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Abstract. Let A = A(E, z) denote either the 3-dimensional or 4-dimensional Sklyanin algebra associated 
to an elliptic curve E and a point z 6 E. Assume that the base field is algebraically closed, and that its 
characteristic does not divide the dimension of A. It is known that A is a finite module over its center if 
and only if z is of finite order. Generators and defining relations for the center Z(A) are given. If 
S = Proj(Z(A)) and d is the sheaf of d~s-algebras defined by d(Scr)) = A [ f -  1 ]o then the center .~e of d 
is described. For  example, for the 3-dimensional Sklyanin algebra we obtain a new proof of M. Artin's 
result that  Sloe Y' ~ p2. However, for the 4-dimensional Sklyanin algebra there is not  such a simple 
result: al though Slm: ~e is rational and normal, it is singular. We describe its singular locus, which is also 
the non-Azumaya locus of d .  
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1. Introduction 

Let k be an algebraically closed field, E an elliptic curve over k, and z e E. For  each 
integer d t> 3, the d-dimensional Sklyanin algebra An(E, z) is a graded k-algebra 
determined up to isomorphism by that data: it is a Noetherian domain, generated 
by d elements of degree 1, and has the same Hilbert series as the polynomial ring in 
d indeterminates [16]. A precise definition in the cases d = 3 and d = 4 treated in 
this paper is given below. Those cases have been studied in some detail. In particular, 
it is shown in [5] for d = 3, and in [14] for d = 4, that A is a finite module over its 
center Z(A) if and only if z is of finite order. This paper gives an explicit construction 
and description of Z(A) when z is of finite order. 

After [1], it is clear that Z(A) is not the only, or even the best thing to study. One 
should also study the center of the sheaf of algebras ~¢, defined as follows. First 
let S:= Proj(Z(A)), and for 0 ~ f~Z(A)i write S ~ ) =  Spec(Z(A)[f-1]o) as usual 
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[8, Chapter II, §2]. Then d is the sheaf of (gs-algebras defined by 

d(S~s)) .'= A[S-  11o. 

The center ~e of s¢ is defined by ~(U) = Z(~/(U)) for an open U c S; in particular 
~((S(s)) = Z(A[f-1]o). It is possible that Y' may be strictly larger than (gs. Consider 
the scheme Spec~ e as defined in [8, Chapter II, Ex 5.17]. When d = 3 it is proved 
in [1] that Spee ~ ~ p2. In this paper we give an alternative proof of this result, and 
also describe Spee ~ when d = 4. 

DEFINITION. Fix an invertible (ge-module £~o of degree d equal to either 3 or 4. 
Set U = H°(E, ~ )  and identify U ® U with H°(E x E, £,a [] LP). Define the shifted 
diagonal 

,~ .'= {(x, x + ~) lx  e e}. 

If d = 3 set F = A~. If d = 4 set 

F = A~ w {(e~,e,)[0 ~< i ~< 3} 

where the e~ are defined as follows. The image of E in P(H°(E, L~)*)_-__ p3 is 
contained in a pencil of quadrics, four of which are singular of rank 3: label their 
four singular points eo . . . . .  e3. 

The d-dimensional Sklyanin algebra associated to (E, z) is defined to be the quotient 
of the tensor algebra 

Aa(E, z):= T(U)/(Ra), 

where 

RA:= { f  ~ U ®  U l f l r  = 0}. 

Our definition of these Sklyanin algebras differs from the definition of the higher 
Sklyanin algebras Qa(E, z) given by Odesskii and Feigin in [12]. The relation 
between the definitions is that A3(E, z) = Q3(E, z) and A4(E, 2~) = Q4(E, z). 

Since E and z will be fixed throughout the paper, we will just write A for Aa(E, z). 
The dependence of the algebra on cp is illusory, since any two line bundles of degree 
d are pullbacks of one another along suitable translations. 

The study of A is facilitated by its having a quotient ring which may be studied 
more directly. Let a t  Aut(E) be defined by f = p  + z, and let B = B(E, a, 5a) 
be the twisted homogeneous coordinate ring of E as defined at the beginning 
of Section 2. By [4, Section 7] B is generated in degree 1, so there is a surjective 
map T(U) ~ B. If f e  U ® U is a relation for A, then f(p, f )  = 0 so the image 
of f in B is zero. Hence there is a surjective algebra homomorphism A 
B(E, a, ~). 

If d = 3 then B(E, a, ~ ) ~  A/(g) where g is a homogeneous central regular 
element of degree 3 in A [4, Theorem 6.8]. If d = 4 then B(E, a, ~ )  ~- A/(Ftl, fl2) 
where fll  and ~2 are homogeneous central regular elements of degree 2 which 
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form a regular sequence on A [13, Corollary 3.9-1. Hence, for both d = 3 and d = 4, 
we may write 

Ad(E, z) = k[xl  . . . .  , Xd] and B(E, a, ~ )  = A/(gl . . . . .  gin), 

where g l , . . . , gm,  m = d -  2, is a regular sequence of homogeneous central el- 
ements, all of degree a = 6 - d. 

From now on assume that z (equivalently a) is of finite order n. The strategy of 
the paper is to determine generators for the center of B and then lift these to 
central elements in A, which together with gl . . . . .  gm generate the center of A. 
Unfortunately, matters are complicated by the fact that we also wish to study •, 
because Spec ~ = Proj(Z(A(b))) where b = gcd(a, n). Consequently, Sections 2 and 3 
study Z(A (r)) for an arbitrary r which divides b. Actually Section 2 treats a more 
general situation. It deals with an arbitrary triple (X, a, 5Y) with the property that o- 
is of finite order n = rs, the group generated by o- acts freely on X and 
(as),&o ~ LP. The choice of a map giving this isomorphism induces an automo- 
rphism p of B(X, a, Sf) of order r and an automorphism ~ of B(X, a, ~)(s) of order 
n. In the Sklyanin situation p may be lifted from B(E, a, ~ )  to A. The lifted 
automorphism is still denoted by p. The restriction to E of the transpose of p on 
P(AI') coincides with a s. In a similar way the action of z linearizes a. The center of 
a twisted homogeneous coordinate ring B(X, a, ~f) has a precise description as a 
homogeneous coordinate ring of the quotient variety X / ( a ) .  The rth Veronese 
subalgebra B(X, a, ~a)(r) is still a twisted homogeneous coordinate ring, so there is a 
similar description of its center. 

Applying this to the Sklyanin situation one obtains a basis Xl . . . . .  xd for 
B(E, a, 5Y)1 consisting of p-eigenvectors such that Z(B ~)) = k[x] . . . .  ,x~] ("). Fur- 
thermore, k[x] . . . . .  x~] is isomorphic to a twisted homogeneous coordinate ring of 
the isogenous curve E' ,= E/(a*). Of course, one does not expect the elements xf to 
be central in B(E, a, ~ ) ,  but they are normalizing elements. Moreover, each x~ may 
be lifted to an element ui ~ As which is normalizing in A; for example, if xi is 
p-invariant then u, is p-normalizing. To show that the elements x~ may be lifted 
requires a careful analysis of p-derivations of B(E, a, LP). Sections 2 and 3 culmi- 
nate in Theorem 3.7 which proves that 

Z(A (b)) = k [u l , . . . ,  ud](")[gl . . . . .  am] and Z(A) = k[zl . . . . .  Zd] [gl , . . . ,g , . ]  

where the u~ and zi are homogeneous of degrees s .'= n/b and n respectively. 
Section 4 determines the defining relations for Z(A) and for Z(A(b)). The first step 

is to obtain relations for k[u l , . . . ,ud]  by proving it is a twist of a polynomial 
ring. This polynomial ring has a natural description in terms of the original 
data: it is B(P', 1, (gp,(1)) where P ' =  P(H°(E ', L~°') *) and ~L~ °' is the descent of 
~ s  "= 2~o ® 5¢, ® ... ® ~q,e, s- ~ to E'. It is straightforward to obtain a surjective map 
from the twisted polynomial ring to k[u~, . . . ,  Ud] because the latter has relations of 
the form u~uj = eijuju~ for suitable c~e  k. However, to show this map is an 
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isomorphism one must show that k[u~ , . . . ,  ua] has plenty of line modules. These 
are obtained as submodules of the line modules for A. Further analysis of the 
action of k [ u l , . . . ,  ua] on these line modules leads to defining relations for 
k[u~ . . . . .  ua] [ g l , . . . ,  gr,] and to defining relations for Z(A). 

Suppose that d = 3. Then k[u~, u2, u3, g] has defining relations 

U 2 Ul  = ~S/,/lU2 ' U3U2 = ~SU2U3 ' U lU3  = ~S/,g3Ul, gS "Jr f3(ul,  u2, u3) = 0, 

where ~ is a cube root of 1 and f3 is a homogeneous cubic defining E' c P'. The 
center Z(A) = k[zl ,  z2, z3, g] has defining relations 

z2zt = ZlZz, z3zz = zzz3, zlz3 = z3zl ,  F(zl ,  z2, z3, g) = O, 

where F is of the form 

F(zl,  z~, z3, g):= g~ + f3(ul,  u2, u3), if (3, n) = 1 

and 
F(zl, z2, z3, g):= g" + f l (zl ,  z2, z 3 ) f  "/3 + f2(zl ,  z2, z3)g "/3 + 

+ f3(zl, z2, z3), if 3In, 

where f3 is a cubic defining the image of E" ,= E / ( a )  in a suitable pz and j~ and 
f l  are nonzero quadratic and linear forms, respectively. We also remark that we 
can, and do, arrange that zi = u~. There are analogous relations for d = 4. 

Section 5 describes the structure of S ~ e  ~ .  When d = 3 Theorem 5.3 proves that 
S p e c ~  ~ P' ~ ~z2. This has already been proved when (3, n) = 1 in [1] and [3]. 
When d = 4 we are unable to give such a concise description of Spee ~ .  However, 
we prove that Spee ~ is a normal singular variety, that it is rational, and that there 
is a flat morphism S p e e ~ e ~ P '  of degree s induced by the inclusion 
k[ul . . . . .  u4] (") c Z(A tb)) (when d = 3 the analogous morphism is an isomorphism). 
We also show that d ,  which is a sheaf of maximal orders on S ~  Y', is non- 
Azumaya precisely at the singular points, and we give a precise description of this 
locus. 

We will work over a fixed algebraically closed base field k. The following 
constructions and notations will be used in the paper. 

Let R be a Z-graded k-algebra, and let M be a graded left R-module. 
The mth-Veronese subalgebra of R is defined to be R (~) := @~g R~m. The mth- 

Veronese submoduIe of M is M (m) ".= @~z  M~,,. 
Let 0 ~ Aut(R) be a k-linear algebra automorphism which respects the grading. 

Then we may define a new algebra structure, (R °, *), on R by declaring that the 
product of x e R~ and y~ R i is x ,  y = xy  °'. We call (R °, ,) the twist of R with 
respect to 0. 

The center of R will be denoted by Z(R). 
Let 0~ Aut(R). An element u6 R is O-normalizing if uv = v°u for all v~ R. The set 

of all 0-normalizing elements is a Z(R)-submodule of R. In a domain a 0- 
normalizing element is 0-invariant. 
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Let 0 ~ Aut(R). A k-linear map 6: R -~ R is a O.derivation if 6(xy) = 6(x)y + x°f(y) 
for all x, y e  R. If ue  R, the inner O-derivation by u is the map x ~ ux - x°u. 

If c e k ! define 2c e Aut(R) by 2~(x) = c"x for x e R,. 
If de  7/ then Mid] is the graded R-module which is equal to M as an ungraded 

R-module but has the grading M[d]i := Md+i. 
We say that M is bounded below if Mi = 0 for i ~ 0. We say that M is locally 

finite if dim(M0 < ~ for all i. If M is locally finite, the Hilbert series of M is the 
formal power series HM(t) = Zi(dim Mi)tk 

A d-linear R-module is a cyclic left R-module M having Hilbert series 
HM(t) = (1 -- t) -d. We call M a point module if d = t and a line module if d = 2. 

Let X be a scheme over k, and let v be a k-automorphism of X. 
If p c  X we will usually write p~ for v(p). We extend this to Weil divisors in the 

obvious fashion. For  example, if D = Znp.(p) is a divisor on a curve then 
D ~ := Znp. (p~'). 

Let f : ~  ~ f# be a homomorphism of (gx-modules. We will write i f*  for the 
inverse image v*,~. We note that ~ "  = ( v - * ) , f f ,  and if D is a Weil divisor 
(,0x(D)~ = (Ox(DV-*). We will write i f =  v * ( f ) : ~  "* ~ f f *  for the homomorphism 
corresponding to f .  There  is a k-linear isomorphism 

H°( X, ~ )  ~ H°( X, ~ )  = H°( X, cgx ®*-~x v - l@)  

given by s ~ s  v . . = l ® s .  Notice that s(p ~)=0 if and only if s~(p)=O. These 
notations are compatible: the natural isomorphism Homx((~x, ~ )  - ,  H ° ( X , ~ )  
given by f ~ f(1) satisfies f~ ~ f(1) ' .  

If X is an irreducible variety we write K = k(X) for its function field and ~ x  
for its sheaf of total quotient rings. There is an induced automorphism f ~ f~ of 
K defined by i f ( p ) =  f(p~). This is compatible with all the previous nota- 
tion: if ~ is a subsheaf of Yfx and f e  H°(X, .~) then the two possible mean- 
ings of f f e H ° ( X , ~  ~) are the same. We also note that, if f e K  then 
( i f )  = (f)v- ' .  

2. Twisted Homogeneous Coordinate Rings 
We begin by recalling some results and notation from [5], [6J and [11]. 

The category of triples over k has as its objects triples (X, o- Lf) consisting of a 
k-scheme X, a k-automorphism a of X and an invertible (gx-module £0. A morphism 
in this category is a pair 

(f, u):(x, ~, ~ )  + (x ' ,  ~', ~ ' )  

consisting of a morphism f : X - * X '  such that e l = f  o-, and an (gx-module 
homomorphism u : f * ~ '  --* 5~. If (9, v):(X', e', 5Y') -~ (X',  0% Ae") is also a mor- 
phism then (g, v) o (f, u) = (gf u o f *  v). 
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Define 

t ,. o ¢rn- 1 '5¢ ® 5Ca ® ®£~a , if n > O ,  

Y ,  = Cgx, if n = 0, 
1 . ~ - ' " ® . - . @ ~ - ' - 2 ® ~  - ' - ' ,  if n < 0 .  

There is a contravariant functor B from the category of triples to the category of 
graded k-algebras defined as follows: 

B(X, a, ~ )  = @ B. 
n~Z 

where 17, = H°(X,  5~,), and the multiplication B, ® B , , ~ B , + , ,  is given by the 
composition 

H°(X, 2e.) ® H°(X, ~ )  ~ H°(X, ~,,) ® H°(X, (Levy") -+ H°(X, ~ .  ® (~,.y") 
= H°(X,  S,+m) 

where the first of these maps is a ® b ~ a ® b ~". 
We say that Lf is a-ample, if for every coherent (gx-module ~ and every q >0, 

Hq(X, =Lf l @ Y )  = 0 for i >> 0. We call B a twisted homogeneous coordinate ring of  X if 
5q is both ample and a-ample. 

Remarks. (1) If ( f  u) is a morphism of triples as above, then the induced 
algebra homomorphism go:B(X', a', £f ')  -~ B(X, a, ~ )  is given by g0(b) = 
( u ® u  ~ ® ... ®u~"-l)(f*(b)) for be  B(X',a' ,5'7') ,  i fn > 0. 

(2) If f ~  B1 ® B1 = H°(X  ! X, LP [] ,Se) is in the kernel of the multiplication 
map to B 2 then f (p ,  p') = 0 for all p ~ X. 

Under quite mild restrictions a natural localization of B(X,  a, £P) is an Ore 
extension of the function field K = k(X) of X. Let X be an irreducible and reduced 
projective k-scheme, let 4 = Spec(K) denote the generic point of X, let a denote the 
restriction of a to 4, and let 5e¢ denote the inverse image of 5e on 4. Let Kit,  t -  1; a] 
be the Ore extension having K-basis {tJlj c Z} as a left K-module, and multiplication 
defined by t f  = f ~ t  for f e  K° The obvious morphism of triples (4, a, L~'¢) --. (X, a, 5f) 
induces an injective algebra homomorphism B(X, a, ~ )  ~ B(~, a, ~¢), and we obtain 
the following result. 

PROPOSITION 2.1. Let (X, a, ~ )  be a triple and suppose that X is an irreducible 
and reduced projective k-scheme. There is an isomorphism B(4, a, £z~) ~_ Kit ,  t-1; a], 
and if 5e is a-ample, then 

(a) B(~, a, ~q~¢) is a localization of  B(X, a, ~ ) ;  
(b) if a is of  finite order, then B(~, a, cp ) is a central localization of  B(X, a, :L~). 

Proof Since ~ is an integral scheme, B(~, a, £Z¢) is a domain. In particular, the 
multiplication map in B(¢, a, ~cz¢) gives each B(¢, a, L~°¢)i the structure of a 1- 
dimensional vector space over B(~,a, Sg~)o = K. If 0 # xEB(~,a ,  LZ¢)l then 



CENTER OF 3D AND 4D SKLYANIN ALGEBRAS 25 

B(4, a, 5e¢)i = Kx i. Hence, there is an algebra isomorphism q)~: B(¢, a, ~ )  ---, 
K[t, t - l ;  a] given by q)~(fx i) = f t  i for all iE 77 and f E  K. 

(a) By [6, Proposition 3.2(iii)] we may choose an n such that 5¢, and £~,+ 1 are 
very ample. Thus, Bn and B,+I are both nonzero, so FractB(X, o-, Le) contains a 
nonzero element of degree 1. Let O v~u~H°(X,S¢?,) and set D=(u) .  Then 
B(X, a, 5~)[u -1 ] contains H°(X, (gx(D)) and, hence, Fract B(X, a, ~e) contains the 
subfield of K generated by H°(X, (gx(D)). But this subfield is K since (gx(D) is very 
ample. It follows that B(4, ~r, 5°¢) is the localization of B(X, a, ~ )  at the nonzero 
homogeneous elements. 

(b) If a is of finite order, n say, then K[t, t - i ;  a] has center K<~>[t ", t-"], so 
B(~, a, ~¢) is finite over its center. Thus B(X, a, ~ )  is a prime ring satisfying a poly- 
nomial identity, whence by Posner's Theorem Fract B(X, a, ~ )  is a central localization 
of B(X, a, ~) .  Thus, if r e B(4, o, ~ )  is homogeneous, then rz ~ B(X, or, ~ )  for some 
nonzero central element z ~ B(X, a, ~e). But each homogeneous component ofz is also 
central, so we may assume that z is homogeneous. Thus re B(X,a,  5e)[z -1] c 
B(~, a, 5°¢), so B(~, a, ~¢) is a central localization as claimed. [] 

PROPOSITION 2.2 [5, pp. 374-375]. Suppose that X is projective, reduced and 
irreducible, and that ~r "~ fixes the class of ~ in Pic(X). Let u: 5f '=--~ ~ be an 
isomorphism, and define the isomorphism v:S f l  ~>5f= by v(xi ® . . . ® x = ) =  
u(x=)Qxl ® ' . .  ®x=-l .  By functoriality (a=,u)~Aut(X,~r,~), and (a,v)e 
Aut(X, a =, ~LP=) induce algebra automorphisms 

p ~ Aut B(X, c~, Le) and ~ ~ Aut B(X, a =, LP=). 

Let x, y ~ Bi, z ~ Bj and w ~ Bin= where i + j = ms. Then 

(a) x"=zy = y'"zx; 
(b) ri(zy) = yP"z; 
(c) identifyin9 B(X, ~r =, 5~=) with B(X, a, ~)~=), the restriction of p to B(X, a, ~)~=) 

equals ~=; 
(d) w~'y = yPmw. 

Proof Both (a =, u) and (a, v) extend to automorphisms of the triples (4, a, 5e¢) and 
(4, o-=, (5e=)¢), so p and z extend to automorphisms of B(4, a, &o¢) and B(4, a, 5 e J  =) 
respectively. Therefore, it suffices to prove the Proposition for B(~, a, ~¢) which has 
the advantage of being generated over its degree 0 component by the elements of 
degree 1 and - 1. We will only consider the cases i, j />  0. 

(a) The case i = m = 1 is true because 

xPzy = (u ® 1 ® 1)(x ~= ® z ~ ® y'~) = (u ® 1 ® 1)(y ~= ® z" ® x ~=) = yPzx. 

For i = 1 and a general m we proceed by induction. Suppose that z --- zlzzz~ with 
z I E B s _ l ,  z 2 ~ B 1 ,  z 3 ~ B (m_ i ) s_  1 . Then 

XP~zy  = X o " Z l Z 2 z 3 Y  = z ~ z i x t ' ~ - ~ z 3 y  = Z~z~yP"-~Z3  X = yO'~zi~2Z3 x = yO~zx" 
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We now prove the general case by induction on i. Suppose x = XlX2 and y = YlY2 
with xl ,  Yl • Bi-1 and x2, Y2 • Bt .  Then 

xP"zy = (XlX2)P"zyly2 = xPlmy~"zylx2 = y~"y~mzxlx2 = yP"zx. 

(b) The result is true for i = 1 and m = 1 because, if zl . . . .  , z~ • B1 then 
0,2 ~(zl ... zD = v((zl ... zs)0,) = v(z~ ® z2 ® . . .  ® z~ ~) 

. . . .  o ,s-  1 = ( u ® l ® l ®  ® l ) ( z ~ = ® z ~ ® . .  ® z ~ - l )  

. 0,2-- l = u(z~') ® z~ ® .. ® z~_ 

ZPs Z l " '"  Z s -  1" 

We now prove the case i =  1 and general m by induction. Suppose that 
Z ~ Z 1 . . .  Z m s -  1 with each zz • B1. Then 

~ ( z y )  = ~ ( z  l . . .  z D ~ ( z ~ +  1 . . .  z ~ _  ~y) 
= Z°sZl ... Zs_lyP"-lZs+l ... 2:ran-1 = yt"~Zl ... Zms-1 = y°Z. 

For  a general i and general m we proceed by induct ion on i. Suppose that y = YlYz 
with y~ • B~ and Yz e B~_ 1. Then 

zi(zy) = z(zi- 1 (zyl Y2)) = z , ( y ~ " ~ z y l )  = y~"y~"z = y°~z. 

(c) This follows by iterating s times the case i = m = 1 of  (b). 
(d) Suppose that  w = wlw2 with wl • Br,,-i and w2 • Bi. Then, using (a) and (b), 

W~;iy = 75i(W1 w2)y = W ~ W l y  = yP"Wl W 2 

as required. [ ]  

C O R O L L A R Y  2.3. Suppose that X is a reduced and irreducible projective k-scheme, a 
is o f  finite order and £P is a-ample. Then B(X,  a, ~ )  is finite over its center. 

Proof  By the arguments  in [6] B = B(X,  a, 5~) is a finite B~")-module for m >> 0. 
Hence we can choose n such that a" = 1 and B is a finite B(")-module. Taking s = n 
and u = Id  in (2.2) gives p = 1 and v • A u t B  ~") satisfies z " =  1. By (2.2d) the 
z-invariants in B (") are central in B. But B (") ~- B(X,  1, ~ )  is commutative,  so is a 
finite module  over its subring of z-invariants. Hence, the result. [ ]  

Remark. The use of  Posner 's  Theorem in the p roof  of (2.1b) can be avoided as 
follows. To prove (2.1b) we must  show that  a nonzero  homogeneous  element b of  
B = B(X,  a, £~) divides a central element. However,  if a" = 1 then, as in the p roof  of 
(2.3), (b") 1+~+'' '+~"-' is a z-invariant element of B ~"), so central in B, and is also a 
multiple of b. 

Let G be a finite group acting as k-automorphisms of X. Suppose further that  G 
acts freely on X (i.e. all isotropy groups are trivial). This ensures that the quotient  
map  ~ o : X  ~ X / G  is 6tale. A coherent G-sheaf on X is a coherent  (gx-module 5 ° 
endowed with (gx-module isomorphisms T o : £~' --. 9"£P for each 9 •  G, which satisfy 
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Toh = h*(T o) ° Th. We call ((rcG),2") G the descent of 2" to X/G, and we refer to g ~ T o 
as descent data. 

P R O P O S I T I O N  2.4 [11, Proposition 2, page 70]. The functors 

~ rc*o~ and 2" ~ ((rca),L,f) G 

are mutually inverse equivalences between the categories of coherent (gx/6-modules and 
coherent G-sheaves on X. The equivalence sends locally free modules to locally free 
modules of the same rank. 

If g commutes with a then (g, T g t ) e  Aut(X, a, 2"). Hence if every element of G 
commutes with a, then G acts on B(X, a, 2") from the right as algebra auto- 
morphisms. In this case we will call (X, a, 2") a G-triple, and will write simply f0 
instead of T ~ l ( f  g) for the action of g on a section f of 2". 

P R O P O S I T I O N  2.5. Suppose that (X, a, 2") is a G-triple, with G actin 9 freely 
on X. Let a' be the automorphism of X/G induced by a, and let 2'' be the descent 
of 2'  to X/G. Let u: 7c~2'' ~ 2" be the canonical isomorphism. Then 
(rc~, u): (X, a, 2") ~ (X/G, a', 2'') is a morphism of triples inducing an isomorphism 
q~ : B(X/G, a', ~Lf') ~ B(X, a, .~)~. 

Proof The key point is that (2"), .  is the descent of ~ , .  to X/G: this is a 
consequence of the fact that n~ distributes across tensor products. Therefore, 

B(X/G, a', ,.~'),. = H°(X/G, ((na),2"m) ~) -= B(X, a, 2")~. 

The result follows. []  

From now on we suppose that 

• (X, a, 2") is a triple, such that a is of finite order n = rs, 
• the group generated by a acts freely on X, 
• X is projective, reduced and irreducible, 
• 2"~  ~ 2", 
• and 2" is a-ample. By [6, Lemma 4.1] this is equivalent to 2"n being ample. In 

fact, it is equivalent to 2"~ being ample, since 2"~" ~ 2"~ implies 2"n ~ (2"~)®r. 

We will call triples satisfying these hypotheses (r, s)-triples. An (r, s)-triple is also a 
(1, n)-triple. To an (r, s)-triple we attach groups 

G = ( a ) ,  H = (a~), G' = ( a ' )  

of automorphisms of X. This gives rise to a commutative diagram of ~tale morphisms: 

X ~' , X/G' 

X/I-I ~/~, X/G 

The induced action of a on each of these quotients of X will also be denoted by a. 
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Since X is projective and irreducible H°(X, (gx)= k. Thus the automorphism 
group of an invertible d)x-module is k !. In particular, the isomorphism 
u: 5¢ ~" --~ LP is determined up to a scalar multiple. Changing u by a scalar multiple 
we can, and do from now on, assume that (as, u ) r=  Id, or equivalently 
uu °~ ...u'~r-lr*= Id. This determines u up to multiplication by an rth root  of 1. 
Define v 'Sa~ ~ £0 s as in (2.2). Let p and z be the automorphisms determined by 
(a s, u) and (a, v) as in (2.2). Although u, and hence z, is only determined up to an rth 
root of unity, z r is independent of any such choice. Thus rr is a canonical 
automorphism of B(X, as, SEx) = B(X, a, ~)o).  

Since (as, u) r = Id, the map H ~ Aut(X, a, £g) given by a i ' ~  (as, u) ~ is a group 
homomorphism, whence ~ is an H-sheaf, with (a i~, T ~ ) ) =  (a s, u)k Furthermore 
(a, v)" = Id which ensures that ~e~ is a G-sheaf, and hence a G'-sheaf. Thus (X, a, ~ )  
becomes an H-triple, and (X, a s, £e~) becomes a G-triple. The H-action on B(X, a, .L~') 
is generated by p, and the G-action on B(X, as, ~ )  is generated by z. Note that 
p ~ = l a n d z " = l .  

P R O P O S I T I O N  2.6. Let (X, a, ~ )  be an (r, s)-tripIe, and let ~ '  be the descent of ~s  
to X/G'. There is a canonical injective algebra homomorphism 

B(X/G', as, 5£') --* B(X, a, 5f)  "~ 

whose image is the G' = (z~)-invariants of  B(X, a, ~q~)ot. This map sends elements of  
degree i to elements of degree is. 

Proof This map is the composition B(X/G', as, ~ ' )  -~ B(X, as, £Ps) --* 
B(X, a, ~)o),  where the first of these maps arises as in (2.5) using the fact that ~ce~ is a 
G'-triple. [] 

Now G/G' acts on B(X, a, 5e) ~')G' = B(X/G', as, ~ ' )  with the action generated by 
the restriction of z. 

T H E O R E M  2.7. Let (X, a, ~ )  be an (r, s)-triple. Write B = B(X, a, ~ )  and B' for the 
image in B of B(X/G', a s, ~LP') under the canonical map described in (2.6). Fix an 
integer m. Then 

{y~ Blyx = xP"y for all x e  B ~)} = ~ B)s. 
j ~ re(rood r) 

Proof To see that the right side is contained in the left side let y e B)s with 
j - m(mod r). If x e Bu then by (2.2d) y¢~x = xPJy. But pJ = p"  since p~ = 1, and 
elements of B' are z'-invariant by (2.6), so yx = xP~y as required. 

Conversely suppose that 0 ~ y e B~ is in the left side. Let x e B~,s. By (2.2d) 
x~y = yP'~x = yx = xVmy. Since B is a domain it follows that z t =pm on B t"). Thus 
z t~ = 1 on B °°. But ~ is a-ample, so z is still of order n on B t"). Thus I = js for some j. 

Therefore p " =  z J~ = pJ on B ~) by (2.2c). By the a-ampleness it follows that r 
divides j - m. Finally we show that y is z'-invariant and, hence, in B' by (2.6). Since 

is a-ample Bi, ~ 0 for some ir =-r(modn). If 0 ¢ x e B i ~  then by (2.2d) 
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y~'"X = xP~y = XP'~y = yx. Thus y~,r = Y and y is zr-invariant by the careful choice 
of it. [] 

COROLLARY 2.8. Let (X,a,  2") be an if, O-triple. Let B(X/G',as,  2 ' ' ) ~  
B(X, a, 2")(s) be the canonical map described in (2.6), The restriction of this to the rth 
Veronese subalgebra gives an isomorphism 

B(X/G', a ~, 2' ' i f)  ~,  Z(B(X, a, 2"if)). 

This isomorphism sends elements of degree i to elements of degree is. 
Proof. If we take m = 0 in (2.7), we see that the centralizer of B ~r) in B is (B') ~') 

which is the image of B(X/G', a s, ~qo,)(r) as required. []  

Let d = Hom(G, k ! ) be the group of k-valued characters of G. If ~ ~ G, define 

(gx/G(~) .'= { f  ~ (rCo),(gxlf g = ~(g)f for all g e G}. 

As remarked in [11], each (gx/~(e) is an invertible (gx/o-module, the multiplication in 
(rco),(Px induces isomorphisms (9(e) ®Ox/~ (9(fl) ~ (9(eft), and the map c~ ~ (gx/G(CO 
defines an isomorphism 

d ~,  Ker(eic(X/G) ~ Pic(X)). 

For  each ~ ~ G, Cx/~(~) is the descent of Cx to X/G with descent data g -~ (9, ~(g))- If 
the order of G is prime to the characteristic of k, and G is Abelian, then 

(rcG),~x = G (~x/d~). 

We now assume that char(k) does not divide r, and apply this to the situation 
described earlier. 

Le t / / g  be the descent of 2 '  to X/H,  and 2"" the descent of &as to X/G. We will 
continue to write 2 ' '  for the descent of 2"s to X/G'. It is easy to see that ~ "  is the 
(G/G')-descent of 2 ' ' .  

For  each c~e/1, define ~((~) = (gxm(~)®~/~ ~ /  and for each c~e (G/G')", define 
2""(c0 = (gx/o(e) ®~,,/~ 2"". We obtain two important decompositions: 

H°( X, 2") = H°(X/H,  (nn).2") = ~ H°(X/H,  ~7(~)), 
ct e Pl  

H°(X/G ', 2 ' ' )  = H°(X/G, (tOG/G,).2'') = ( ~  H°(X/G, cd"(~)). 

The first of these is the decomposition of B(X, a, 2")t into its p-eigenspaces, and the 
second is the decomposition of B(X/G', a ~, 2'')1 (or equivalently B(X, a, 2")~') into 
its ~-eigenspaces. 

For  each e s H ,  (X/H,a,J¢/(cO) is a triple, so we define ~¢g(C0s = 
J//(~) ® ~/(c0 ~ ® ... ® ~[(~)~'- ~. The isomorphism G/G' ~ H given by g ~ g~, gives 
an isomorphism of character g roups /1  ~ (G/G'f. 

PROPOSITION 2.9. Let c¢ ~ ISl = (G/G'~'. Then 2""(0 0 is the descent of  ~#(c¢)~ to X/G. 
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Proof First observe that -/~(a)s can be made into a G/H-sheaf with descent data  
a is ~ T i where T:  JC/(a)s ~ a*Jg(~)s is just the permutat ion al ® a2 ® . . .  ® as 
a 2 ® . . . Q a ~ ® a l .  

It  suffices to show that  (gx/G(~) is the descent of @xm(a)~ to X/G. Then 
(gxm(~) = (gxm f c (rcn).lCx where f ~  K = H°(X, X x )  satisfies f*" = a(o-s)f; the 
existence of such an f is guaranteed by K u m m e r  theory. N o w  define 
h = i f*  ... f " - ' .  Then @xm(CO~ = (gx/nh so the G/H descent of  (gxm(COs to X/G is 
(gx/~h. But h ~ = c~(a~)h so @x/~h = (gx/~(cO. [] 

P R O P O S I T I O N  2.10. Let E be an elliptic curve and ~: E ~ E' a quotient by a finite 
subgroup. Let D ~ Div(E) and assume that deg(D) > 0. Let K and K' be the function 
fields of E and E'. The restriction of the norm mapping N: K ~ K' gives a surjective 
map from n°(E,  (gE(D)) to n ° (E  ', (gE.(~(D))). 

Proof Set D' = r~(D). Let 0 ~ f '  ~ H°(E ', (9e,(D')). Suppose that  its divisor is 
d 

div( f ' )  = y '  (p;) - D'. 
i = 1  

Choose  preimages Pl . . . .  , Pd-1 ~ E of p~ , . . . ,  p&_~. Because E is an elliptic curve, 
there is a unique point  q ~ E  such that  D is linearly equivalent to 
( P J + ' " + ( P d - 1 ) + ( q ) .  Let f E K  be such that d i v ( f ) = ( p j + . . . + ( p d _ l ) +  
(q) -- D. Then .[~ H°(E, (ge(D)) and 

div(Nf) = (Pl)  + "'" + (PS- x) + (q') - D' 

where q' is the image of  q in E'. I t  follows that  q' is linearly equivalent to pS. Since E'  
is not  a rat ional  curve this forces q' = pS. Hence, f '  = c ' N ( f )  = N(cl/"f) for some 
c~ k. [] 

C O R O L L A R Y  2.11. Let X be an elliptic curve and a the translation by a point of 
finite order. Then the map B~ ~ Bs given by y--* yS gives, on restriction, a surjective 
mapping H°(X/H, JC/(cO) to H°(X/G, £P'(cO) for each o~ ~ I~. 

Proof Both E := X/H and E' := X/G are elliptic curves and rcG/n : E --* E'  is as in 
the previous result. Indeed ~r~/n is a cyclic 6tale cover with Galois group G/H. 

Since £P'(c0 is the descent of J/d(a), one of  these has only the zero section if 
and only if the other does. Suppose that  0 # x~H°(X/H,J/¢(cO) and set 
D = div(x) ~ Div(E). Thus d/d(a) = (9~(D)x and x p = ~(p)x. 

Put  y = x *- i in (2.2b): thus (xS) ~ = xPx ~- 1 = ~(z~)x~. Hence, x s is G'- invafiant  and 
xS~ H°(X/G, ..W"(a)). Since x s = x ® x  ~ ® - - - ®  x *'-~ the divisor of  x ~ as a section 
over X/G is r~mn(D). Thus ~"(c~) = (gE,(rcmn(D))xh 

Let 0 # f x  ~ H°(X/H, Jl(a)). Then  

(fx) ~ = (fx) ® (fx) ~ ® . . .  ® (fx) ~-~ 
= ( f f ~  ... f f ' - ' ) x  ® x ~ ® ... ® x ~'-' = (ff" ... f '~-~)x t  

But Gal(k(E)/k(E')) = GIn so (fx) ~ = (Nf)x ~ where N :  k(X/H) -~ k(X/G) is the no rm 
map. Hence, by (2.10) fx  ~ (fx) s is surjective. [ ]  
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The last two results of this section treat the case relevant to the Sklyanin algebra. 
Thus X -- E will be an elliptic curve, a will be translation by a point of order n = rs, 
2 '  will be of degree d ~> 3, and we assume that r divides d and is prime to the 
characteristic of k. These hypotheses apply in (2.12) and (2.13), In particular (as) e = 1 
whence 2"~ ~ 2". 

DEFINITION.  We say that 0 ~ x e B1 is good if its divisor of zeroes D ,= (x)o has 
the following property: each point in Supp D occurs with multiplicity t, D ~s = D, and 
Supp(D) c~ Supp(D ~j) = 0 for 0 < j < s. 

If x is good then 

(xp)  = ( u ( x ~ ) )  = (x  ~ )  = (x)  ~-~ = (x) ,  

so x is a p-eigenvector. Furthermore, if x p = ( -  1 x then (r = 1, so we may replace u 
by u' = (u and the p' determined by u' is 2¢ o p, and x p' = x. Given a good x we will 
frequently choose a p such that x is p-invariant. 

P R O P O S I T I O N  2.12. There is a basis { x l , . . . ,  xd} for B(E, a, 2")1 such that 
(a) each xi is good, and 
(b) {x{, . . .  ,x}} is a basis for B(E, a, 2")o,,. 

Proof For each ~ e /4  set  

B~(c~) = H°(E/H, Jg(e)) and B~'(c~) = H°(E/G, 2,"(~)). 

The preceding discussion gives decompositions 

B I =  ( ~ B l ( e ) ,  B ? ' =  (~  B,6'(c¢) 
a~ft ~u(G/G'F 

such that x -+ x s is a surjective morphism Bl(e) ~ B~'(a). It suffices to prove that for 
each e e O ,  there is a basis {Xl . . . .  ,x~} for Bl(c~) such that each x~ is good, and 
{x{ . . . . .  x~} is a basis for B~'(c~). We observe that Jg(cz) and 2""(c~) have the same 
degree and, hence, B,(e) and BsG'(c~) have the same dimension. 

Suppose that 0 ¢ x ~ B1 (c~). Let D = (x). Since p(x) is a scalar multiple of x, it has 
the same divisor as x. But p(x)= u(x~), so (p(x))= (x ~) = (x) °- ' .  Thus D ~ =  D. 
Furthermore {0 ¢ x e  BI(c~)I(x) c~ (x) ~j = 0 for all 0 < j < s} is Zariski open in Ba(c~). 
Hence, {xeB l ( e ) l x  is good} is Zariski open in BI(c~). Since the map x--+x ~ is 
surjective the image of a dense subset of BI(a) is dense in B~'(et). In particular the 
image of this map cannot be contained in a proper subspace of BsG'(e). Hence, the 
image of the morphism ~o" BI(a) ~ --+B~'(c~) ~ given by ~0(xl . . . . .  x~) = (x] . . . .  ,x~) 
contains some linearly independent element. However, the linearly independent 
elements of B~'(e) ~ form a Zariski open set, and hence their preimages in BI(a) form a 
nonempty Zariski open set. But 

{(X 1 . . . . .  Xc)@ B,(e)~[ each x, is good, and {x, . . . . .  x~} is linearly independent} 

is also nonempty and open. The intersection of these two sets therefore contains an 
element which satisfies the proposition. [] 
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DEFINITION.  A good basis for B~ is one satisfying the conditions of (2.12). 

COROLLARY 2.13. Let x l , . . .  ,xa be a good basis for B(E, o, ~ct')l. Then 

B(E, a, A °) = k[Xl , . . .  , x J ,  
B(E/G', o ~, ~ ' )  = k [x~ , . . . ,  x~], 
Z(B(E, 0, Sg) (~)) = k [x ] , . . . ,  x~] ("). 

Furthermore, if xf  = ( -  ~ x, then xf is (2¢ o p)-normalizing, where 2¢ is the automorphism 
acting as scalar multiplication by (J on degree j elements. 

We remind the reader that we always take account of the original degrees of elements: 
for example, x~ ~ k [x ] , . . . ,  x~] ~"). 

Proof Since deg(5~') = deg(& °) ~> 3, both B(E, o, 5Y) and B(E/G', o ~, 2a') are gen- 
erated in degee 1. Hence the equalities follow from (2.8) and (2.12). 

Now suppose that x = x~ has p-eigenvalue ( -1 .  If yeB(E,  a, c~)~ then y°x~= 
(x~)~y = (-1 x~y where the equalities follow from (2.2d) and (2.2a), respectively. [] 

3. Generators of Z(A) and Z(A (")) 
We consider the situation relevant to the Sklyanin algebra, namely X = E is an 
elliptic curve, o is translation by a point of order n = rs and S is of degree d >~ 3. 
Using (2.1) we will identify B(E, a, L~') with a subalgebra of its localization B(~, a, ~¢) 
which is isomorphic to the Ore extension K[t, t -  1; a]. Since the action of o on K 
agrees with conjugation by t, we extend o to an automorphism of K[t, t -  1; o] by 
declaring t ~ = t. 

LEMMA 3.1. Fix an arbitrary factorization n = rs. Let ,5 be a oS-derivation of 
Kit ,  t - l ;  a] of degree I such that s -  l is not divisible by n. Then there exists f 6 K 
such that 6 is the inner aS-derivation by f t  1. I f  fi(t) = 0 then f ~ K °. 

Proof. We must show that there is an f 6  K such that 

(t) 6(a) = f (a  ~ - a ~ ) t  t, for all a~ K, and 
(2) 6(0 = ( f  - f f ) t  1+1 

Define ~b : K ~ K by 6(a) = c~(a)t z. Then using the product rule to expand each side of 
the equation ~(ab)= d(ba), we find on choosing be  K such that b ~ ~ b a~ that (1) 
holds with f = ~(b)/(b ~ - b~). Define g ~ K by ~(t) = 9t t+l and use the product rule 
on 6(tb) = 6(b~t) to get (2). [] 

LEMMA 3.2. Let D be a divisor of degree >~ 3 and let V = H°(E, NE(D)). For an 
arbitrary divisor D', and a point pc  E, let re(p, D') denote the multiplicity of p in D'. 
With I and s as in Lemma 3.1, we have, for each p ~ E, 

inf{m(p, (w ~' - w~))] w ~ V} = -max{m(p,  D~-'), re(p, D~-~)}. 

Proof By symmetry (i.e., interchanging 1 and s if necessary) we can suppose that 
re(p, D ~ ') <~ re(p, D~-~). Note that since o ~ and o ~ are unequal translations, p~" ¢ p~' 
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for each p. Since deg(D) >/3, there is a w e  V such that  re(p, (w~')) > -re(p ,  D ~-~) but  
m(p, (w")) = - r e ( p ,  D~-') .  Tha t  w shows that  the inf imum is less than  of equal  to the 
max imum.  The  other  direction is obvious.  [ ]  

T H E O R E M  3.3. Fix an arbitrary factorization n = rs with rid. Suppose that 
x e B(E, a, 5¢)1 is good. Choose p such that x P =  x. Let  c~ be a p-derivation of  
B(E, a, 5¢) of  degree I such that 6(x) = O. 

(a) I f  l <<. O then 6 = O. 
(b) I f  0 < t < n then ~ is an inner derivation by cx ~ for some c ~ k. 

Proof. Extend 6 to the central  localization B(¢, o-, 5~¢). Identify B(¢, a, ~¢)  with 
K[t,  t - l ;  o-] via the i somorph i sm sending x to t. Thus,  bo th  p and 6 extend to 
K[t,  t - t ; a ]  via this identification. Recall the definition prior  to (3.1) of the au tomor -  
phism a of  K[t,  t - t ;  o-]. Since the restriction of p to K agrees with a s and since 
x ° = x implies that  t p = t = t "~, it follows that  p = a s. Thus  6 is a aS-derivation of 
K[t,  t - i ;  a].  

Set D = (x) and V = C~(D), whence B1 = Vt. 
(Case 1: s = n, p = 1, 6 a derivation.) 
If 1 > 0, then, by L e m m a  3.1, 6 is inner by f t  I for some f ~  K a. We must  show f 

has no pole. Since 6 ( B ) ~ B  we have 6 ( B i ) ~ B t + i .  By a trivial calculat ion 
f ( w  ~' - w)e H°(E, (9(0 + D ~-~ + ... + D~-')) for all wE V. Therefore by L e m m a  3.2, 
for each point  q e E/G, we have 

re(q, ( f))  >~ max{re(p, D-~'), re(p, D)} - S, 

for each p above  q, where S is the sum of the numbers  re(p, D -~') for 0 ~< i ~< 1. Since 
x is good,  at  mos t  one of these numbers  is not  0. Choose  p above q so that  the 
nonzero  one is re(p, D), and find 

re(q, ( f ) )  >~ re(p, D) - re(p, D) = O. 

I f  l =  0, then 61K is a k-derivat ion of K such tha t  6 ( V ) ~  V. We m a y  write 
6 = g(d/e9), where ~0 is a nonzero  differential of  the first kind, and  g ~ K. Let  p 
be a point  of  E. I f  m(p ,D)=O,  choose f ~  V such that  m ( p , ( f ) ) =  1. Then  
re(p, (df/¢o))= 0, so g has no pole at  p. If re(p, D ) =  m > 0, choose f E  V such 
that  m ( p , f ) = - m .  Then m ( p , ( d f / o ~ ) ) = - m - t ,  so g has a zero at p unless 
m is divisible by the characterist ic of  k; but  x is good,  so D does not  have a 
mult iple  point,  i.e. m = 1. So g has zeros but  no poles whence 6 = 0, as was to be 
shown. 

If  1 = - 1, then by L e m m a  3.1, we have, as in case l > 0 above,  

re(q, ( f))  >~ max{re(p, D-'~'), m(p, D)}, 

for each p above  q, (the sum S has no terms, so is 0), so f has zeros but  no poles. 
If  I ~< - 2 ,  then 6 is trivially 0. 
(Case 2: s < n, p of  order  r > 1.) 



34 S.P. SMITH AND J. TATE 

Suppose that l - s  is divisible by n. This happens for an l > ~ - 1  only if 
I = - 1 ,  s = 1, and n = 2. We settle that case. We have p = a, of order 2, so 6 is a 
a-derivation taking V to k. Define the k-linear map ~b:K ~ K by 6(at)= o-(~b(a)). 
Then ~b is a k-derivation of K taking V to k, so taking V into V, and we have seen 
that the only such derivation is the zero derivation. 

In all other cases, Lemmas 3.1 and 3.2 apply, as in Case 1. 

We are almost ready to lift the generators of Z(B(E, o-, ~ ) )  and Z(B(E, or, 5(') (r)) up 
to A and to obtain generators of Z(A) and Z(A(r)). 

Recall that a = 6 - d denotes the degree of the central elements gl . . . . .  g,,- 

L E M M A  3.4. 

(a) There is a unique liftin9 of p to an automorphism of A. 
(b) Suppose that rla. Each of the central elements gl . . . .  ,gm is p-invariant. 

Proof (a) Since the map A ~ B is an isomorphism in degree 1 there is at most one 
lifting of p to A. Since a is prime, the only case to consider is r = a, because p = 1 if 
r = l .  

Let p also denote the automorphism of P(A*) given by 

p(x) (p)=x(p  p) f o r x ~ A 1  and p~P(A*).  

If p o e  c P(A*), then p(x) = u(x'=)(p) = x(p ~) so PIE = as. Since pa = 1 this is 
translation by an a-torsion point co c E. 

Now l e t f c  Ra c A1 ® A1. We must show that (p ® p) ( f )~  R A. If p e  E then 

(p ® p)( f)(p,  p~) = f (p~ ,  p~,+1) = O. 

This proves the result for d = 3. Now suppose that d = 4, and consider 
(p ® p)(f)(ei ,  el), where e~ is the vertex of one of the quadric cones containing E. By 
[10] these 4 points may be characterized as the only points of p3 \ E  which lie on 
infinitely many secant lines to E. Furthermore, for each e~, there is a unique co~ c E 2 

such that e~ lies on the secant line lpq through p, q c E if and only if p + q = co~. The 
action of p on P(A*) sends the line Ipq to lp+o,q+,0. Since 2co = 0 this line passes 
through el also. Therefore, ee = ei. Hence, (p ® p)(f)(ei, ei) = 0 so (p ® p ) ( f ) s  RA. 

(b) Suppose that d = 3. Since p is of order 3 and k is algebraically closed of 
characteristic different from 3 we can choose basis elements x, y, z for A1 which are 
eigenvectors for p. As is well known, the eigenvalnes are distinct (if, for example, 
p(x/y) = x/y, then p = o -~ would fix the points on E where z = 0, contradicting the 
fact that o -~ is a translation). So we can suppose that p(x) = x, p(y) = ~y, p(z) = ~2z, 
where ~ is a primitive third root of 1. The cubic equation f (x ,  y, z) = 0 defining E is 
preserved by p, so must be of one of the three forms 

a x  3 q- by 3 + ez 3 + dxyz = O, ax2y + byZz + czZx = 0, or 

axy 2 + byz 2 + czx z = 0 
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for some a, b, c, d ~ k. The last two are not possible, because then (1, 0, 0) ~ E would 
be a fixed point for a ', and for the same reason, the coefficients a, b, c in the first 
equation are not zero. Therefore, after scaling x, y, z, we can assume that the cubic 
defining E is in the 'canonical form' f = x  3 + y 3  + z 3 r r t x y z  and that 
p(x) = x ,p(y)  = ~y,p(z) = (Zz. Let ( 1 , - 1 , 0 )  ~ = (a,b,c). 

As explained in the introduction to [4], the algebra A is defined by the three 
relations f~(x, y, z) = O, where 

f l (X ,  Y, Z):= a Y Z  + b Z Y  + cX 2, 
f2(X, I1, Z).'= a Z X  + b X Z  + cY 2, 
f3(X, Y, Z):= a X Y  + b Y X +  cZ 2. 

(Strictly speaking, the argument in [4] applies only in case a is not of order dividing 
3, in which case abc ~ 0 and the equation for E can be written 

abc(x 3 + y3 + z 3) = (a 3 + b 3 + c3)xyz. 

However, it is not hard to see that the set of points (a, b, c )~  E for which those 
relations define A is closed, and, consequently, they are the relations also if a 3 = 1.) 

Let T = T(A1) = k ( X ,  Y , Z )  be the tensor algebra on A1, with X, Y , Z  denoting 
the elements of Tx whose images in A are x, y, z. Let A = T/J.  Then each of the 
3-dimensional spaces 

TI = kX  + k Y  + kZ  and J2 = k f l (X ,  Y, Z)  + kf2(X , Y, Z)  + kf3(X, Y, Z)  

is isomorphic, as a representation of the group ( p ) ,  to the regular representation. 
Since A3 = T3/J3 is of dimension 10, it follows that dim(J3) = 17. But J3 is the sum 
of the two 9-dimensional spaces T1J2 and J2T~. Hence these spaces intersect in a 
1-dimensional space. That space contains the element 

X f ,  + Yf2 4" Zf3 = f , X  + f 2 Y  + f3Z,  
which is fixed by p. It follows that the trivial representation of ( p )  occurs with 
multiplicity 3 + 3 - 1 = 5 in J3, and therefore with multiplicity 9 - 5 = 4 in A3. On 
the other hand, it occurs only 3 times in B3, by Proposition 2.5 applied to the 
(p)- t r ip le  (E, a, L~a), because the descent of 5¢ to E/ (a  ~) is of degree 1. Since 
B3 = A3/kg, it follows that g is fixed by p. 

Suppose that d = 4. As in [13] there is a basis {xo .... , x3} for A1 such that the 
defining equations of E are linear combinations of the x~. Hence, the vertices 
eo,... ,  e3 of the 4 quadric cones containing E are defined by the vanishing of three of 

P ~ 2 the xi. Since ej = ej each xj is a p-eigenvector. Since p2 1, each x~ s A2 is 
p-invariant. Since the central elements gz and g2 are linear combinations of the x2's 
[13] they are also p-invariant. [] 

Remarks. (1) According to [2, 10.17], the central element for the 3-dimensional 
case, when the generators and relations are as in the proof of (3.4), is 

g = (C 3 -- b3)(cy 3 - axyz) + (c 3 -- a3)(byxz - cx3), 
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which is obviously fixed by p. But checking that  this element is central (and not  0) 
seems not  so easy. 

(2) Actually the p roo f  of  (3.4) makes  no use of the fact that  o- is of  finite order, or  
of  the relat ion p = a s between p and a, except to deduce that  p is a translation. 
Hence we have really shown when d = 3 that  g is fixed by every a u t o m o r p h i s m  of 
A which induces on E a translation,  that  is, by the elements of the Heisenberg 
group  of order  27 generated by the two au tomorph i sms  (x, y, z) ~ (x, (y, (2z)  and 
(x, y,z)--> (y, z, x). 

L E M M A  3.5. Suppose that fla. Let  0 ~ x e B(E, a, 5f)1 be good, and choose p 
such that x ° = x. Then there exists u ~ As which is p-normalizing in A, and is o f  the 
form 

U = X s 71- 2 CJ x s - ja  
l<j<~ 

with each cj ~ k [ g l , . . . ,  gm]aj. 
We  remind the reader that we always take account o f  the original degrees o f  

elements: for  example, g~ ~ k [g l  .... , g,,],j. 
Proof. Write J = = ( g l  . . . .  ,gin), whence B = A/J.  Since gl . . . .  ,g,~ is a regular 

sequence, for all l~> 1, j~ / j z+l  is a free B-module  with basis the monomia l s  in 
gl . . . .  ,gm of degree al. 

By (2.13) x s is p-normal iz ing in B. Hence  for all y ~ A, xSy - yPx s e J. Passing to 
the image in j / j 2 ,  viewed as a B-module  with basis {gl . . . . .  g~}, we may  write 
xSy - yPx s = ]~ l<i<m~t i ( y )g i  for unique elements ~q(y) ~ B. 

If  y s A, write )7 for the image of y in B. Claim: The maps  6i: B ~ B defined by 
6i(Y) = ~,~(y) are p-der ivat ions of degree s -  a, with the p roper ty  that  6i (x )= O. 

Proof: To see that  6~ is well-defined, suppose that  37 = #. Thus w - y = E~ a~g~ for 
some a i e  A. Therefore xS(w - y) - (w - y)°xS = Zi(xSai - a'2xS)gi ~ j 2  where we 
have used the p- invar iance  of the gi. I t  follows that  0~(w - y) = 0 for all i whence 
6~(#) = 6~(37). A s t ra ightforward calculation shows that  6~ is a p-derivation.  Since x 
commutes  with x s, we have 6~(x) = 0 for all i. This proves  the claim. 

Hence  by (3.3) with I = s - a, 6~ is an inner p-der ivat ion by c~ix s-a for some cq ~ k. 
Therefore if we define cl = - Zl<~<m c(ig~ ~ k [g l , . . . ,  gm], we obtain (x s + c lxS-" )y  - 
yP(x s j_ c l xS -a )  E j 2  for all y e A. 

N o w  we proceed by induct ion in the same fashion, using the fact that  each 
j t / j t + l  is a free B-module  with basis the monomia l s  in gl . . . . .  g,, of degree la. At 
this stage, one obtains  p-der ivat ions  of  B of degree s - la. However ,  if s - la <~ 0 
such a derivat ion is zero by (3.3a), so eventually we obta in  an element u of the 
prescribed form such that  u y -  yPu ~ jm for all m >> 0, and hence uy = y°u as 
desired. This completes  the p roof  of  the lemma. [ ]  

L E M M A  3.6. Let  R be an N-graded k-algebra, and g l , . . . ,  gm a regular sequence of  
homogeneous central elements o f  positive degree. Set R == R / (g l ,  ..., gin). Let  Z be a 
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graded subalgebra of Z (R)  and let Z be its image in R. Suppose that Z = Z(R). 
Then 

(a) Z(R)  = Z[gl , . . . ,gm];  
(b) / f /~ is finite over its center, R is finite over its center; 
(c) Z(R)c~(glR + . . -+ g,,R) = g lZ (R)  + ... + gmZ(R). 

Proof. If (a) is true for m = 1, then repeated application of (a) establishes its truth 
for m > 1. The same comment applies to (b). Hence to prove (a) and (b) we assume 
that we have a single regular homogeneous central element g of degree d > 0. 

(a) We show by induction on i that Z(R)i c Z[g]i .  This is true for i = 0. Let i > 0 
and let a~Z(R) i .  Since Z ( R ) c  Z ( I ~ ) c  Z there is an element z ~ Zi such that 
a = z + bg for some b ~ R,_a. Now a - z -- bg ~ Z(R)  and hence b ~ Z(R)  as g is not 
a zero-divisor. Since deg(b) < i, we have b ~ Z[g]  by the induction hypothesis. Thus 
a = z + bg ~ Z[g]  as was to be shown. 

(b) Suppose that the images of {a~J i ~ I } generate/~ over its center. Without loss 
of generality we may suppose that all the ai are homogeneous. Let f 6  Rj. We shall 
show by induction on j that f is in EiZ(R)ai. Write f =  E, ziai + ab with zl ~ Z(R)  
and b 6 Rj_~. The result follows from the induction hypothesis applied to b. 

(c) We proceed by induction on m. If m = 1 and gla ~ Z(R), then certainly 
a ~ Z(R) since gl is regular. Suppose that (c) is true for m - 1. 

Let ai ~ R be such that Zigia~ ~ Z(R). Let q~: R ~ R /g IR  be the natural map. Since 

¢(gl  )¢(a~) ~ Z(R/g~ R ) 
i = 2  

the induction hypothesis applied to R / g l R  + ... + gmR as a quotient of R/gIR  gives 

i = 2  i = 2  

for some b, ~ R such that ~o(bl) ~ Z(R/glR) .  However, by (a) 

Z(R/g~R) = ~o(Z)[-q~(g2),..., q~(g,,)]. 

Hence, there exist elements ci~ Z[g~, . . . ,  g,,] and di e R such that bi = c, + gldi. It 
follows that 

9,a, = ~ gi(c, + gad, )mod(g,R) ,  
i = 2  i = 2  

whence 

g~a~ = ~ g~c, + gl u 
i = l  i = 2  

for some u ~ R. Since c, ~ Z(R)  it follows from the regularity of gl that u ~ Z(R)  also. 
Hence, Zi gia~ ~ g~ Z(R ) + ... + g,~Z(R ) as required. []  
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We emphasize that there are two cases in the next theorem, namely r = a and 
r = 1, the second of which gives generators for Z(A) .  

T H E O R E M  3.7. Let  A be either the 3-dimensional or 4-dimensional Sklyanin algebra. 
Suppose that r[a. Let x l  . . . .  ,Xd be a good basis for  A I .  Then Z ( A ( r ) )  = 
k[ul  . . . .  , ud]~")[91,..., gin] where 

(a) each ui is o f  the form 

ui = x~ + F, cqx~ - jr  
i ~<~ 

for  some clj ~ k [ g l  . . . . .  9m]o; 
(b) I f  x f  = ( - i x  then ui is (2¢op)-normalizin9 in A; 
(c) A is a finite module over its center. 

Proof. (a) (b) Since xi is (2~ ° p)-invariant, (3.5) yields elements ui of the prescribed 
form which are (2~o p)-normalizing in A. Set Z = k[ul  .... , u~] (~) and R = A (*). Since 
r ta each g: ~ R. Under the natural map A ~ B the image of R is B ~) and the image of 
Z is Z ( B  ~)) by (2.13). Since 

B (~) = A~)/A(~)m(Agl  + ... + Ag,~) = R / R g l  + ... + Rgm 

we may apply (3.6a) to conclude that Z ( R )  = Z [ g ~ , . . . ,  g,,] as required. 
(c) This follows from (3.6b) and (2.3) in the case r = 1. []  

Notation. Recall that b = gcd(a,n). After (4.2) we will reserve the notation 
ua,. . . ,  Ud for the elements of degree n/b which are obtained in (3.7) when r = b, and 
will use the notation z~ for the u~ obtained in (3.7) when r = 1. Thus 

Z ( A )  = k[z i  . . . .  , Zd] [gi . . . . .  9m] 

and if b = 1 then ui = zi. We will show in (4.6) that we may take zi = u~ in general: 
we can't do this yet since we don't know that b b U~ ....  , Ue are linearly independent. 

4. The Relations in Z(A) and Z(A (~)) 

From now on we dispense with generalities and restrict our attention to the Sklyanin 
algebras. 

Given Theorem 3.7, the first step towards obtaining defining relations for Z(A)  
and Z(A  ~b)) is to determine defining relations for k[ul  . . . .  ,u~]. We do this by 
simultaneously giving a more funetorial description of k[u l , . . . ,  ud]. We will show it 
is isomorphic to a twist of a polynomial ring, and using the isomorphism in (4.1), this 
twisted ring has a good description in terms of the original data (E, a, A°). 

P R O P O S I T I O N  4.1. Consider a triple (Pn,~r,(9(1)). Let  w: (9(I) ~ ~." (9(1) be an 
isomorphism, and let 0 ~ Aut B(P n, 1, (9(1)) be determined by (a, w) c Aut(P", 1, (9(1)). 
Then the identity map B ( P  n, 1, (9(1))1 ~B(P~,tr,(9(1))I extends to an algebra iso- 
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morphism 

go: B(P',  1, (9(1)) 0 - ~  B(P", a, (9(1)). 

I f ( r "  = 1 then w may be chosen such that O m = 1. 
Proof. Since B(P', 1, (9(1)) is a polynomial ring, its twist B(P", 1, (9(1)) o is gener- 

ated in degree 1 and its ideal of relations is generated by the relations of degree 2 
[17]. If x, y ~ B(P n, 1, (9(1)) o then 

x o ,  y = xOyO = yOxO = yO, x. 

Letting x and y run through a basis for B(P',  1,(9(1)) we obtain (,-~1) linearly 
independent relations of the form x ° ® y -  yO® x. Hence, these are defining rela- 
tions for B(n z',  1, (9(1)) °. 

Notice that (a, w) ~ Aut(P", a, (9(1)) also, and as such it determines p c  
Aut B(P", (r, (9(1)). Furthermore, p and 0 agree on 

B(P", 1, (9(1)) 0 = H°(P ", (9(1)) = B(P", a, (9(1))1 

since 

O(x) = w(x ~) = p(x)  for x ~ H°(P ", (9(1)). 

By (2.2a), if x, y ~ B(B z',  a, (9(1))1 then xPy = yPx so the identity map does indeed 
extend to an algebra homomorphism % Since B(P', a, (9(1)) is generated in degree 1, 
~p is surjective, and since the two rings have the same Hilbert series, go is an 
isomorphism. 

As in the discussion after (2.2) we may replace any particular w by a suitable scalar 
multiple such that 0 and a have the same order. [] 

Remark. If we are in the situation considered in (2.2) then, by (2.2a) xPy = yPx for 
x, y ~ B (X ,  a, Z)s. Hence the subalgebra of B(X,  a, Z )  (S) generated by the elements 
of degree s is a quotient of a twist of a polynomial ring. 

Define P' = P(H°(E /G ', Z')*)  ~ pa-1 and let j: E / G ' ~  P' be the inclusion. Then 
£f '  =j*(gp,(1) and we can make the identification 

H°(W, (9(1)) = H ° ( E / G  ', Y ' )  = B(E/G' ,  a ~, 5f')~'. 

The resulting action of p on H°(P ', (9(1)) induces an automorphism p of P' which 
extends the automorphism a S on E'. Let w: j*(9(1) ~ Z '  be the natural isomorphism. 
Then (j, w): (E/G',  a ~, Lf ')  ~ (P', #, (9(1)) is a morphism of triples, so determines an 
algebra homomorphism 

a: B(P', u, (90)) ~ B(E/G' ,  a ~, Z ' ) .  

PROPOSITION 4.2. Ident~v B ( E / G ' , ( V , ~ ' )  with B(E,(r, Ze) (°~' as in (2.6). Let  
fl: k [ u l , . . . ,  ud] ~ B(E/G' ,  a S, of , )  be the restriction o f  the surjection A ~ B. There is a 
unique surjective algebra homomorphism 

7: B(P', #, (9(1)) ~ k[ul  . . . . .  ud] 

such that ~ = fl o 7- 
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Proof. Suppose that the good basis x l , . . . ,  xa for B(E, tr, 50)1 satisfies xf  = (~-~xi. 
By (3.7b) ui is (k¢, o p)-normalizing, and therefore (k~, o p)-invariant. It follows that 
uiuj=((i(j1)Su~ui, or equivalently u~ui--u~ui. Therefore uPv=vPu for all 
u, v e k[ul .... , u ~ ] s .  

There exists d: (9(1) ~ - ~  (9(1) such that the automorphism of B(P', / , ,  (9(1)) induced 
by (d, p) agrees in degree 1 with the action of p on H°(P  ', (9(1)). Hence p extends to 
an automorphism of B(P', #, (9(1)). 

The maps c~ and fl commute with the action of p and are isomorphisms in degree 1. 
Since B(P', #, (9(1)) is generated in degree 1 and has defining relations x°y = yPx for 
x, y of degree 1, it follows that the map fl-lc~ in degree 1 extends to an algebra 
homomorphism 7. []  

Notation. Recall that b = gcd(a, n). From now on we will reserve the notation 
u~ .... , ua for the elements of degree n/b which arise in (3.7) with r = b. Thus 
Z(A <°)) = k[ul, . . . ,  Ud](")[gl ..... g,,]. Furthermore we will only use s to denote n/b and 
will no longer use r to denote n/s. We will also write E' .'= E/(a b) = El(a")  and 
E" ".= E/(a) .  We will write 5 °' for the descent of 50s to E' and will write 5 °" for the 
descent of 50, to E". We will use P '  to denote P(H°(E ', 50')*) and will use P" to denote 
P(H°(E",50")*). We will write j : E ' ~  P' and i : E " ~  P" for the two closed 
immersions. Hence, the two cases of (4.2) treat the u~ as linear forms on P', and the z~ as 
linear forms on P". The notation/~ and 0 from (4.2) will only be applied to k[u~,..., Un]. 

Suppose d = 4. We will denote the image in E' of p e E by p', and the image of 
p - (s - 1)z by p°. If p, q ~ E we will write lpq for the secant line they span, and Ip,q, 
will denote the secant line in P '  spanned by their images. The 2-torsion subgroup of 
E will be denoted by E2. The natural copy of E in P(A*) may have its identity 
located so that p~, P2, P3, P4 ~ E are coplanar if and only if their sum is zero. We will 
assume this has been done (cf. [10]). In that case, the pencil of quadrics containing E 
may be labelled Q(z), (z ~ E) so that Q(z) = w {/p~l p + q = -+ z}. The 'same' is true of 
j(E') ~ P', since if x~ vanishes at p~, P2, P3, P4 e E then u~ vanishes at their images 
p~, p~, p ; ,  p ;  s E', and these sum to zero also. 

Our next goal is to show that the map y: B(P', #, (gp.(1)) ~ k[Ul .... , ud] obtained in 
(4.2) is an isomorphism. The idea for proving this is that if k[u~,..., ua] were a proper 
quotient of B(P',/~, (9(1)) then its point modules would be parametrized by a proper 
subvariety of P'  and consequently its line modules would be parametrized by the 
lines lying on that subvariety. However, we will show that k[ul , . . . ,  Ud] has too many 
line modules for this to happen. The line modules for k[u~ .... , ua] will be realised as 
subspaces of line modules for A. 

BASES FOR LINE MODULES 

We begin by recalling that most line modules 
dimensional Sklyanin algebras have a nice basis. 

over the 3-dimensional and 4- 
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First let d = 4. By [10, Proposition 5.6] if p, q e E are such that p - q ~ 27/z then 
the line module M(p, q) corresponding to the secant line lpq has a basis {e~j] i, j />  0} 
such that 

(a) deg(eij) = i + j ,  
(b) Ae,[ i  + j ]  ~ M(p + (j  - i)z,q +(i - j ) z ) ,  
(c) X.eii ~ kei+l,j + kei,j+l for all X e A1, 
(d) if X e A1 then X.eij ~ ke~+a,j if and only if X(q + (i - j ) r )  = O, 
(e) if X ~ A1 then X.eij ~ keg,j+1 if and only if X(p  + (j - i)z) = O. 

All these properties follow from the existence of the short exact sequence 

0 --* M(p  + z, q - z ) [ -  1] ~ M(p, q) --* M(p) --* O. 

The element eol is chosen to be a generator of the kernel of the map M(p, q) ~ M(p). 
Now take d = 3. Although it is not stated explicitly there, the results in [5] show 

that there is a similar result for the 3-dimensional Sklyanin algebra. Suppose that 
p - q ~ 3Zz. There is a short exact sequence 

0 ~ M(p + 2z, q - z ) [ -  13 ~ M(p, q) ~ M(p) ~ O. 

The element eox is chosen to be a generator of the kernel of the map M(p, q) ~ M(p) 
and elo is chosen to be a generator of the kernel of the map M(p,q)---, M(q). 
Proceeding inductively, the line module M(p, q) corresponding to the secant line lpq 
has a basis {ei~li, j >~ 0} such that 

(a) deg(eij) = i + j ,  
(b) Aeij[i + j ]  ~ M(p + (2j - i)z,q + ( 2 i - j ) z ) ,  
(c) X.eij e kei+l,j + kei,~+l for all X E A1, 
(d) if X e A1 then X.eij ~ kei+ 1,j if and only if X(q + (2i - j ) z )  = 0, 
(e) if X e A1 then X.e,j e kei,j+ 1 if and only if X(p + (2j - i)Q = 0. 

ANNIHILATORS OF LINE MODULES 

For  the 4-dimensional Sklyanin algebra, there is for each z ~ E an element 
~')(Z) E P(kg 1 "k k•2) with the property that f~(z) annihilates all line modules M(p, q) 
for which p + q = z[10, §6]. Moreover, fl(z) = f ~ ( - z  - 2z) and there are no other 
equalities. 

P R O P O S I T I O N  4.3 [1], [14]. Let A be either the 3-dimensional or 4-dimensional 
Sklyanin algebra. Then 

dim HOmA(M(p - sz, q - sz), M(p, q)[s]) = 2, 

and, if p - q ~ a 7 / z ,  any submodule of M(p,q)[s] which is isomorphic to 
M(p - sz, q - sz) is generated by a linear combination of Cos and eso. 
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Proof .  Although the result holds for all p, q ~ E (and is proved in this generality in 
[1] and [14]) we only need it in the case p - q 6 aT/r and, therefore, give a proof  for 
that special case. 

We first prove this for the 4-dimensional Sklyanin algebra. Because line modules 
are critical, a nonzero map between line modules is injective, so it suffices to look for 
suitable submodules of M ( p ,  q). It is clear that eos and es0 both generate submodules 
of M ( p ,  q) isomorphic to M ( p  - s t ,  q - s T ) I -  s]. Therefore, to prove the lemma it 
suffices to prove that the only other elements generating such a submodule, are 
21eo~ + 22e~o for 21, 22 ~ k. 

Suppose this is not the case. Then there exists 0 # e e M ( p ,  q)~ of the form 

e = O~ieij -t- ~ i + l e i + l , j - 1  -~- " "  -~ ~ i + m e i + m , j - m ,  

where 

~ i~ i+ , , #0  and 0 < i < s - m ~ < s ,  

with the property that 

A e  ~- M ( p  - sv, q - s z ) [ -  s]. 

Let u, v E A 1  be such that ~ ( u , v )  = lp_~,q_~.  Thus, u ' e  = v . e  = 0. Since u . e  = 0, 
the component  of u.e~j  in kei , j+l  is zero, and the component  of u ' e i+m, j -m  in 
ke~+,~ + ~d-,~ is also zero. It follows from the previous remark that 

u(q + (i - - j ) v )  = u(p  + ( j  --  m - -  i - -  rn)z) = O. 

The same argument applies to v. Since i + j = s, it follows that 

{q + (2i - s)~, p + (s - 2i - 2m)~} c lp_~,q_~,. 

The hypothesis that p - q 6 277z forces 

q + ( 2 i - s ) r = q - s r  and p + ( s - 2 i - 2 m ) r = p - s r .  

Thus, 2it = 2mr = 0. But this is impossible since 0 < i < s - m. Hence, there is no 
such e. 

Now we prove this for the 3-dimensional Sklyanin algebra, under the hypothesis 
that p - q ¢ 3Zr. The proof  proceeds as for the 4-dimensional case, except that now 
the line lp_s~,q_s~ is defined by a single linear form, say v, satisfying 

v(q + (2i - - j ) z )  = v (p  + (2j -- 2m -- i -- m)~) = 0. 

Since i + j = s, it follows that 

{q + (3i - s)z, p + (2s - 3i - 3rn)z} c /p_~ ,q_~ .  

However, there are three points of E lying on this line, the third being 
- ( p  + q - 2sz). The hypothesis that 

p - q 6 3 Z z  and O < i < s - m  



Therefore, Au~eoo is 
critical, so Auieoo ~- 
By induction (using 
module of M(p, q). 
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forces 

q + (3i - s)z = p + (2s - 3i - 3m)z = - (p + q - 2sz). 

But this also contradicts the hypothesis that p - q  ~ 3Zz. Again we conclude that 
there can be no such e. []  

P R O P O S I T I O N  4.4. Let A be either the 3-dimensional or 4-dimensional SkIyanin 
algebra. 

(a) Let M(p) be the point module for A corresponding to p ~ E. Then M(p)  (~) is the 
point module for k[ul ..... ua] corresponding to p°, the image of p -  ( s -  1)z in 
g'. 

(b) Let M(p,q)  be a line module with p - q C a Z z .  Then Oi.j>~okei~.j~ is a 
k[ul , . . . ,  ua]-module, and as such is isomorphic to the line module corresponding 
to the secant line Ipoqo through p° and q°, the images of p -  ( s -  1)z and 
q - (s - 1)r in E'. 

Pro@ (a) To show that M(p) I~) is a cyclic k[ul, . . . ,  ud]-module, it is enough to 
show that M(p)~ c k[ul .....  ua]~'M(p)o and proceed by induction. If this is 
not the case, then ui 'M(p)o = 0 for all i. But the action of ui on M(p) is the 
same as the action of its image in B, namely x~. Thus xS 'M(p)o = 0, whence 
xi(p - (s - 1)z)...xi(p) = 0. Hence, ui(p °) = 0 for all i, which contradicts the fact that 
the u~ span the global sections of the very ample 2" .  Hence M(p) (~) is cyclic. 

Recall that if b • Bi then b" M(p)o = 0 if and only if b(p ~-~'-~) -- 0. Hence, M(p)o 
is killed by those elements of k[ul .... , ud], vanishing at p - (s - 1)~, as required. 

(b) Suppose that Au,eoo is nonzero. Recall that u~ is (2~ o p)-normalizing for some 
( e k. If x • A1 then xuieoo = ( -  luixO-~eoo. Hence, x" uieoo = 0 if 

0 = x ~ - % ~ )  = x( l~_~,~_ . ) .  

a quotient of M ( p -  sz, q -  s z ) [ - s ] .  But line modules are 
M (p  - sz, q - s r ) [ -  s]. Therefore uieoo ~ keo~ + ke,o by (4.3). 
the comments before (4.3))Oij>~okei,,j, is a k[ul , . . . ,ua] sub- 

To prove it is cyclic, we first show that eo~,e~o E k[ul .... ,ua] 'eoo.  Since 
p - q  ~ aF_z, p° and q° are distinct, whence there exists u ~ k[u~ . . . . .  ud]~ such that 
u(p °) = 0 but u(q °) ¢ O. Consider the point modules M(p) and M(q) which are 
quotients of M(p, q). By (a) these contain copies of M(p  °) and M(q°). The images of 
{e~s,0]i ~> 0} and of {eo,j~[j >1 0} are bases for M (p  °) and M(q°), respectively. Since 
u" M(p°)o = 0 and u.M(q°)o ~ 0 it follows that u'eoo is a nonzero multiple of eos. 
Thus eos• k[ul .... , ud]" eo0 and similarly for e,o. By induction it follows that ® ke~,j~ 
is a cyclic module over k[ul ..... ud] and, hence, a line module since it has the 
appropriate Hilbert series. By (a) M(p  °) and M(q °) are quotients of this line module, 
so it corresponds to Ipoqo. [] 
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Remark. The aesthetically unpleasing result in (4.4a), that the point module 
M(p) (~) for k[ul , . . . ,  ua] corresponds to p ' - ( s -  1)~', rather than to p', is a con- 
sequence of the fact that our definition of B (and, hence, A) is better suited to right 
modules than left modules. The problem occurs for any twisted homogeneous 
coordinate ring B(X, a, 5Y) and left point module M(p): the Veronese submodule 
M(p) (") is the point module for B(X, a, •)(") ~ B(X, a m, ~m) corresponding to the 
point p~-~+~. However, if N(p) is the right point module corresponding to p, then 
N(p) (") corresponds to p also. Thus, if in (4.4a), we had worked with the right point 
module N(p), then N(p) (~) would have been the point module for k[ux .... ,Ud] 
corresponding to p'. These comments also apply to (5.11a) below. 

TWISTING 

Let R be a Y-graded k-algebra and let 0 e AUtk(R). In the introduction we defined the 
twisted algebra (R °, ,).  We will call this the right twist of R to distinguish it from the 
left twist (°R, 6)) which is defined as follows: as a graded k-vector space, °R = R, but 
the multiplication 6) is given by 

x 6) y ..= x°~y 

for x ~ °Ri, y ~ °Rj. The categories of graded left modules over R and OR are 
equivalent via the functor M ~ °M, which is defined as follows: if M is a graded left 
R-module, then °M = M as a graded k-vector space, and the action of x ~ °Ri on 
m ~ °Mj is given by 

X Q) m : ~  xOJm. 

It is worth noting that there is an algebra isomorphism cp: ° ' R ~ R  ° given 
by cp(x)= O~-i(x) for x ~ ° - ' R i .  Therefore we will apply these remarks to 
0-1B(p, ' 1, ~ , 0 ) ) .  

One may associate to a d-linear R-module M, the ( d -  1)-dimensional linear 
subspace V(Anngl(Mo)) in P(R*). It is an easy exercise to prove that, if M is a linear 
R-module, then °M is a linear °R-module, and the subspaces of P(R*)associated to 
M and °M are the same. 

I f / i s  a 0-stable ideal of R, then I is also a two-sided ideal of OR, and °R/l ~- °(R/l). 
There is a partial converse to this, in that a two-sided ideal I of °R is a left ideal of R 
because I ~ R Q Ij = OJ(R)Ij = RIj for all j. However, we are concerned with 
twisting a commutative ring, in which case the following holds. 

LEMMA 4.5. Let R = k[R1] be a commutative graded k-algebra, generated in degree 
1. Let I be a two-sided ideal of °R, and let M be a linear R-module. Then 

(a) I is an ideal of R, and 
(b) I M  = 0 if and only if I ®aM = O. 
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Proof. (a) The previous paragraph showed that I is a left ideal of R. 
(b) For all j />  0 we have OJ(I)Rj = 1 ® R~ ~ I. Therefore 

1 6) °Mj = I ® R~ ® °Mo = OJ(I)RjMo ~ IMo. 

Hence, if I M  = 0 then 1 6) °M = 0. Conversely, if 1 6) °M = 0, then 1 6) °3,10 = O, 
whence IMo = 0. However, I = IR and M = RMo so I M  = O. [] 

THEOREM 4.6. Let A be either the 3-dimensional or 4-dimensional Sklyanin algebra. 
Then 

(a) k[ul , . . . ,  ua] ~- B(P', 1, (gp,(1)) ° ~ B(P', #, (gp.(1)); 
(b) I f  we define zi = u} then Z(A) = k[zl, ..., za, gl . . . .  , g,,]. 
(c) The central elements z l, ..., za are algebraically independent. 

Proof. (a) The union of the secant lines {lp,q, ] p', q' E E'} is P'. The union of those 
for which p' ¢ q' (i.e. p - q ¢ aZz where p, q e E are preimages) is a dense subset of 
P'. By (4.4b) each of these lines corresponds to a line module for k[ul , . . . ,  Ud]. By the 
equivalence of categories and the fact that twisting preserves the variety associated to 
a linear module, a point on one of these lines corresponds to a point module for 
k[ul , . . . ,  ud]. Hence k[ul .... , ud] has point modules corresponding to a dense subset 
of P'. 

Let I be the kernel of the surjective map 7: B(P', 1, (9(1)) o ~ k[ul .... , udl in (4.2). If 
L is a point module for k[ul .... , ud] then L ~- ° - lM for some point module M over 
B(P', 1, (9(1)). But I annihilates L, so by (4.5) I (as an ideal of B(P', 1, (9(1))) 
annihilates M. Hence the point of P' corresponding to M (which is the same as the 
point corresponding to L) lies on the subvariety ~U(I). But there are point modules 
corresponding to a dense subset of P', so I = 0. 

(b) The proof of (4.2) showed that uiuj = ((i~-fl)~ujui. Since the relations for 
B(P', 1, (9(1)) o are generated by (d-~ 1) independent quadratic relations, it follows from 
(a) that these generate the ideal of relations for k[ul .... , ud]. A simple exercise using 
the Diamond Lemma shows that {u]~.. .uifI(il , . . . , id)eN a} is a basis for 
k[ul , . . . ,  ud]. In particular, the elements u~,..., u~ are linearly independent. Since the 
bth power of a ~,-normalizing element is Oh-normalizing, each u) is central in A. 
Since the image of u~ in B is x~, the result follows from (3.7). 

(c) The PBW basis for k[ul .... , ud] shows that the set of all monomials in the zi is 
linearly independent, whence the zi are algebraically independent. [] 

Notation. From now on we will write z~ = u~. Thus 

Z(A)=  k[u~ .... ,u~][gl . . . . .  g ~ ] .  

Remarks. (1) Since k[u~ .... .  Ud] is a twist of a d-dimensional polynomial ring it is a 
N6therian domain of Gelfand-Kirillov dimension d, and it is a Koszul algebra of 
global dimension d. 
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As remarked in the previous proof, k[ul .... , Ud] has defining relations of the form 
uiuj = (( i ( j  1)Sujui ' where (1 .. . . .  (d are the eigenvalues of p on B1. Since pb = 1 these 
are bth-roots of 1. In particular, if b ls, then k[ul . . . . .  ud] is commutative. If d = 3 and 
3In, these eigenvalues are the 3 distinct cube roots of 1, so (after relabelling) the 
relations are uiui+l = (~ui+~ui for i = 1, 2, 3 where ( is a primitive cube root of 1. If 
d = 4 and 2] n then the eigenvalues are 1, 1 , -  1 , -  1 (that each p-eigenspace is 
2-dimensional comes from the discussion prior to (2.9)). 

(2) Since zl .. . . .  Zd are algebraically independent it follows that the map 
B(P", 1, (gp,,(1)) ~ k[z l , . . . ,  Zd] given in (4.2) (for r = 1) is an isomorphism. 

Next we determine the defining relations of k[ul , . . . ,  Ud] [g l , ' " ,  gin]. 

Notation. Let M(p,q) be a line module for either the 3-dimensional or 4- 
dimensional Sklyanin algebra having a basis {eij} of the form described earlier. If 
m = Y~#ijeij then we define H(m):= {(i, J)[#1j # O} and call this the set of bi-degrees 
occurring in m. 

T H E O R E M  4.7. Let A be the 3-dimensional Sklyanin algebra. Then there is a relation 
in k[ul, u2, u3, g] of the form 

gS "k f3(u l ,  U2, U3) = 0 

where f3(ul, Uz, u3) is a cubic form in ul, u2, u3. In fact, if we identify B(E', It, L,e')3 with 
B(E', 1, 5e')3, as we may since #3 = 1, then f3(ul, u2, u3) is the cubic defining E' in P'. 

Proof Write U = k[ul, u:, u3]. Since d e g ( ~ ' ) =  3 the same arguments as those 
used for B(E, a, ~q') in [4] show that fl: U ~ B(P', #, (9(1)) ~ B(E', #, 5f') is injective in 
degrees s and 2s and that ker(fl) is generated by a single element of degree 3s, which 
we will label f3(ul, u2, u3). 

Thus f3 ~ U n g A  and we may write f3 = gw for some w EA3s_3. Now f3 
k[Ul, u2, u3] (") c Z(A(3)), whence w e Z(A t3)) also. Thus 

gw E gk[ul, u2, U3, g']3s--3 = Uzsg s/3 Jr- Usg 2s/3 "k- kg s. 

(If s/3 ¢ Z then the terms U2sg s/3 and Usg 2s/3 do not occur.) Hence, there exists 
f2(ul, u2, u3) e U2s and f l(ul ,  u2, u3) ~ Us and c ~ k such that 

f 3  + f 2 g  s/3 q- f l g  2s/3 -]- cO s = 0 

in A. We will show that f2 = fa = 0 and that c ¢ 0. If (3, s) = 1 this is easy: since s/3 
and 2s/3 are not integers both f2 and f~ are zero, and by the PBW basis for U, c ~ 0. 
Unfortunately the general case is more complicated. Hence in the rest of the proof we 
suppose that 3Is. This ensures that 3~ ¢ 0. 

We will consider the action of f3 + f2g s/3 + f~g2s/3 + cg~ on the generator of 
a line module. To this end, let p, q s E  be chosen with the property that 
p - q  ~ 37/z, 2p + q¢  3Zz and p + 2q ~ 3Zz. Then the line Ipq through p and q 
meets E at 3 distinct points. Notice that given any p ~ E there are infinitely many 
choices of q for which this is true (i.e. a general secant line has this property). Fix 
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a basis eij for M(p, q) of the type described earlier. Recall that Aeij[i + j ]  = 
M(p + ( 2 j -  i)T, q + (2i--j)z) and if p and q are replaced by p + ( 2 j -  i)T and 
q + (2i - j ) r  then the above hypotheses on p and q still hold. 

We will consider the bi-degrees occurring in f3eoo ,  gS/3fzeoo , g2S/3fleoo and g~eoo, 
and will exploit the fact that there must be some cancellation amongst these 
bi-degees since (f3 + fzg ~f3 + f i g  2s/3 + cgS)eoo = 0. If u e  Us = kul + ku2 + ku3, 
then 1-I(Ueoo) c {(s, 0), (0, s)} by (4.4b). Hence, 

n(f3e00) = {(3s, 0), (2s, s), (s, 2s), (0, 3s)}, 
rI(f2eoo) c {(2s 0), (s, s), (0, 2s)}, 
l-I(fleoo) c {(s, 0), ((3, s)}. 

Now consider g'eoo ~ ke3o + ke21 + ke~2 + ke3o. Since g annihilates every point 
module H(geoo) ~ {(2, 1) 2 (1, 2)} and by induction 

n ( g % )  ~ {(i,j) + c~(2, 1) + fl(1, 2) 1~ +/3 = 1}. 

More particularly, we have 

SUBLEMMA: Suppose that 3z ¢ 0, and that 

p -qq~3Zr ,  2 p + q ~ 3 2 T  and p+2q~27 /z .  

Then Fi(geoo) = {(2, 1), (1, 2)} 
Proof. Suppose this is false. For example, suppose that geoo ~ kel2. Recall the 

discussion in [14,§t] on composition factors of modules of Gelfand-Kirillov 
dimension 1. Since lpq c~ E = {p, q, r} consists of 3 distinct points, the three point 
modules M(p), M(q), M(r) are nonisomorphic irreducible objects in Proj(A). But 
these are all quotients of M(p, q) which are killed by g and, hence, are quotients of 
N,= M(p, q)/Ae~2. Therefore, these are the composition factors of N. However, 
consider the composition series N ~ Aeol/Ae12 ~ Aeoz/Ae~2 ~ O. The composition 
factors are respectively M(p), M(p + 2z ) [ -  1], M(q - 2 r ) [ -  2]. Up to isomorphism 
in Proj(A) these are M(p), M(p + 3r), M(q) from which it follows that r = p + 3~ and 
by collinearity of these points 2p + q + 3z = 0. However this possibility was ex- 
cluded, and from this contradiction the Sublemma follows. []  

The hypotheses on p and q allow us to apply the Sublemma with eli in place of Coo. 
Therefore induction shows that {(i + 2l, j + l), (i + l, j + 2/)} c l-I(fe~i). 

Suppose that (2s, 0) E I-I(f2eoo). Then 

( ~ ,  3) ~ II(o'/3f 2eoo' 

but a simple calculation shows that 

3 '  3J ~ II(f3eoo) u II(02~/3fleoo) w II(0%o). 



48 S.P. SMITH AND J. TATE 

Hence the coefficient of e2~,o in (f3 + gS/3f2 + g2"/3ft + cgS)eoo is nonzero. It 
follows that (2s, 0)~ Fl(f2eoo). Similar considerations apply to (0, 2s), from which 
we conclude that Fl(f2eoo) c {(s, s)}. In particular it follows that f :  annihilates the 
degree 0 component of M(p). But this is true for all p e E so f2M(p)  = 0 for all 
p e E, whence the image of f2 in B is zero. But fi maps U2s injectively to B so 
f 2 = 0 .  

Suppose that (s, 0) e H(fleoo). Then 

but 

7s 2s) 
-~,-~/1 e H(g2~/3f , eoo ) 

7S 2S s ° ,    eoo,  oo, 

Hence, (s,0)¢ II(fleoo). A similar argument applies to (0,s), whence f leoo = 0. It 
follows (as for f2) that fx = 0. 

Hence there is a relation of the form f3 + cg s = 0. By the PBW basis for U, c ¢ 0, 
so replacing f3 by c-l f3  gives the result. [ ]  

T H E O R E M  4.8. Let A be the 3-dimensional Sklyanin algebra. The center of A is 
Z(A)  = k[zl ,  z2, z3, g], where zl,  z2, z3 ~ A,, g ~ A3, and the ideal of relations among 
these generators is generated by a single relation of  degree 3n of the form 

f3(zl ,  z2, Z3) + gn = 0 /f(3, n) = 1, 

f3(zl, zz, z3)+  3zZg s + 3zg 2s + gn = 0 /f 3In, 

where f3 is a cubic defining i(E") ~ P", and z is a linear form on P" vanishing on the 
three images in E" of the nine inflection points of E'. 

Proof. The Hilbert series of Z(B) is that of a plane cubic but with the linear forms 
in degree n, namely 

1 - -  t 3 n  

Hz(m(t) = (1 - t") 3' 

Since Z(A)/gZ(A)  = Z(B) it follows that 

1 - -  t 3n 
HZ(A)(t) = (1 -- t3)(1 -- tn) 3" 

Since the Hilbert series of the po!ynomial ring k[Z1, Z2, Z3, G] is (1 - t")-  3(1 - t3) - 1 
it follows that the ideal of relations is generated by a single relation of degree 3n. 

Now we show that the relation of degree 3n is of the prescribed form. If (3, n) = 1, 
then this is just a restatement of (4.7) since ui = zi in that case. So suppose that 3 [n. 

Let f3 ~ k[ul, u2, U3"]3s be as in (4.7). The ul may be labelled such that ui is 
(2;, o p)-normalizing where ( is a primitive cube root of 1. Therefore, since f3 is 
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central, it must be a linear combination of Ul,U2,3 3 u 3, UlUzU3. The coefficient of 
ulu2u3 is nonzero, otherwise the images of z l , z2 ,z3  in B would be linearly 
dependent. Hence we can rewrite the relation in (4.7) as 

~uluzu 3 = z + gs 

where z ~ kzl +kzz -kkz3  and 0 ~ 2 ~ k. Raising each side to the third power and 
rearranging the terms, we obtain a relation of the form 

z 3 - I~ZlZ2Z3 + 3zZgS+ 3zg 2s + gn = O. 

Since z 3 - pzlz2z3 is in the kernel of the map k[Zl, z2, z3, g] ~ B and the image of 
this map is isomorphic to B(E", 1, Y") ,  it follows that z 3 - pzlz2z3 vanishes on E". 
Hence, there is a relation of the required form with f3 = z3 - #z~z2z3. 

Concerning the description of z, the inflection points of E '  are the points where 
one of the u~ vanishes. Their images in E" are therefore the points where some zi 
vanishes, and since z 3 - #zlzzz3 = 0 on E", these are the points where z vanishes. 
Finally, z ~a 0 since E" is a smooth elliptic curve, not a 'triangle'. []  

Since the embedding of E '  in P '  is obtained via the degree 4 line bundle ~ ' ,  there 
is a pencil of quadrics in P '  containing E'. These may be labelled as Q(z'), (z' ~ E') in 
such a way that Q(z') is the union of the secant lines {lp,q, I P' + q' = ++-z'}. 

T H E O R E M  4.9. Let A be the 4-dimensional Sklyanin algebra. In k[ul , u2, u3, u4, g l , g2 ] 
there are two relations of the form 

ri:=fi(ul ,u2,u3,u4) + hi(gl,g2 ) = 0 (i = 1,2), 

where f l, f 2 are linearly independent quadratic forms in ul, u2, u3, u4, and hi, h2 are 
degree s forms in gl and g2 having no common factor. 

Proof. Write U = k[u~,uz,u3,u4].  Since deg(Se ' )=  4 the same arguments as 
those for B(E, a, 5F) show that /~: U ~ B(P' ,  ~, (~p,(1)) ~ B(E', #, ~ ' )  is injective in 
degree s and that ker(/~) is generated by two (linearly independent) elements of degree 
2s, which we will label f i(ul,  Uz, u3, u4), (i = 1, 2). 

Since 

f i  e U(2) c Z(A (z)) and fi  e ker(fl) = g lA  + g2 A, 

it follows that f~ ~ Z(A(Z))c~(gIA(Z)+ g2A(2)). Hence, by (3.6c) applied to A (2), f i e  
g~Z(A (z)) + gzZ(A(2)) .  Since deg(fi) = 2s, it follows that 

f i 6  Usk[gl,g2]~ + k[gl ,g2]2, .  

If s is odd then fi  ~ k[gl ,  gz]2~. If s is even this is not immediately clear, so we write 
f~ = l~ml + h~ with l~ a linear form in the uj, m~ ~ k[gl,g2]~ and hi ~ k[gl ,gz]zs .  
Therefore, from now on we suppose that 2In and we will show that l~m~ = 0. 

We will consider the action of fi  - l~m~ - hi on the generator e0o of a line module. 
To this end, let p, q ~ E be chosen with the property that p - q  ~ 2Zz. Fix a 
basis e~i for M(p,q)  of the type described earlier. Recall that A e i j [ i + j ]  ~- 



50 S.P. SMITH AND J. TATE 

M ( p + ( j - - i ) z , q + ( i - - j ) z )  and if p and q are replaced by p + ( j - i ) z  and 
q + (i - j ) z  then the hypotheses on p and q above still hold. 

We will consider the bi-degrees occurring in f~'eoo, limi'eoo, and hi" eoo. Since 
(f~ - I~mi - h~)'eoo = O, there must be some cancelling amongst these bi-degrees. If 
u ~ Us = kui + kuz + ku3 + ku4, then H(ueoo) c {(s, 0), (13, s)} by (4.4b). Hence 

n( f , . eoo)  = {(2s, O),(s,s),(O,2s)} and n(t, .eoo) = {(s, 0), (0, s)}. 
Since gl and g2 annihilate the point modules M(p) for p ~ E, II(g/.eoo ) c {(1, 1)}, 
whence 

rI(h,.eoo) = {(s,s)} and l-I(m,'eoo) ~ {(L~)}. 

Since f i e  ker(fl), f i ' M ( p )  = 0 for all p e E. Thus, H(fi 'eoo) c {(s, s)}. 

SUBLEMMA. Suppose that m~ -¢: O. For a dense set of lines 

II(m,- eoo) = {(~, {)}. 

Proof. Since mie k[gl ,  92],, it is a product of s/2 linear forms in gl,  g2. Hence, we 
may write mi = O(zl)...f~(z,/2), where O(zj) annihilates precisely those line modules 
M(pl ,  ql) such that Pl + ql e {zj, - 2z - zj}, and acts faithfully on all the other line 
modules. In particular, each f~(zj) acts faithfully on a dense set of line modules. 
Hence, so does m~, and the result follows. [] 

Similarly, for a dense set of lines H(hi" eoo) = {(s, s)}. We may also prove if li ~: 0 
that for a dense set of lines H(li" eoo)= {(s, s)}. In summary, if lira i ~ 0 there is a 
dense set of lines for which 

II(f~. eoo) c ((s, s)}, n(lim," eoo)= {(~, ~)}, H(h~" e0o) = {(s, s)}. 

It follows at once that (fi - lim~ - hi)" eoo v a 0 for these lines. This is a contradiction, 
so we conclude that l~mi = O. 

To show that hi, h2 have no common factor we need a more precise description 
of them. Fix one of the relations f +  h = 0 with f e  U2~ and h ~ k[91,92]=~. Since 
f is central, Uf is a 2-sided ideal of U = B(P', 1, (9(1)) o and, hence, of B(P', 1, (9(1)) 
by (4.5a). By (4.5b), the line modules (respectively, point modules) for U/Uf  are all 
of the form °M where M is a line module (respectively, point module) for 
B(P', 1, (9(1)) which is killed by f (viewed as an element of B(P', 1, (9(1))). Since 
twisting preserves the variety associated to a linear module, the line (respectively, 
point) modules for U/Uf correspond to the lines (respectively, points) lying on the 
quadric ¢/ '(f) ~ P'. 

Since f e  k[g~, g212, it annihilates all the M(p) and, since M(p) contains a copy of 
M(p°), U/Uf  has point modules corresponding to every p°~E' .  Therefore, 
~ ( f )  ~ E', and there exists z ' e  E' such that ~ ( f ) =  Q(z'). Therefore, the line 
modules for U/Uf  are precisely the M(p', q') for p' + q' = + z'. 

Let z s E be such that no two of {~(z +jbz)lO <<.j <<. s - 1} annihilate the same 
line module. Let z' be the image o fz  in E'. Now choose 0 ¢ f e  kfa + kfz such that 
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V ( f )  = Q(z') and let f + h = 0 be the corresponding relation. We will show 
tha t  

s--1 
h = [I  f~(z +jbz). 

j=o 

Fix j and  pick p, q such that  

p + q = z + j b z  and p - q ¢ 2 Z z .  

Let  p°, q° e E '  be the images o f p  - (s - 1)r and q - (s - 1)~. Thus,  p° + q° = z'  since 
the image of 2v in E '  is zero. Therefore,  f 'M(p° ,q° )=O.  But M(p°,q °) 
embeds  in M(p,q) by (4.4b), so f annihilates M(p, q)o. Since f is central  0 = 
f .  M(p, q) = h.M(p, q). But Annkt01,021M(p, q) is generated by f~(p + q )e  k [ g l ,  gz]-  
T o  see this, first observe that  this annihi la tor  is a pr ime ideal since M(p, q) is 
critical. This  pr ime ideal is not  maximal  since M(p,q) is no t  a B-module.  Thus  
h is divisible by f~(z +jbv). Since this is true for all L h has the required 
proper ty .  

C h o o s e  z 1 ,  z 2 such that  no two of {f~(zi +jbT)10  ~<j ,G< s - 1, i = 1,2} annihilate 
the same line module.  The above a rgument  applied to zl and  z2 gives relations 
f i  + hi = 0 (i = 1, 2) such tha t  

s--1 

hi = I-[ f~(zi + jbz). 
j=o 

The  careful choice of zl and zz ensures that  hi and h2 have no c o m m o n  factor. [ ]  

T H E O R E M  4.10. Let A be the 4-dimensional Sklyanin algebra. Then Z(A)= 
k[zl,z2,z3,z4, gl,g2] and the ideal of relations is generated by two relations of 
degree 2n, both of which are of the form 

qi(zt,Zz,Z3, Z4) + hi(gl ,g2)  = 0 (i = 1,2) /f(2, n) = 1, 
qi(z~,z2,z3, z4) + l~(z~,zz, z3,z4)h,(gl,92) + hi(g~,g2) 2 = 0 (i = 1,2) / f 2 l n ,  

where qa, q2 are quadratic forms defining i(E")c P", Ii are linear forms and hi e 
k[gl, gz]2s- 

Proof. First  we show that  there are two relations of degree 2n of the prescribed 
form. If  n is odd  then s = n and z~ = u~, so the theorem is just  a res ta tement  of  (4.9). 
Suppose  tha t  n = 2s, so z~ = u z. 

We  m a y  label the u~ such tha t  Ul and  u4 are p-normaliz ing,  whereas  u2 and u3 are 
(.~_ ~ o p)-normalizing.  Thus  

Z(A) (3 k [ u  I . . . . .  U412s = ku 2 q-... q- ku ] q- kulu 4 q- ku2u 3. 

Let r = f (u l  .... ,u4)+ h(g~,gz) be any linear combina t ion  of the relat ions 
r~,= f~(u~ .... ,u4) + h~(g~,g2) occurr ing in (4.9). I f  f e ku~ + ... + ku 2, then the 
images of  Zl . . . .  ,z4 in B are linearly dependent ,  which contradicts  the fact that  
d im Z(B), = 4. Hence, f ¢  kuZl +.. .  + ku]. Therefore,  we can choose r l  and r2 such 
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that 

f l ~ u x u 4 + k u ~  + ' " + k u  2 and J ~ u 2 u a + k u ~ + . . . + k u  2. 

Consider rl .  This can be written as ulu4 = al - h i  where al e kZl + ... + kz4. 
Squaring both sides of this gives a relation 

a 2 - Z l Z 4 -  2a lh l  + h 2 = 0 

of the prescribed form with q, = a 2 - z l z , .  From r2, we obtain a similar relation 
with q2 = a 2 - z2z3 for some a2 E kz l  + ... + z4. 

It remains to show that ql and q2 are defining equations for E". The same sort of 
argument as in the proof  of Theorem 4.8 shows that ql and q2 vanish on E", so it 
suffices to show that q~ and q2 are linearly independent. If #ql + q2 = 0 for some 
0 ~ # ~ k then #al  z + a 2 = #ZxZ4 + z2z3. But this is impossible, since the left-hand 
side is a reducible element of the polynomial ring k [ z l , . . . ,  z4] whereas the right- 
hand side is irreducible. 

Consider the relations rl  and r2 as elements of the polynomial ring 
k [ Z , ,  Z2, Z3, Z4, G1, G2]. The Hilbert series of this polynomial ring is 
(1 - -  t n ) - 4 ( 1  - -  t 2 )  - 2 .  Since Z ( B )  = Z ( A ) / ( g l , g 2 ) ,  where g l , g 2  is a regular sequence, 

(1 + t") 2 
Hz(A~( t )  = 

( 1  - t " ) 2 ( 1  - t z )  2" 

By comparing these two Hilbert series, one sees that if r~, rz form a regular sequence, 
then they generate the ideal of relations for Z(A) .  Thus it suffices to prove that rl is 
irreducible. Write rl = ql + (rl - ql) where 

ql ~k[Z1,Z2, Z3,Z4] and rl - qa ~(G1,G2), 

If rl is reducible then it factors as a product of homogeneous elements, say 
rl = (x + x ' ) ( y  + y ' )  where 

x, y e k [ Z 1 , . . . , Z 4 ]  and x', y '  s (G1, G2). 

Thus, q~ = xy,  but qx is irreducible (since E" is not contained in a hyperplane) so, 
without loss of generality, x = 1. But x + x '  is homogeneous, so x + x '  e k. Therefore 
r~ is irreducible, as required. []  

P R O P O S I T I O N  4.11. Let  A be a locally f ini te  graded k-algebra which is bounded 
below, and suppose that f l . . . .  , f r  a A is a regular sequence o f  homogeneous central 
elements o f  positive degree. Define B = k [ f , , . . . ,  f~] and m = B f l  + . ' .  + B f , .  Then 

(a) A is a f ree  B-module; 
(b) HA(t) = H n ( t ) ' n a m ~ ( t ) .  

Proof. It  follows from the hypotheses that B is a polynomial ring with Hilbert 
series Hn(t) = l~x ~i~,(1 -- ta~) - 1, where di = deg(fi), and that 

HA/,~A(t) = Ha(t)II1 ~i~<,(1 -- ta0. 
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Choose a graded vector space V c A which maps isomorphically onto A/mA under 
the quotient map A ~ A/mA. The multiplication map A ®k A ~ A induces a degree 
zero map of graded B-modules ~0: B ®k V ~  A, where B ® V is given the tensor 
product grading. Since 

HB®v(t) = HB(t)HA/mA(t) = HA(t), 

q, is an isomorphism if and only if it is surjective. Define X = coker(q,). Apply- 
ing the functor (B/m) ®B - to B ®k V ~ A -~ X ~ 0 gives an exact sequence 
V ~ A /mA ~ X / m X  --* O. The definition of V ensures that X / m X  = 0. Hence, by the 
graded version of Nakayama's lemma, X = 0. []  

COROLLARY 4.12. In the 4-dimensional Sklyanin algebra, let hi, h2 be as in (4.9). 
Then k[gi ,ga] is a free k[hl, h2]-module of rank s 2, and 

(1 - t 2 s )  2 

Pro@ Since hi and h2 have no common factor they form a regular sequence on 
k[gl ,  g2]. Thus, k[gl ,  92] is a free k[hl, h2]-module by (4.11), and its rank is given 
by evaluating (1 - t 2 s ) 2 ( 1  - t2) "-2 at t = 1. [] 

P R O P O S I T I O N  4.13. Let A be either the 3-dimensional or 4-dimensional Sklyanin 
algebra. Let z l , . . . , zd  be the central elements in Theorem 4.6. Then A is a finitely 
generated k[Z l , ..., zd]-module. 

Proof. By Theorem 3.7, A is a finite Z(A)-module, so it is enough to prove that 
Z(A) is a finitely generated k[zi , . . . ,  zd]-module. This is clear in the 3-dimensional 
case because (4.8) shows that Z(A) is integral over k[zi ,  z2, z3]. In the 4-dimensional 
case, gi and 92 are integral over k[hi,  h2]-module by (4.12), and h~ and h2 are 
integral over k[z i , z2 , z3 , z4]  by (4.10), whence Z ( A ) =  k[z l , z2 ,z3 ,  z4 ,gl ,g2]  is 
finitely generated over k[zl ,  z2, z3, Z4]. []  

5. The Center of d 

Let S = Proj(Z(A)) and let d be the sheaf of (gs-algebras such that ~4(S(s)) = 
A I f - 2 ]  o for each non-zero homogeneous f e Z(A).  Let ~ denote the center of d .  
Our goat is to understand Y'. 

LEMMA 5.1. Let A be a Z-graded algebra over a field k. Suppose Z ( A ) =  
k[z~ ..... zm], with each zi being a homogeneous nonzero-divisor, of degree ni, say. Let 
b.'= gcd(nl, . . . ,  nm). Suppose A is finite over Z(A). Let S = Proj(Z(A)) and let d be 
the sheaf of (gs-algebras such that d(S(~,))= A[z~-l]o for each i. Let Lr denote the 
center of d .  Then 

Spec ~ -~ Proj(Z(A(b))). 
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Proof. Fix an i and write z = zi and n = n~. Since S is covered by the open affine 
sets S~zo, we must show that 

Z(A  [ z -  11o) = Z(A(b))[z - 11o. 

Since the degree of z -1 is divisible by b, we have A [ z - 1 ] o  = A(b)[z-1]o. Hence, 
replacing A by A (b) and dividing all degrees by b, we can assume b = 1 and A = A (b). 
Similarly, 

A [ z - 1 ] o  = A~")[z-1]o and Z ( A ) [ z - 1 ] o  = (Z(A)("))[z-1]o.  

So we must show that, if gcd(n s) = 1, then 

z ((A [ z -  1])o) = (Z(A [ z -  1]))o. 

This follows from the fact that an element y ~ A[ z  -~ ] which commutes with 
elements of degree 0 is in the center of that ring. To show that such a y commutes 
with an element x of degree d, say, it is enough to exhibit a central nonzero-divisor u 
of degree - d, for then y will commute with xu and, hence, with x. To construct u, 
write 

- d  = g i n  I + . . .  + a i n  i + . . .  q- amnm, 

"' "' .zT;". [] with as ~> 0 for j ¢ i and put u = z~ ...zi .. 

T H E O R E M  5.2. Let A be either the 3-dimensional or 4-dimensional SkIyanin algebra. 
Then 

Spec ~ - Proj(Z(A(b))) 

= Proj(k[ul ,  u2, us, u43 (") [g l ,  g2])" 
Proof. By Theorem 3.7, 

Z ( A  (b)) = k[ul ,  u2, us, u4] (n) [91, g2]. 

Again by Theorem 3.7, A is finite over 

Z ( A )  = k[z ,  . . . . .  zd, gl . . . . .  gm], 

where each gi is homogeneous of degree a, and each z~ is homogeneous of degree n. 
The result follows from (5.1). []  

Notice that 

Proj(k[ul . . . . .  u~] (")) = Proj(k[ul . . . . .  ua]) = Proj B(P ;  1, (gp,(1)) = P' .  

Therefore, the inclusion k[u~ .. . .  , ud] (") ~ Z ( A  (b)) induces a morphism Spee ~e ~ p,.  
For  d = 3, we show that this is an isomorphism and thereby give a new proof  of 
Artin's result [1] that Spee ~ ~ p2. 

T H E O R E M  5.3. I f  A is the 3-dimensional Sklyanin algebra then the natural map 
Spee~  e ~ P '  is an isomorphism, so Spee ~e ~ p2 
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Proof. For a graded commutative algebra C, Proj (C)= Proj(C ~a)) so we may 
replace a commutative ring by a Veronese subalgebra when computing its Proj. 
Hence, by (5.2) Spee ~ ~ Proj(Z(A(b))~3~)). However, Z(A(b))~3~) = k[ul ,  uz, Ua] (3") 
by (3.7) and (4.7). But 

k[u l ,u2 ,  u 3 ] ~ B ( P ; 1 , ( 9 ( 1 ) )  o and 0 3 = 1  

so k[ul,/22,/'/3] (3s) ~ B(P', 1, (9(1)) (3), from which the result follows. [] 

Spee ~%v FOR THE 4-DIMENSIONAL SKLYANIN ALGEBRA 

For the rest of this section A denotes the 4-dimensional Sklyanin algebra. Let 
f i  + hi, (i = 1, 2) be the defining relations in k[ul ,  u2, u3, u4, 91,92] described in (4.9); 
they are of degree 2s. 

LEMMA 5.4. 

(a) Z(A  (b)) = k[ul ,  u2, U3,/,/4"] (n) ®kthl,h21k[gl, g 2 ] ,  

(b) Z(A(b))[ f•  1]0 ~--" k [Ul ,  u2,/'/3, U4](n)[fi-110 @klfl,f2,f; l]ok[-gl, g2, hi- 1]0 • 

Proof. (a) Write 

R = k [h l , h z ] ,  U = k[ul ,  u2, u3, u4] and T = k[g l ,92] .  

Since f l ,  f z  ~ U (") and they form a regular sequence on U, they also form a regular 
sequence on U ("). Thus, by (4.11), U (") is a free R-module. Since multiplication gives a 
surjective map U ~") @R T --" Z(A(b)), it suffices to show that U (") @R T and Z(A  (b)) 
have the same Hilbert series. Since both U (") and T are free R-modules, 

Hv(,~®,T(t) = Hv~,~(t)HT(t)HR(t)- i 

However, Z(A(~)/(al, ge)= U("~/(fl,f2) so (using the fact that 91,92 is a regular 
sequence) 

nZ(A~b))(t)Hw(t)- 1 = Hv,, , ( t)HR(t)-  1 

The required equality of Hilbert series follows. 
(b) Fix i and write f = fi .  By (a) we have 

Z(A(b) ) [ f - l - [  = (U(n) @R T ) [ f  -1 ] = U(")[f -1] @ R t f - q T [ f - 1 ] .  

The right-hand side of this is of the form M @s N, where S = So I f ,  f -  1 ]. If n is even, 
then 

M = U("~[f -~ ] = U ( 2 S ) [ f  -1  ] = Mo[f ,  f - ' ]  = Mo @So S. 

If n is odd, then 

M = (Mo • M, ) [ f ,  f - t ]  = (Mo • M~) @so S. 
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Hence, if n is even M ®s N = Mo @So N, and if n is odd M @s N = (Mo O M,) @so N. 
However, N = @ N~ is a direct sum of So-submodules, so 

(M ®s N)o = Mo ®so No if n is even 

and 

(M ®s N)o = (Mo @So No) @ (M, @So N_,)  if n is odd. 

However, N_,-= 0 if n is odd, so in both cases (M ®sN)o = Mo ®so No • This 
proves (b). [] 

The tensor product decomposition in (5.4b) leads to a fiber product decomposition 
of a Zariski dense open subset of Spee Y'. To describe this, we first define the 
following varieties 

S = Proj(k[91, g2]), 
S' = Proj(k[/1, f2]) = Proj(k[hl, h2]). 

Both P'  and Spec ~ contain copies of E', namely 

U ( f l ,  f2) = Prqi(k[ul, uz, us, u , ] / ( f  l, fz))  ~- E' 

and 

U(g l ,  g2) = Proj(k[ul, u2, Us, u4](n)rgl, g2]/(gl, g2)) ~ E'. 

The next proposition describes the relation between these varieties. 

PROPOSITION 5.5. 

(a) There is a commutative diagram as follows (with the two vertical maps defined on 
the complement of the copies of E' in Spee ~e and P'): 

SpecY" ~; P'  
l0 10' 
S O ~ S '  

(b) The morphism • maps E' c Spec ~e isomorphically onto E' c P'. 
(c) (Spee ~ ) \ E '  ~ (P ' \E ' )  Xs, S. 

Proof. (a) The maps in the diagram all arise from the obvious inclusions of the 
corresponding subalgebras of Z(Atb)). For example n is induced by the inclusion 
k[ul, u2, u3, u4] (") c Z(A(b)). 

(b) This is clear. 
(c) Since P ' \ E '  is covered by the two open affine sets f i ¢  O, (Spee~) \E '  is 

covered by the two open affine sets Spec(Z(A(b))[f7l]o). By (5.4b) this ring 
decomposes as a suitable tensor product, thus giving the result. [] 
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To describe Spee ~e in more detail we need to understand the map 0: S--+ S', 
which requires a precise description of the relations f~ + h~ occurring in (4.9). An 
explicit description of 0 is given in Lemma 5.8. 

LEMMA 5.6. The map E ~ P(k91 + k92) defined by z ~ ~(z) is a morphism. 
Pro@ Fix p e E. Write Ra c RB c A1 ® A1 for the spaces of relations for A and 

B, respectively. The map z ~ f~(z) may be described as a composition of simpler 
maps as follows. First take z ~ z -  p. Secondly, let ku + kv ~ A~ be the space of 
linear forms vanishing on the secant line lp,z-r Thus, ku + kv is an element of the 
Grassmanian G(2, A1). We may also describe ku + kv as the orthogonal to the secant 
line lv,z_p, which makes it clear that the map z - p - - - ,  ku + kv is a morphism 
E ~ G(2, A1). By [10, §4] dim((Ai ® (ku + kv)) c~ R~) = 2, so next we send ku + kv to 
this 2-dimensional subspace of RR. Again by [10, §4], this subspace of RB has a 
1-dimensional image in Rn/RA. This may be considered as a point of P(kgl + kg2), 
and as such it annihilates A/Au + Av ~- M(p, z - p). Hence, it is f~(z). Thus, we have 
written z ~ f~(z) as a composition of maps 

E -* E ~ G(2, A1) - -~  G(2, RB) -* P(RA/RB) = P(kg~ + kg2), 

where the maps G(2, A1)--* G(2, R B ) ~  [P(RA/RB) are only defined on the image of 
the previous map. It is clear that each individual map is a morphism, hence so is their 
composition. []  

LEMMA 5.7. I f  z' ~ E' let Q(z') c p'  denote the quadric containing E' which is the 
union of the secant lines lp, ~,__v, for p' ~ E'. Let r 1 and r2 be a basis for the defin- 
ing relations of k[ut, u2, u3, u4, gt, g2]. There is a morphism r: E' ~ P(krl + kr2) 
such that r ( p ' ) = f p ,  + hv,, where fp, e k[ul,u2,u3, u4]2s vanishes on Q(p'), and 
hv, ~ k[gl ,  g212s is a nonzero scalar multiple of 

s - 1  

-[1 f~(P) = 1-I f~(P + ibz). 
p E E is a pre image of p" i = 0 

The morphism r is of degree 2 and r(p') = r(q') if and only if p' = +_ q'. 
Proof. It is already clear from the proof of (4.9) that there is a map 

r: E' ~ P(krl + kr2) such that r(p') = fp, + hp,, where fp, ~ k[ul . . . . .  u412s vanishes 
on Q(p') and hp, is some element in k[gl,g212s. Since the map p ' ~ k f p ,  e 
P(kfl  + kf2) is a morphism, it tbllows that r is a morphism. Furthermore, for a dense 
set ofp', (4.9) shows that hp, is a scalar multiple of f~(p)f~(p + bz)...f~(p + (s - 1)br), 
where p s E is a preimage of p'. Since the map p ~ f~(p) is a morphism it follows that 
hp, is a scalar multiple of ~(p)f~(p + bz)...f~(p + (s - 1)bz) for all p'. [--t 
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LEMMA 5.8. 

(a) There is a commutative diagram 

S. P. SMITH AND J. TATE 

E . , )  g ! 

t 1 
S O ~ S '  

where ~ is the map in (5.5a), E ~ E' is the natural isogeny, E ' -*  S' is the 
quotient map for the Z2 action p' ~ - p' and E ~ S is the quotient mapJor the 
Z2-action p ~ - (p + 2z) on E. 

(b) Denote the image of p s E in S by [p] ,  and the image of p' e E' in S' by [p']. 
Then 

[P] = Proj(k[gl,g2]/(g'~(p))) and [p ' ]  = O([P]) = Proj(k[hl,h2]/(hp,)). 

(c) The map • is of degree s, and its ram~cation locus is the 2s - 2 points in 

{[o) + iz] ~ Slco~ E2,0 <~ i <~ s -  2} 

which is the image of (E2 + Zz)k(E2 - z). The ramification index is 2 at each 
point. 

Proof. The projective lines 

P(kgl + kg2) and S = Proj(k[gl ,g~])  

are dual to one another. The composition E ~ P(kgl + kg2) ~ S, where the second 
map is the isomorphism sending a line to its orthogonal, is a morphism by (5.6). Its 
fibers are the 7/2-orbits, so it is the quotient morphism. By (5.7) the fibers of the 
composition 

E'  ~ P(khx + kh2) ~ S' = Proj(k[hl,  h2]), 

defined by p' ~ hp, ~ Y/~(hp,), are the sets {p', - p'}, so this is the quotient map for 
the Z2-action. Since 0 is induced by the inclusion k[hl ,h2] ~ k[g~,g2],  the 
commutativity of the diagram follows from the fact that fl(p) divides hp,. This proves 
(a) and (b). 

The map S ~ S' is of degree s because both vertical maps are of degree 2 and the 
isogeny is of degree s. The map E' ~ S' is ramified precisely at the 4 points of (E')2, 
the 2-torsion subgroup of E'. Since E ~ E'  is 6tale of degree s, the composition 
E ~ E' ~ S' is ramified, with ramification indices 2, at the 4s points lying over (E')2. 
This set is E2 + Zz. Since E ~ S is ramified precisely at the 4 points of E2 - r, it 
follows that the ramification locus of S ~ S' is the image in S of ( E  2 --~ Z / z ' ) \ ( E  2 - z'). 
Since there are 4s points in E2 + Zz, this image consists of !(4s - 4) = 2s - 2 
points. [] 
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Let p ~ E and write p' for its image in E'. Denote by W(p) the closure of the fiber 
0-1( [p] ) ,  and by Q(p') the closure of the fiber 0 ' -1(¢([p])) .  Thus z~: SI~C ~ ~ P '  
maps W(p)isomorphicatly onto Q(p'). Since 

Q(p') = u { l q , , , l q ' r ' ~ E ; q ' + r ' = p ' }  

is a quadric in P '  containing E'  we will also refer to W(p) as a quadric. Since Q(p') is 
singular exactly when 2p' = 0, W(p) is singular exactly when p e E2 + Zz. By (5.8c) 
the image of (E2 + Zz)\(Ez - z) in S consists of 2(s - 1) points. Since the rami- 
fication locus of E ~ S  is E z - z ,  the image of E 2 + Z z  in S consists of 
2(s - 1) + 4 = 2s + 2 points. Thus, exactly 2s + 2 of the quadrics W(p) are singular. 

T H E O R E M  5.9. 

(a) The map re: Spee ~ ~ P '  is a flat morphism of degree s. 
(b) The ramification locus of z~ is the union of the 2s - 2 singular quadrics 

U w(co + 
o~E2,O<~i<<.s- 2 

Proof. (a) We must show for each y e Spec Lr that the scheme theoretic fiber 
re-ire(y) is the Spec of an s-dimensional k-algebra. The inclusion {To(y)} c P '  
corresponds to a surjective map of graded algebras k[ul, u2, u3, u4] ("~ ~ k[z], where 
deg(z) = n, i.e. {re(y)} = Proj(k[z]). Hence r c - l ~ ( y ) =  Proj(k[z, gl, g2]), where the 
defining relations for k[z, g~, g2] are obtained by evaluating the relations for Z(A (b~) 
at y. Set w = z if n is even, and w = z 2 if n is odd. Thus deg(w)= 2s and 
k[Z, g l ,  g2] (2s) = k[W, gl ,  g2] (2s)" 

By (4.9) k[w, g~, g2] is the quotient of the polynomial ring C = k[W, G1, G2] by 
the ideal (rl, r2) where ri ,= eiW + hi(Gt, G2), (i ---= 1, 2) for some cq, ~2 e k. Since hi 
and h2 are without common factor in k[G1, G2], the relations rl and r2 are without 
common factor in k[W, GI, G2]. Hence, r~ and r2 form a regular sequence in C, and 
it follows that the Hitbert series of k[w, g~, g2] is 

(t - t2~)2Hc(t) = (1 + t 2 + ... + t2(~-1))(1 - -  t 2 )  - 1 ,  

i.e. the dimensions are 1, 0, 2, 0, 3, 0 , . . . ,  s - 1, 0, s, 0, s, 0 .... so 

dim(k[w, gl, g2] [w- 1 ]o) = s 

as required. 
(b) By (5.5c) the map n:(Spee ~ ) \ E '  -o P'kE' is obtained from ¢: S ~ S' by base 

extension. Standard results imply that n is ramified at y if and only if ¢ is ramified at 
O(y). Hence, by (5.8), n is ramified at y • (Spec ~ ) \ E '  if and only if y e W(co + iz) for 
some co e E2 and some 0 ~<i~< s -  2. Now each W(p) contains E', and since the 
ramification locus is closed, the result follows. [ ]  

P R O P O S I T I O N  5.10. Spee ~A e is a normal variety. 
Proof. The following short proof was pointed out to us by M. Artin. By [15] A is 

a maximal order in Fract(A). Two easy exercises show that if z is a central 
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homogeneous element then A[z -1] and A[z-1]o are maximal orders. Hence, the 
center of A[z-11o is integrally closed. Therefore Slme ~ is normal, being a union of 
open affine sets, each of which is normal. [] 

The proof of (5.10) shows that d is a sheaf of maximal orders over Spee 5 e. The 
next result describes the points of Spee ~ where d is Azumaya. 

First we need to know the fat points of A. A fat point of A is an isomorphism 
class of a l-critical graded A-module in the category Proj(A). More details may be 
found in [ t ] ,  but we warn the reader that, in contrast to [1], we do not insist that 
a fat point be of multiplicity > 1. Thus, each point module gives a fat point. Each 
fat point is represented by a graded A-module which is generated in degree zero 
and has constant Hilbert series. Such a representative is unique up to isomorphism 
of graded A-modules, and is called a fat point module (see [1], [5], [14]). By [5, 
Proposition 7.5], if z is a nonzero homogeneous central element of A, there is a 
functorial bijection between the finite-dimensional simple A[z-1]o-modules and 
the fat points for A which have no z-torsion. Under this bijection a fat point 
module F corresponds to F[z-1]0.  Moreover, the multiplicity of the fat point 
equals the dimension of the corresponding simple module. 

It is proved in [14] that A[z-1]o satisfies a polynomial identity of degree 2s. 
Therefore, by the Artin-Procesi Theorem, A [z-1 ]o is Azumaya of rank s 2 if and only 
if every simple A [z-1] 0-module is of dimension s. Since the annihilator of a fat point 
module is prime, a fat point module is supported at a unique point of Spee Y'. Strictly 
speaking, we should speak of the support of the d -modu le  o~ associated to F, which 
is defined by ~(S~,~) = F[z-1 ]0. Hence, y e Spec ~ is a non-Azumaya point for d if 
and only y is the support of a fat point module of multiplicity < s. 

The fat points for A have been classified in [14]: there is a 3-parameter family of 
fat points of multiplicity s, each p e E gives a fat point of multiplicity 1, namely the 
class of the point module M(p), and for each co e E 2 and each j = 0, 1,..., s - 2 there 
is a fat point module labelled F(o9 +.jr) which is of multiplicity j + 1. These are all 
the fat points. Hence, if s > 1, the non-Azumaya points of Spec Y" are the points 
which support either a point module M(p) or one of the F(o9 +jz). The modules 
F(o) + j r )  are defined in [14], but the only property of them which we will use is that 
there is a nonzero degree zero A-module map M(p, q) ~ F(o9 + jr) whenever p, q e E 
are such that p + q = co + j~. 

If s = 1 it follows from the above discussion that ~¢ is Azumaya at all points of 
Spec~,  and from (5.9) that ~z: Spee ~--> ~z, is an isomorphism. Therefore, for the 
remainder of the paper, we assume that s > 1, or equivalently that n # 1, 2. 

THEOREM 5.11. 

(a) Let p~E. Then the support of the point module M(p) is p ' - ( s - 1 ) z ' e  
E' c Spee ~e. 

(b) Let coe E2 and O <.j < . s - 2 .  Then the support of the fat point module 
F(e) + jz) is the singular point of W(co + jz). 
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(c) The non-Azumaya points of d in Spee ~ are the points of E' and the singular 
points of the quadrics {W(co + jz)lco e E2, 0 ~< j ~< s - 2}. In particular, the 
non-Azumaya locus is of codimension > 1 in Spec ~ .  

Proof. (a) By (4.4a) M(p) contains a copy of the point module M(p °) for 
k[u~,u2, u3,u4] where p ° =  p ' - ( s -  1)z'. Hence the support of M(p) in P '  is p°. 
Since the inclusion E'--,  P '  is the composition E ' -~  SpecY" ~ P '  and M(p) is 
supported at a single point of Spee Y', the result follows. 

(b) Let y e Spec ~ denote the support of F(co + jr). Suppose that p, q e E are such 
that p + q = co +jz  and p - q  ~ 27/r. Since there is a nonzero A-module map 
M(p, q) ~ F(co + jz), ~(co + jz) annihilates f(co + jr). Hence, y e "U(f~(co + jr)) = 
W(m +jz). Since re maps W(o) +iT) isomorphically onto Q(co' +jr')  it is enough 
to show that re(y) is a singular point of Q(co' +jT'). Notice that 2(0)' +jz') = 0, so 
this quadric is singular. 

Since the map I r : S p e c ~ - ~ P '  arises from the inclusion k[ul .... ,u4](")c 
Z(Ats)), re( y) is the support of F(co+jz) as a k[ul,u2,u3,u4](")-module. By 
(4.4b) the k[ul .... ,u4]-module generated by M(p,q)o is isomorphic to the line 
module M(p °, q°). Hence there is a nonzero k[ul,...,u4]-module homomorphism 
M(p°,q°)~F(co+jz) ,  so ~z(y) is contained in the support of M(p°,q °) as a 
k[ua,u2,ua,u4](")-module. But k[u~,...,u4] is a twist of the polynomial ring 
B(P', 1, (gp,(1)) and M(p°,q °) is the twist of the line module for B(P', 1, Oe,(1)) 
corresponding to the secant line p°q°. It follows that the support of M(p ~, q°) is p°q° 
which lies on Q(p° + qO) = Q(co, +jr'). As we vary p and q, we see that re(y) lies on 
infinitely many of the lines on Q(co' + jr'), so re(y) must be the singular point of this 
quadric. 

(c) This follows from the discussion prior to the lemma. [] 

THEOREM 5.12. The singular locus of Spec 5( is the union orE' and the vertices of 
the singular quadrics W(co + iz) for co ~ E 2 and 0 <. i <. s - 2. 

Proof. Let y e (Spec :~)\E' ~ (P'\E')  x s, S. A criterion for the singularity of a 
point in a fiber product is given in [7, Corollaire 17.13.6]. Since S' is a curve this 
criterion says that y is singular if and only if the differentials d~ and dO' vanish at 
0(y) and r~(y) respectively. This is equivalent to O(y) being ramified over S' and 
re(y) being singular on its fiber over S', which is the quadric Q(p') containing it. By 
(5.8c), and the fact that re is an isomorphism on each quadric, this is equivalent to y 
being the singular point of W(co + iz) for some c0 e E 2 and 0 ~ i <~ s - 2. 

To show that Spee ~ is singular along E'  we use a method suggested by M. 
Artin. It suffices to show that the generic point of E' is singular. But the generic 
point of E' is of codimension 2, so if its local ring were regular, then sO, which is a 
maximal order, would, be Azumaya there because the non-Azumaya locus has 
codimension > 1. But the set of points where d is Azumaya is open, so there 
would be some closed points of E'  where d is Azumaya, thus contradicting 
(5.11). [] 



62 S.P. SMITH AND J. TATE 

Remark. The fact that the singular locus and the non-Azumaya locus are 
the same holds in rather general circumstances. In [9] L. LeBruyn proves that 
if A is a positively graded, Auslander-regular algebra with the Cohen-Macaulay 
property (as our A is), and A is a finite module over a N6therian central 
subalgebra, and the non-Azumaya locus of the corresponding ~¢ is of codi- 
mension > 1, then the non-Azumaya locus coincides with the singular locus of 
Spec ~ .  

PROPOSITION 5.13. Spec ~ is a rational variety, but is not isomorphic to p3. 
Proof. We define a map ~0: Spee ~ ~ p l  x p2 on a dense open subset of Spec ~r 

as follows. The first component of ~0 is the map 0:Spee ~r ~ S, and the second 
component is the composition ?n, where ? is the projection P ' ~  p2 with center 
some point p' ~E'.  Since p' is in Q(q') for each q'~ E', ? gives a birational 
isomorphism Q(q') ~ p2. Hence for each q ~ E, ?n gives a birational isomorphism 
W(q) ~ P 2. It follows that cp is injective, and hence an isomorphism on its domain of 
definition. 

Since Spee ~ is singular, it is certainly not isomorphic to P 3 []  
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