is effective of degree d < n, then DV =
2(n—a)
D° .

Proof. We proceed by downward induction on d. Suppose that d = n. Then
M (D) = A/Ax where 0 # z € A; is such that V(z) meets E scheme-theoretically
at D. A simple calculation shows that Ext) (A/Az, A) = (A/zA)[1], so X (DY) =
A/z A, whence DV = D. Hence the result holds when d = n.

Now suppose that deg(D) = d, and the result holds for divisors of degree > d.
By Theorem 9.4, there is an exact sequence

n

0— M(D” 4 (2)7 ")[~1] = M(D+ (2)) = M(D) =0
for some z € E, and hence by Lemma 9.8, an exact sequence
0= X((D+ (2)V)[=1] = X((D7" + ()7 ")") = X(DY) - 0.
By the induction hypothesis this is the same as
0— X(D° +(2) )[=1] = X(D° +(2)°"7) 5 X(DY) > 0.

Hence by Theorem 9.4 applied to right modules, using the fact that A, (F,o)°P =
An(E,071), the result follows. O

2(n—d—1) 2(n—d=1) 2(n—d)

10. THE DUALS OF THE SKLYANIN ALGEBRAS

Throughout this section we will write B, (E, o) = A,(E, o). Actually, we will
usually fix E, o, and n, and just write B and A for the algebras.

Since Hp(t) = (1 +t)", which is the Hilbert series of an exterior algebra, B
is sometimes called an ‘elliptic deformation of the exterior algebra’. Since B is
connected graded, it is local. It follows from Proposition 5.10 that B is a Frobe-
nius algebra, and from Proposition 1.4 that gldim(B) = oo, since Extp(k, k) = A.
Furthermore, the isomorphism B, (E,c)°? = B,(E,s~!) follows from the corre-
sponding result for A,(E, o).

Example 10.1. It follows from Example 8.2 that the dual of a 3-dimensional
Sklyanin algebra can be presented as B = k[z,y, z] with defining relations

cyz — bzy, bx? — ayz,
czx — bxz, by? — azz, (10-1)
cry — byx, bz? — axy

for suitable a,b,c € k. Tt is easy to see that B has basis {1,z,y, z, 2% y?, 22, xyz}
and that 23 # 0, zy? = 22?2 = y?’z = z%z = 0. Hence the symmetrizing auto-
morphism v sends z to . By symmetry (that is, using the fact that Zg acts as
automorphisms of A, and therefore of B, cyclically permuting z, y and z) we also
have ¥ = y and z¥ = z. Thus v = 1, whence B is a symmetric algebra. In
particular, the Auslander-Reiten translation is the same as Q2 the second syzygy
functor.

The elliptic curve F lies in P(Bj), so the cone over it lies in B;. Therefore it
makes sense to speak of the left ideal of B generated by a point of E| or more
generally of the left ideal generated by some linear subspace (such as a secant line
to E) of P(B;1). We will often write Bp for the left ideal generated by the line in
B; corresponding to a point p € E. We will further abuse notation by saying that
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pq = 0 in B for points p,q € E if £ = 0 whenever £, € By are in the preimage of
p and q.
The following result was brought to my attention by J.T. Stafford.

Lemma 10.2. Let A = T(V)/(R) be a quadratic algebra. Let ({,n) € V* x V*.
Then én =0 in A' if and only if f(€,7) =0 for all f € R.

Proof. By definition of A", én = 0 if and only if ¢ @ € RY, whence the result. [

In particular, since the defining relations of A,(F, o) vanish on A,, in B we
have p.p"n_2 =0 for all p € E. In fact, if n # 4, then A, is the zero locus of R,
so these are the only products in By which are zero. If n = 4, there are also four
elements ¢; € By whose squares are zero, namely the preimages of the four points
e; defined in Example 8.3.

One consequence of these observations is that for n = 3 and n = 4, B can be
defined geometrically as T(V*)/(R') where R’ C V*®V™* consists of those £ ®7 such
that the image of (£, 7) in P(V*) xP(V*) belongs to A, (or AgU{(e;,€;) | 1 <1< 4}
when n = 4). This seems an interesting way to define a finite dimensional algebra.
(There are analogous definitions for many other finite dimensional graded algebras;
for an arbitrary finite dimensional algebra R it seems possible that considerable
information may be contained the subvariety of P(R) x P(R) consisting of those
(&,7m) such that £&n = 0.)

The best understood (and most important) A-modules are the linear modules.
With that in mind we focus attention on the corresponding B-modules, for which
we introduce the following notation.

Notation . If D € Div(FE) is effective of degree < n, we will write
L(D) = M(D)! = Ext?y (M(D), k).

Definition 10.3. The complexity of a B-module N, denoted ¢(N), is the least integer
¢ such that there is a constant x satisfying

dimTorf(kB,N) < k.jet
for all 7 > 0.

Proposition 10.4. Let D € Div(FE) be an effective divisor of degree d < n. Then

L. L(D) is an indecomposable, cyclic B-module with Hilbert series (1 +1)"~¢;
2. L(D) has a linear resolution, and ¢(L(D)) = d;
3. if z € E, then there is an exact sequence

0= L(D” + (27 ")[~1] =» L(D) = L(D + (2)) — 0.

Proof. (1) By Theorem 6.3, L(D) has a minimal projective resolution, which in
position p is B ® M(D),. In particular, L(D) is cyclic. Any cyclic B-module is
indecomposable (apply Homg(—, k) and use the fact that B is a uniform module
since it has a simple essential submodule). Since Hpr(py(t) = (1 — )=, it follows
from Theorem 6.3(2) that Hpp)(t) is as claimed.

(2) This follows from Theorem 6.3(1), and the fact that the linear module M (D)
has Hilbert series (1 —#)~¢.

(3) This follows from Theorem 9.4 and Lemma 6.1. O

Corollary 10.5. The algebra B has wild representation type.
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Proof. For each 0 < £ < n, the effective divisors on E of degree ¢ are parametrized
by the £** symmetric power of E which is a variety of dimension £. Hence there
is an /-dimensional family of indecomposable cyclic B-modules of dimension 27 ~¢,
namely the various L(D). Thus, by Drozd’s Theorem, B is wild. O

We now consider that piece of the Auslander-Reiten quiver for B which contains
the modules L(p), for p € E. If p,q € E, we will write L(pq) = L((p) + (¢)) for the
module corresponding to the secant line spanned by p and g¢.

Proposition 10.6. Letp € E.

1. L(p) is an indecomposable, cyclic module with Hilbert series (1 +1)"~1,
J[-1] = B = L(p) = 0.

—-n

2. There is an exact sequence 0 — L(pc’2
) - ~ H2=m)r
3. 0 L(p) = L(p7 )],
4

. For each q € E, there is an exact sequence
0= L(p” q)[=1] = L(p) = L(pg"" ) = 0.

Proof. Parts (1), (2) and (4) are all special cases of Proposition 10.4. Part (3)
follows from (2) by induction. O

We now restrict our attention to the case n = 3, since that is the only case for
which we have explicitly computed the symmetrizing automorphism v (it is the
identity when n = 3, by Example 10.1).

Proposition 10.7. Suppose that n = 3, that 0® # 1. For each p € E, the almost
split sequence ending in L(p) is

0 L(p” )[1] = K(p) = L(p) = 0, (10-2)

where

1. the sequence consists of graded modules and degree zero maps, and
2. K(p) is indecomposable with Hilbert series t=1(1 +t)3.

Proof. We observed in Example 10.1 that B is a symmetric algebra, whence 7 = Q2.
Hence, by Proposition 10.6, the almost split sequence ending in L(p) begins with
L(p"_E). We now compute Exty(L(p), L(pa_E)).

The minimal projective resolution for L(p) begins

-1

s B2 B[-1] B B — L(p) — 0, (10-3)

so for ¢ € E, Exty(L(p), L(g)) is the homology of the middle term in the sequence

L2 & L) & L(g). (10-4)

The main point in the computation of this homology is that, for each r € E| there is
an exact sequence 0 — L(q”2 r)[=1] = L(q) = L(¢°r?) — 0. Hence L(q); contains
a non-zero element whose annihilator is the left ideal of B generated by the secant
line spanned by q"2 and r. As r varies over F, each line in P(B;) passing through
q”2 occurs: there is a P! of such lines, and these are in natural bijection with the 1-
dimensional subspaces of L(p); which they annihilate. In particular, q° L(g)1 =0,

and dimg(r.L(q)1) = 1 if qa2 +reckE.
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The homology of (10-4) can now be computed case-by-case, giving

{0 ifp#q°,

Bxth (L) L) = 4, 0T

0 ifp#q, 7,
Extp (L{p), Ela))o = {k ifp=qorp=q"

0 if a*
Exth (L(p). L)1 = { 7

k oifp=q°.

In particular,
Exth (L L(p° 1]); =
Exty(L(p), L(p” )[1]) E oifi=0.

Hence the almost split sequence ending in L(p) can be realized as a sequence in
GrMod(B), as described in the statement of the Proposition, and the middle term
has Hilbert series 1,3,3, 1, beginning in degree —1.

It remains to show that K is indecomposable. Suppose that K =Y ¢ 7 with
Y # 0. For brevity, write L for the image of L(p® )[1] in K. First, notice that the
socle of L is L1, and socle of K 1s L1 & K5. These are essential submodules of L
and K respectively.

We may assume, interchanging the roles of Y and 7 if necessary, that n(Y) ¢
L(p)>1. But L(p)>1 is the unique maximal submodule of L(p) so n(Y) = L(p). If
dimy(Y) = 4, then the map 7 : Y — L(p) is an isomorphism, so (10-2) splits; this
is absurd, so we conclude that dimg(Y) > 5. Hence Y N L # 0 and, because L; is
essential in L, L1 C Y.

If x € K, we write z; for its degree i component. If z € Z | then zg € L, otherwise
n(Bz) = L(p), which contradicts the fact that dimg(Z) < 3. Suppose that z € Z
with z_1 # 0. Then p.z_; € Lg is non-zero since pL_; # 0. Since p.L(p)o = 0,
0 # pz € Lo+ L1 + Ka. Since By.(L1 + K3) = 0, and no non-zero element of Ly
is killed by all of By, it follows that By.pz = L. This contradicts the fact that
Y NZ =0, so we conclude that z_; = 0 for all z € 7.

By the previous paragraph, Z C Ly + K; + K3. Hence Y contains an element,
Yy = Yo+ ¥ + y2 say, with yo ¢ L. Since By.L(p)g = L(p)2, it follows that
Byy = Bayg #0. Thus K3 C Y, whence Y contains L; + K3, which is essential in
K. This forces Z = 0. O

- {o if i # 0,

Thus, when n = 3, the L(p) form a family of indecomposable cyclic modules,
each of dimension 4, parametrized by the points of F; this family 1s stable under
Auslander-Reiten translation, and this corresponds to translation on E by ¢=2. In
particular, one sees that by choosing the point ¢ in Definition 8.1 to be a point of
finite order, one can arrange for the Auslander-Reiten translation to be periodic on
the L(p)’s of any desired order.

Corollary 10.8. Suppose that n = 3 and that o is of finite order s # 3. Then
E/{c) is an elliptic curve, the points of which parametrize tubes for B of rank s,
each such tube having at its mouth the modules L(p) for the p’s in a single coset of

(o).
Remark 10.9. By Proposition 10.7, when o is of infinite order, the orbit of L(p)
under the Auslander-Reiten translation is infinite but each term in it has the same
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dimension. T am grateful to Shiping Liu for telling me that Ringel [21, Problem
1, page 13] had asked whether this could happen; Liu himself and Schulz [17] gave
an example showing that it can. What is interesting to us is that Liu and Schulz’s
example, like ours, is the Koszul dual of a quantum polynomial ring. They do not
describe it in that way, so we briefly give the details.

Fix 0 # p € k, and consider k[z,y, 2]' where k[z,y, z] has defining relations

xy + pyxr = zx + prz = yz + pzy = 0.
Thus k[z,y, z] is a quantum polynomial ring (essentially because it is an iterated
Ore extension with basis z'y/ 2*). It is an easy exercise to write down relations for
k[z,y, z]', and see that there is a homomorphism k[z,y, z]' — T, where T is the
example in [17]; by comparing dimensions this map is an isomorphism. Either by
direct computation, or by Liu and Schulz’s construction, 7" is a symmetric algebra,
so the Auslander-Reiten translation functor is D Tr = Q2.

If p? + 1 # 0, then the point modules for k[z, y, 2] are parametrized by the three
lines V(zyz) in P2 Let o : V(zyz) — V(zyz) be the automorphism defined by by
(0,y,2)° = (0,y,—pz), (2,0,2)7 = (—pz,0,z) and (z,y,0)? = (z, —py, 0). For each
p € V(zyz) let M(p) be the corresponding point module for k[z,y, z]; there is a
short exact sequence 0 — M(pa_l)[—l] — M(p) = k — 0, and thus a short exact
sequence 0 — L(p”_l)[—l] — k[z,y,2]' = L(p) — 0 of k[z,y, z]'modules, where
L(p) = M(p)!. Hence (DTr)L(p) = L(pg_2), thus showing that the orbit of L(p)
is infinite whenever p is not a root of unity, and that it consists of modules of fixed
dimension. The module which is used in [14] to give the orbit of interest is of the
form L(p) for p € V(z) (actually, they work with right modules, but there is no
essential difference).

Some further comments on a class of algebras containing k[z, y, z] are made in
Example 11.1.

Definition 10.10. A B-module N is periodic if Q"N =2 N for some r, where Q"N
denotes the r*P syzygy in a minimal resolution of N.

The minimal resolution of L(p) in (10-3) shows a sharp contrast with what
happens for finite group algebras. A finitely generated kG-module of complexity
one is a direct sum of periodic modules and projective modules [9], but if & has
infinite order, then L(p) is not periodic.

Proposition 10.11. (n = 3) The almost split sequence beginning with the trivial
B-module k has indecomposable (and non-projective) middle term.

Proof. We use the criterion and notation in [7]. To avoid conflicts with the earlier
notation in this paper, we will, in this proof, use denote the graded algebra B by
the letter B; thus A;, B;, N, N and n now have the meanings in [7]. The proof
involves a careful examination of the defining equations for D as given in Example
10.1, and Lemma 10.2.

(The reader may need a copy of [7] to follow the proof.) The sets Ay and By
are empty since no non-zero element of Dq annihilates all of ;. Hence A; and
B; are non-empty. Suppose that A; # (). By the defining properties of the sets
A; and B;, if 0 # p € Ay, then Byp = 0, which forces p € E, By = {pic™'}
and A; = {p}, by Lemma 10.2. Since UB; spans D;, we therefore have By # 0.
By a similar argument, it follows that Bs and A; are singleton sets. Hence Aj
and Bjs are non-empty. However, by the defining properties of the sets A; and B;,
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B3sA; = 0, whence B3 = Bj, contradicting the fact that the B;’s are disjoint. So
we conclude that A = (). By symmetry Bs = . Thus A; and B; are both of
cardinality 3, whence N' = {(1,1)}, and N, = n. = 1. Brenner’s Theorem now
gives the result. O

The duality Homg(—, k) is related to the duality M — M" on Cohen-Macaulay
A-modules which is defined in Definition 9.7.

Proposition 10.12. Suppose that A is a connected, noetherian k-algebra of finite
self-injective dimension. Let M € grmod(A) be a Cohen-Macaulay A-module, and
set j = j(M). Then, for all p,

Ext?) (M, k)" = Ext/,"(MY k)[—j].
Proof. The hypotheses imply that Ischebeck’s spectral sequence [12]
Ext’, (Ext?, (M, A), ka) = Tor’ (ka, M)
collapses. Therefore
Ext!, (M"Y [j], ka) = Tor}'(ka, M) = Ext’; " (M, k)*,
as claimed. O

If we also suppose in Proposition 10.12 that projdim(M) < oo, then the spectral
sequence can be avoided, and the result is a consequence of the fact that applying
Hom , (—, A) to a projective resolution of M gives a projective resolution of MV.

Corollary 10.13. As graded right B-modules, L(D)* = Ext* (M (D)V,ka)[d — n],
where d = deg(D).

11. ALGEBRAS DEFINED BY GEOMETRIC DATA

Throughout this section V is a finite dimensional vector space and [P denotes the
projective space P(V*).

The definition of A, (F, o) given in Definition 8.1 is at first sight rather myste-
rious. The purpose of this section is to dispel some of the mystery.

The defining relations of the commutative polynomial ring S(V') consist of the
skew-symmetric tensors in V ® V, and (provided that char(k) # 2) the skew sym-
metric tensors vanish on the diagonal copy, say A, of P in P x P. Conversely, if
f € V @ V vanishes on A, then f is skew-symmetric. Thus S(V) = T(V)/(R)
where

R={feVaV|fla=0}
One need not take the whole diagonal A. Let X C P be a subvariety which is not
contained in any quadric. Then no non-zero symmetric tensor in V' ® V' can vanish
on Ax = {(p,p) | p € X}, so the skew-symmetric tensors may also be described as

{feveV]flax =0}

For example, if X is a cubic curve in P2, then X may be used in this way to define
the 3-dimensional polynomial ring.

The simplest non-commutative algebras which can be defined in this sort of way
are the twists of the polynomial ring. Let ¢ € GL(V), and continue to write o for
the induced automorphisms of S(V) and P. Define a new graded algebra S(V)7 as
follows. As a graded vector space S(V)? = S(V), but multiplication is defined by
frg=fg° if f € S(V),. It is easy to show that S(V) = T(V)/I where I is the
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two-sided ideal generated by {2 @ y — y° @ | ,y € V}. Hence I vanishes on
{(p,p°) | p € P}, which is a sort of ‘shifted’ diagonal copy of P in P x P. In fact,
any element of V' ® V which vanishes on this shifted diagonal is easily shown to
belong to 7. Thus

SV =TWV)/({fevVeV|fipp’)=0forall peP}).

These twists, which are quantum polynomial rings, are rather dull because the
categories GrMod(S(V)?) and GrMod(S(V)) are equivalent [37].

As mentioned in the introduction, the 3-dimensional quantum polynomial rings
have been classified. They may all be obtained as follows. Let X be either P2 or
a degree 3 divisor in P? considered as a scheme. Let o be an automorphism of
X, and let T be the graph of o, considered as a subscheme of P? x P2, Associate
to this data the quadratic algebra T'(V)/(R) where R = {f e V@ V | f|r = 0}.
Then, with a few exceptions, A is a 3-dimensional quantum polynomial ring and
all such arise this way. Moreover, A is a Koszul algebra, and its Koszul dual is a
finite dimensional graded algebra having the same Hilbert series as A(k®). There
are graded A'-modules L(p) parametrized by the closed points of X, each being
cyclic, indecomposable of dimension 4; the Auslander-Reiten translate of L(p) is
L(p0_2)[1]. If X = P? then A is a twist of a polynomial ring, as in the previous
paragraph, and A' is then a twist of A(k?).

Example 11.1. Let X C P? be a triangle, say V(zyz), where z, y, z is a basis for
V. Let o € Aut(V) be defined by (0,y,2)? = (0,ay, ), (z,0,2)? = (z,0, 8z) and
(z,9,0)° = (y2,y,0), and suppose that ¢ does not extend to all of P? (equivalently
afy#1). Let T = {(p,p°) |p € X}, and define A=T(V)/{f VeV | flr =0}
Then it is a straightforward (but tedious) calculation to show that A = k[z,y, 2]
with defining relations zy = ayz, zz = fzz, yr = yry. Again A i1s a quantum
polynomial ring, but now GrMod(A) is not equivalent to GrMod(S(V)).

The construction of A,(E, o) is related to another natural construction relating
a graded algebra with some geometric data. The ideas which follow are found in
[2]. Let A=T(V)/I, where V is a finite dimensional vector space, and I a graded
ideal; we associate to A a sequence of schemes ', C P*"? n > 1, and then to such
a sequence we associate a graded algebra, A say; moreover, these constructions
have the property that there is a canonical graded algebra homomorphism A — A.
In exceptionally good situations A is actually isomorphic to A, in which case A
determines, and is determined by the geometric data (T',,). These constructions are
as follows.

Definition 11.2. Let A = T'(V)/I be agraded k-algebra. The degree n homogeneous
component I,,, of I, is a subspace of V", so its elements are linear maps (V*)®" —
k or, equivalently, n-multilinear maps

Vix - xV* =k
We define an inverse system of schemes ' = (T'; ), >1 by
Tp=V() C Px- - xP=DP""

and morphisms «* : I';, = I';, for m > n which are the restrictions of the projec-
tions PX™ — P*™ onto the first n copies. (The first part of the next Lemma shows
that this really is an inverse system.)

Lemma 11.3. Let A= T(V)/I be a connected, graded algebra. Then
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1. Thy1 C (P x Tp) N (T, x P), with equality if Iny1 =V IL,+1,0V;
2. if A is a quadratic algebra and T'y = V(I2) is the graph of an automorphism
o of a subscheme X C IP, then, for alln > 2,
n—2
T, = m pxi « T x ]P)Xn—i—2’
=0
the scheme-theoretic intersection. In particular, if X 1s a variety, then

T, ={(p,p°....p°" ) |pe X}
Proof. (1) Tt is clear that V(V ® I,,) = P x T, and that V(I,, ® V) =T, x P. Since
Vol,+ 1,V C I,y the result follows.
(2) Since I,, = 2?2_02 V® @ I, @ VO*~i=2 it is clear that I, vanishes on the
given points. On the other hand, an induction argument, using (1), shows that T,
must belong to this set. Hence there is equality, as claimed. O

Example 11.4. What are the spaces I';, for the tensor algebra, symmetric algebra,
and exterior algebra on a vector space V7 Since there are no relations in degree
one, Ty = P. For the tensor algebra T'(V), I, = 0 for all n, so T, = P*”. For
the symmetric algebra, T, = {(p,...,p) | p € P} for all n > 1. For the exterior
algebra, if char(k) # 2, T, = 0 for all n > 2.

Before defining the graded algebra associated to the data ('), we realize V©"
as the global sections of a line bundle on P*™. Let pr; : P*" — P be the projection
onto the i"" component, and define

Oo(l,...,1) . =priOp(1) ® - - - ® pr, Op(1)
= Op(1)R---ROp(1).
Thus V&? = H(P*"?, O(1, ..., 1)).
Definition 11.5. Let T’ = (Fn)n21 be a sequence of subschemes I',, C P*™ such that,

forall n > 1,
Ioy1 C(PxT,)N (T, xP)

scheme-theoretically. Let j, : Ty = P*” and imn : [myn — T X [y be the
inclusions. Define

B, :=j,0(1,...,1) forn>0,
By, = H"(T,, B,),

B(T) := é B,.

If the T'),’s are clear from the context, we just write B for B(T'). We give B a graded
algebra structure: the multiplication map By, x Bp, — Bp4n is the composition

H(T,n, Bn) x ATy, B,) = HY(T,n X T, Bn®B,) = H (Tongn, Bgn),

where the second map is induced by the Or,, ,,-module map i, (B &®B,) = Bryn-
The product on B is associative because inverse image is functorial.

Example 11.6. If each T,, = P*" then B, = O(1,...,1) so B, = V®" and
B=T(V).

If each T, = {(p,...,p) | p € P}, then B = S(V).

If o € Autg P, and T, = {(p, p7, .. .,pgn_l) | p € P}, then B = S(V)°.
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Proposition 11.7. Let T' = (I'y),>1 be the sequence of subschemes of P*" deter-
mined by an algebra A = T(V)/I. Then there is a graded algebra homomorphism
A — B(I).

Proof. The natural map V — H°(T1, j1Op(1)) = B; induces an algebra homomor-
phism T(V) = B; in degree n this is V& — H(T,,,j:O(1,...,1)). The image of
I,, under this map is zero because I,, vanishes on 'y, so the map T'(V') — B factors

through A. O

12. HOMOGENIZED ENVELOPING ALGEBRAS

This section describes a class of finite dimensional Koszul algebras whose duals
are very well understood. It would be an interesting project to study these finite
dimensional algebras with the goal of understanding how the well-known features
of the duals are translated into statements about the finite dimensional algebras,
and conversely.

Let g be a finite dimensional Lie algebra and U(g) its enveloping algebra. The
homogenized enveloping algebra of g is

Alg) =T(a & kz)/(R),
where z is a new indeterminate, and R is spanned by
{z@z—2@z|zcgl U {zRy—yQe—[2,yQz| 2,y € g}

Thus z is a central element in A(g) and H(g)/(z — 1) = U(g). Also notice that
A(g)/(z) = S(g). In fact, A(g) is the Rees ring of U(g) associated to the canonical
filtration: it is isomorphic to the subalgebra of the polynomial extension U(g)[Z]
generated by (k + g)7.

Suppose that z1,...,z, is a basis for g. It 1s a consequence of the Poincaré-
Birkhoff-Witt Theorem for g® k(z) viewed as a Lie algebra over k(z) that A(g) has
basis {1 - 2ir27}. Tt follows that the Hilbert series of A(g) is (1 —¢)~*+1) and
that z is a central regular element of A(g).

It is not difficult to show that A is a quantum polynomial ring.

Proposition 12.1. A(g) is a Koszul algebra.

Proof. We will use the criterion in Theorem 5.13. The symmetric algebra S(g) =
A(g)/(z) is a Koszul algebra. Write V = g @ kz, and R and R’ for the quadratic
relations in A(g) and S(g) respectively. We must show that the map V&3 — g®3
sends VR RNR®V ontog® RRNR' ®g.

Since S(g)' = A(g*), dim(g® R'N R ©g) = (7).

Let z1,..., %, be a basis for g. Then g ® R’ N R’ ® g contains

Y m@@ier—rew)= Y (50T —2;08)Q T,
cyclic cyclic (12—1)

where the sum is over the three cyclic permutations (h,i,7), (i,4, k), and (4, h, )
of the three element subset {h,,j} of {1,...,n}. It is easy to see that these sums
are linearly independent, and hence a basis for dim(g ® R'N R’ ® g).
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On the other hand, the element in (12-1) is the image of
Z T @ (v @xj—x; @u; — [14,2;) @ 2)

cyclic
2 Y (2 ® [z, 2] — [z, 5] @ p — [za[zi, 2;]] @ 2)
cyclic
=) (@0 —z;0%— |00+ Y (0,202 — 20 [v,2;]) © v
cyclic cyclic
which belongs to V@ RN R ® V. This completes the proof. O

We define the finite dimensional algebra
B(g) == A(g)"

Since A(g) is closely related to U(g) which is well-understood, it is reasonable to
expect that B(g) can be understood in great detail. As a first step towards this
one might begin with the modules M1 where M is a linear module for A(g).

Theorem 12.2. [16] The linear modules over A(g) are

1. the linear modules over S(g) = A(g)/(z), and
2. the induced modules M(f, ) := A(g) ®ap) k[z]s, where
e 0y is a Lie subalgebra of g,
o f € h* satisfies f([h,h]) =0
o k[z]; is the A(h)-module which is the polynomial ring k[z] with z acting
by multiplication and x € h acting as multiplication by f(z)z.

The linear modules in (1) are the obvious ones, whereas those in (2) are the
homogenizations of the induced modules U(g) ®@u(g) ky = U(g) ®a(q) M(f,h). If d
is the codimension of f in g, then the Hilbert series of M (f, ) is (1 —¢)~¢. Since
induced modules for U(g) are important it is likely that the modules M (£, h)! will
be important B(g)-modules.

Just as U(g) is richest when g is semisimple (say over C for simplicity), so too
should A(g) be most interesting in that case. Tt would probably be interesting to
focus on the finite dimensional simple g modules. If V' is such a module, then there
is a ‘lifting’ of it to A(g), say f/, defined as follows. As a graded vector space
V =V ® k[z], with deg(z) = 1 and deg(V) = 0. Define ¢ : A(g) — U(g) @ k[z] by
o) =r®zforx € gand p(z) = 1 ® 2. Let U(g) ® k[z] act on V in the obvious
way, and then let A(g) act on 1% through the homomorphism .

Now V will rarely have a linear resolution so under the equivalence of categories
in Section 7 will give a complex of A(g)'-modules. These should be important
complexes, but it is rather difficult to see what exactly makes them important.
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