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Abstract. Let 4 = A(E, ©) denote either the 3-dimensional or 4-dimensional Sklyanin algebra associated
to an elliptic curve E and a point te E. Assume that the base field is algebraically closed, and that its
characteristic does not divide the dimension of 4. It is known that A is a finite module over its center if
and only if 7 is of finite order. Generators and defining relations for the center Z(4) are given. If
S = Proj(Z(4)) and & is the sheaf of Us-algebras defined by (S} = A[f "' ], then the center Z of o/
is described. For example, for the 3-dimensional Sklyanin algebra we obtain a new proofl of M. Artin’s
result that Spec &  P?. However, for the 4-dimensional Sklyanin algebra there is not such a simple
result: although Spec Z is rational and normal, it is singular. We describe its singular locus, which is also
the non-Azumaya locus of o7,
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1. Introduction

Let k be an algebraically closed field, E an elliptic curve over k, and 7€ E. For each
integer d > 3, the d-dimensional Sklyanin algebra A,(E,t) is a graded k-algebra
determined up to isomorphism by that data: it is a Noetherian domain, generated
by d elements of degree 1, and has the same Hilbert series as the polynomial ring in
d indeterminates [16]. A precise definition in the cases d = 3 and d = 4 treated in
this paper is given below. Those cases have been studied in some detail. In particular,
it is shown in [5] for d = 3, and in [14] for d = 4, that A is a finite module over its
center Z(A) if and only if 7 is of finite order. This paper gives an explicit construction
and description of Z(A) when 7 is of finite order.

After [1], it is clear that Z(A) is not the only, or even the best thing to study. One
should also study the center of the sheaf of algebras ¢, defined as follows. First
let S:= Proj(Z(A)), and for 0 # f e Z(A);, write S; = Spec(Z(A)[f o) as usual
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[8, Chapter II, §2]. Then .7 is the sheaf of Og-algebras defined by

LSy =ALf""To.

The center & of o/ is defined by Z(U) = Z(</(U)) for an open U < §; in particular
Z(S)) = Z(ALf ~']o). It is possible that & may be strictly larger than @5. Consider
the scheme Spec 2 as defined in [8, Chapter II, Ex 5.17]. When d = 3 it is proved
in [1] that Spec & = P2. In this paper we give an alternative proof of this result, and
also describe Spee & when d = 4.

DEFINITION. Fix an invertible ¢z-module % of degree d equal to either 3 or 4.
Set U = H°(E, %) and identify U ® U with H°(E x E, ¥ X1 &#). Define the shifted
diagonal

A, = {(x,x + 1) xe E}.
Ifd=3setI' =A,.If d =4 set
F'=A u{(ese)0<i<3}

where the e; are defined as follows. The image of E in P(HYE, £)*)~P3 is
contained in a pencil of quadrics, four of which are singular of rank 3: label their
four singular points ey, ..., es.

The d-dimensional Sklyanin algebra associated to (E, 7) is defined to be the quotient
of the tensor algebra

Ay(E, 7)== T(U)(R ),
where
Ry,={feUQU|f|r =0}

Our definition of these Sklyanin algebras differs from the definition of the higher
Sklyanin algebras Qu(E, t} given by Odesskii and Feigin in [12]. The relation
between the definitions is that A3(E, 1) = Qs(E, 1) and A4(E, 21) = Q4(E, 7).

Since E and t will be fixed throughout the paper, we will just write 4 for A,(E, 7).
The dependence of the algebra on & is illusory, since any two line bundies of degree
d are pullbacks of one another along suitable translations.

The study of A is facilitated by its having a quotient ring which may be studied
more directly. Let oe Aut(E) be defined by p =p+ 1, and let B= B(E, 0, ¥)
be the twisted homogeneous coordinate ring of E as defined at the beginning
of Section 2. By [4, Section 7] B is generated in degree 1, so there is a surjective
map T(U)—B. If feU® U is a relation for 4, then f(p,p°) =0 so the image
of f in B is zero. Hence there is a surjective algebra homomorphism A4 —
B(E, g, 2).

If d=23 then B(E, 0, ¥)= A/(g) where g is a homogeneous central regular
element of degree 3 in A [4, Theorem 6.8]. If d =4 then B(E, g, %) = A/, Q3)
where Q; and Q, are homogeneous central regular elements of degree 2 which
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form a regular sequence on A4 [13, Corollary 3.9]. Hence, for both d = 3 and d = 4,
we may write

AfE, 1) = k[x1,...,xq] and B(E,0, %)= ANg1,--->Gm)

where g{,...,9m, m=d—2, is a regular sequence of homogeneous central ei-
ements, all of degree a = 6 — d.

From now on assume that t (equivalently o) is of finite order n. The strategy of
the paper is to determine generators for the center of B and then lift these to
central elements in A, which together with g4,...,g, generate the center of A.
Unfortunately, matters are complicated by the fact that we also wish to study Z,
because Spec # = Proj(Z(4®)) where b = ged(a, n). Consequently, Sections 2 and 3
study Z(A®) for an arbitrary r which divides b. Actually Section 2 treats a more
general situation. It deals with an arbitrary triple (X, o, .#) with the property that ¢
is of finite order n=rs, the group generated by ¢ acts freely on X and
(0*)* ¥ = ¥. The choice of a map giving this isomorphism induces an automo-
rphism p of B(X, ¢, &) of order r and an automorphism t of B(X, g, #)® of order
n. In the Sklyanin situation p may be lifted from B(E, g, #) to A. The lifted
automorphism is still denoted by p. The restriction to E of the transpose of p on
P(A¥) coincides with ¢°. In a similar way the action of 7 linearizes 6. The center of
a twisted homogeneous coordinate ring B(X, o, #) has a precise description as a
homogeneous coordinate ring of the quotient variety X/{¢). The rth Veronese
subalgebra B(X, o, #)” is still a twisted homogeneous coordinate ring, so there is a
similar description of its center.

Applying this to the Sklyanin situation one obtains a basis xq,...,x; for
B(E, 0, #), consisting of p-eigenvectors such that Z(B®) = k[x3,...,x5]™. Fur-
thermore, k[x3,..., xj] is isomorphic to a twisted homogeneous coordinate ring of
the isogenous curve E' := E/{¢"). Of course, one does not expect the elements x} to
be central in B(E, 6, &), but they are normalizing elements. Moreover, each x{ may
be lifted to an element u;€ A, which is normalizing in 4; for example, if x; is
p-invariant then u; is p-normalizing. To show that the elements x{ may be lifted
requires a careful analysis of p-derivations of B(E, o, #). Sections 2 and 3 culmi-
nate in Theorem 3.7 which proves that

Z(A(b)):k[ul,"-5ud](n)[gl>-"7gm] and Z(A)=k[zln-"7zd][gla~"agm]

where the 4; and z; are homogeneous of degrees s:= n/b and n respectively.

Section 4 determines the defining relations for Z(A) and for Z(A®). The first step
is to obtain relations for k[uy,...,u;] by proving it is a twist of a polynomial
ring. This polynomial ring has a natural description in terms of the original
data: it is B(P', 1, Op(1)) where P’ = P(H°(E', #')*) and &' is the descent of
P=F QL ®..-® ¥ ' to E'. It is straightforward to obtain a surjective map
from the twisted polynomial ring to k[u,...,u,] because the latter has relations of
the form w;u; = a;;u;u; for suitable o;;e k. However, to show this map is an
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isomorphism one must show that k[u,,...,u,] has plenty of line modules. These
are obtained as submodules of the line modules for A. Further analysis of the
action of kfu,,...,us] on these line modules leads to defining relations for
k[us,..., 4091, ., gm] and to defining relations for Z(4).

Suppose that d = 3. Then k[u,, u,, us, g} has defining relations

Uy = (ugtiy, usuy = (Cuyus, uyuy = Cusug, ¢° + f3(u1, up, u3) =0,

where { is a cube root of 1 and f; is a homogeneous cubic defining E' < P’. The
center Z(A) = k[zy, z,, 23, g] has defining relations

222y = 2123, 2323 = Z323, 2123 = Z3Z1, F(21,23,23,9) =0,
where F is of the form

F(z1,25,23,9) =g + fa(us, up, u3), f(3,m)=1
and
F(z1, 22,23, 9)=g" + f1(z1, 22, 23)9°"> + fa(z1, 22, 23)9"° +
+ f3(21, 22, 23), if 3n,

where f; is a cubic defining the image of E” == E/{c) in a suitable P? and f, and
fi are nonzero quadratic and linear forms, respectively. We also remark that we
can, and do, arrange that z; = u}. There are analogous relations for d = 4.

Section 5 describes the structure of Spec %. When d = 3 Theorem 5.3 proves that
Spec Z = P’ = P%. This has already been proved when (3,n) =1 in [1] and [3].
When d = 4 we are unable to give such a concise description of Spec . However,
we prove that Spec & is a normal singular variety, that it is rational, and that there
is a flat morphism SpecZ — P of degree s induced by the inclusion
k[uy,...,us]™ < Z(A®) (when d = 3 the analogous morphism is an isomorphism).
We also show that ./, which is a sheafl of maximal orders on Spec Z, is non-
Azumaya precisely at the singular points, and we give a precise description of this
locus.

We will work over a fixed algebraically closed base field k. The following
constructions and notations will be used in the paper.

Let R be a Z-graded k-algebra, and let M be a graded left R-module.

The mth-Veronese subalgebra of R is defined to be R™ = @;_; R;,. The mth-
Veronese submodule of M is M™ := @,., M,,.

Let 8 Aut(R) be a k-linear algebra automorphism which respects the grading.
Then we may define a new algebra structure, (R% ), on R by declaring that the
product of xeR; and yeR; is x*y = xy*. We call (R%#) the twist of R with
respect to 0.

The center of R will be denoted by Z(R).

Let & Aut(R). An element ue R is 6-normalizing if uv = v"u for all ve R. The set
of all #-normalizing elements is a Z(R)-submodule of R. In a domain a 0-
normalizing element is §-invariant.
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Let O Aut(R). A k-linear map &: R — R is a O-derivation if 5(xy) = d(x)y + x?4(y)
for all x, ye R. If ue R, the inner O-derivation by u is the map x — ux — x’u.

If ce k* define 1, e Aut(R) by A(x) = c"x for xe R,.

If de Z then M[d] is the graded R-module which is equal to M as an ungraded
R-module but has the grading M[d }; == My.;.

We say that M is bounded below if M; =0 for i € 0. We say that M is locally
finite if dim{M;) < oo for all i. If M is locally finite, the Hilbert series of M is the
formal power series Hy(f) = Z;(dim M;)¢’,

A d-linear R-module is a cyclic left R-module M having Hilbert series
Hu(t) =1 — 1)~ We call M a point module if d = 1 and a line module if d = 2.

Let X be a scheme over k, and et v be a k-automorphism of X.

If pe X we will usually write p” for ¥(p). We extend this to Weil divisors in the
obvious fashion. For example, if D =2Zn,.(p) is a divisor on a curve then
D’ =%n,.(p").

Let f+# — % be a homomorphism of Ox-modules. We will write %~ for the
inverse image v*#. We note that #° = ("), %, and if D is a Weil divisor
Ox(D) = Ox(D*™"). We will write f* = v*(f): %" — %" for the homomorphism
corresponding to f. There is a k-linear isomorphism

HY(X, F) > HYX, F*) = HO(X, Oy ®,-10, v"*F)

given by s—s":=1&s. Notice that s(p*) =0 if and only if s*(p)=0. These
notations are compatible: the natural isomorphism Homy(Ox, #) = H(X, F)
given by f — f(1) satisfies f~ — f(1)".

If X is an irreducible variety we write K = k(X) for its function field and #'
for its sheaf of total quotient rings. There is an induced automorphism f— f* of
K defined by f*(p)= f(p’). This is compatible with all the previous nota-
tion: if & is a subsheaf of #y and fe H°(X, %) then the two possible mean-
ings of f'eH°(X,#") are the same. We also note that, if feK then

M=

2. Twisted Homogeneous Coordinate Rings

‘We begin by recalling some results and notation from [5], [6] and [11].

The category of triples over k has as its objects triples (X, o &) consisting of a
k-scheme X, a k-automorphism o of X and an invertible Oyx-module .Z. A morphism
in this category is a pair

{(fu:AX, 0, F)> (X", 0, &)

consisting of a morphism f:X — X' such that ¢f = fo, and an Oy-module
homomorphism u:f*¥ - &. If (g,0):(X", ¢, L) = (X", 0", ¥") is also a mor-
phism then {g, v) o (f, u) = (gf, uc f*v).
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Define

PR R...Q ¥, if >0,
gn = (Ox, if n o= 0,
TR LTTTRL T, f n<.

There is a contravariant functor B from the category of triples to the category of
graded k-algebras defined as follows:
BX,0, %)= @ B,
neZ
where B, = H°(X, %,), and the multiplication B, ® B,,— B, ., is given by the
composition

H(X, %,)® H(X, %,) » H'(X, £,) ® H(X,(Z,)") » H*(X, &, ® (ZLn)™")
= HO(X; =gn-?mt)

where the first of these maps is a® b — a ® b7,

We say that & is g-ample, if for every coherent Oy-module # and every g >0,
HYX, %, ® #)=0fori> 0. We call B a twisted homogeneous coordinate ring of X if
% is both ample and g-ample.

Remarks. (1) If (f,u) is a morphism of triples as above, then the induced
algebra homomorphism ¢:B(X',0', %’} - B(X,0, %) is given by o) =
MO u ® ... ®u" ") (f*(b)) for be BX',d, &), if n>0.

@ If feB; ®B;, = H%X x X, # X .%) is in the kernel of the multiplication
map to B, then f(p, p’) = 0 for all pe X.

Under quite mild restrictions a natural localization of B(X, ¢, ) is an Ore
extension of the function field K = k(X) of X. Let X be an irreducible and reduced
projective k-scheme, let ¢ = Spec(K) denote the generic point of X, let o denote the
restriction of o to &, and let #; denote the inverse image of % on & Let K[t,t™%; o]
be the Ore extension having K-basis {t/|je Z} as a left K-module, and multiplication
defined by tf = f°t for fe K. The obvious morphism of triples (¢, 0, Z;) = (X, 0, &)
induces an injective algebra homomorphism B(X, o, ¥) - B(¢, 0, £;), and we obtain
the following result.

PROPOSITION 2.1. Let (X, 0, %) be a triple and suppose that X is an irreducible
and reduced projective k-scheme. There is an isomorphism B(¢, o, %) = K[t,t7!; 0],
and if ¥ is c-ample, then

(a) B, o, Z;) is a localization of B(X, 0, L)
(b) if o is of finite order, then B(L, 0, %) is a central localization of B(X, ¢, &£).
Proof. Since ¢ is an integral scheme, B({, 0, ¥ is a domain. In particular, the

multiplication map in B(, o, %;) gives each B({, 0, %;); the structure of a 1-
dimensional vector space over B(¢ 0, %), =K. I 0#xeB( 0, %) then
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B(¢, 6, %) = Kx'. Hence, there is an algebra isomorphism ¢,: B(, 0, %) —
K[t t71; 6] given by o.(fx) = fi' for all ie Z and fe K.

(a) By [6, Proposition 3.2(iii)] we may choose an »n such that %, and %, are
very ample. Thus, B, and B,.; are both nonzero, so Fract B(X, ¢, &) contains a
nonzero element of degree 1. Let 0 # ue H°(X,.%,) and set D = (u). Then
B(X, 0, #)[u~'] contains H°(X, Ox(D)) and, hence, Fract B(X, ¢, #) contains the
subfield of K generated by H°(X, Ox(D)). But this subfield is K since Ox(D) is very
ample. It follows that B((, 0, ;) is the localization of B(X, ¢, ¥) at the nonzero
homogeneous elements.

(b) If 6 is of finite order, n say, then K[t,t™!; 07 has center K [t",t™"], so
B(¢, 0, &) is finite over its center. Thus B(X, o, &) is a prime ring satisfying a poly-
nomial identity, whence by Posner’s Theorem Fract B(X, ¢, &) is a central localization
of B(X, 0, &). Thus, if re B¢, 0, &) is homogeneous, then rze B(X, o, %) for some
nonzero central element ze B(X, g, ¥). But each homogeneous component of z is also
central, so we may assume that z is homogeneous. Thus re B(X, 0, #)[z7 1] <
B(¢, 0, &%), so B(L, 0, %) is a central localization as claimed. O

PROPOSITION 2.2 [5, pp. 374-375]). Suppose that X is projective, reduced and
irreducible, and that ¢° fixes the class of % in Pic(X). Let u: ¥° > % be an
isomorphism, and define the isomorphism v: %7 =%, by v(x, ® - Qx)=
ux,)®x; ® .- Qx,_y. By functoriality (c5,u)eAut(X,0,¥), and (o,v)€
Aut(X, 6%, Z,) induce algebra automorphisms

peAutB(X, 0, %) and 1€ AutBX, s, %)
Let x, ye By, ze B; and we B, where i + j = ms. Then

(a) x"zy = y*"zx;

(b) T'zy) = y"z

(c) identifying B(X, o*, %) with B(X, 0, L), the restriction of p to B(X, o, £)®
equals 1%

(@ w'y = y"w.

Proof. Both (¢%, u) and (o, v) extend to automorphisms of the triples (¢, 0, ;) and
(& 0°, (%)), s0 p and 7 extend to automorphisms of B(¢, 0, £;) and B(&, g, L)
respectively. Therefore, it suffices to prove the Proposition for B(, g, #;) which has
the advantage of being generated over its degree 0 component by the elements of
degree 1 and —1. We will only consider the cases i, j > 0.

(a)} The case i = m = 1 is true because

¥y =1 DNx" V") =u® 1 1)(y” ®2° ®x™) = y’zx.

Fori=1 and a general m we proceed by induction. Suppose that z = z,z,z; with
z1€B; y,z;€ By, z3€ Byy—1ys—1. Then

m m—1 -1 7
XPUZy = XP212,23) = 252, X7 z3y = 2521 Y7 z3x = VP 212523% = P zX.
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We now prove the general case by induction on i. Suppose x = x;x, and y = y, y,
with x,, y; € B;—; and x5, y, € B;. Then

XP7zy = (X1%, )" 2y 12 = X4 Y8 2y1 X2 = Y V8 2x1 X5 = 7 zx.
(b) The result is true for i = 1 and m = 1 because, if z4,...,z,€ B; then
©zq o 25) = 0{(z1 ... 2,)°) = (2 ®z§ ® ... ® zT°)
=u®1®1® - QN Vz{ Q- 277
=uz)®zI® ... @z

— 0
=ZgZq veeZg—1-

We now prove the case i=1 and general m by induction. Suppose that
Z =2y ...Zms—1 With each z;e B;. Then

wzy) = 21 o 2)UZs 4 1 - Zims—1))

— m=1 — P" —
=202 . Zg 1 Y7 T Zgiq e Zms—1 =V 21 oo Zps—1 = V2.

For a general i and general m we proceed by induction on i. Suppose that y = y, y,
with y; € By and y, € B;,_. Then

T(zy) = o7 " zy1y2) = 1(¥8"zy1) = YU V82 = Yz

(c) This follows by iterating s times the case i = m = 1 of (b).
(d) Suppose that w = w,;w, with w; € B,,—; and w, € B;. Then, using (a) and (b),

Wy = T(Wwiwy)y = w8 wyy =y wiw,
as required. O

COROLLARY 2.3. Suppose that X is a reduced and irreducible projective k-scheme, o
is of finite order and ¥ is o-ample. Then B(X, o, £) is finite over its center.

Proof. By the arguments in [6] B = B(X, 0, ¥) is a finite B™-module for m > 0.
Hence we can choose n such that ¢” = 1 and B is a finite B"-module. Taking s = n
and u=1d in (22) gives p=1 and te Aut B® satisfies " = 1. By (2.2d) the
r-invariants in B® are central in B. But B™ ~ B(X, 1, %,) is commutative, so is a
finite module over its subring of z-invariants. Hence, the result. O

Remark. The use of Posner’s Theorem in the proof of (2.1b) can be avoided as
follows. To prove (2.1b) we must show that a nonzero homogeneous element b of
B = B(X, 0, &) divides a central element. However, if 6" = 1 then, as in the proof of
(2.3), ("7 s a t-invariant element of B™, so central in B, and is also a
multiple of b.

Let G be a finite group acting as k-automorphisms of X. Suppose further that G
acts freely on X (i.e. all isotropy groups are trivial). This ensures that the quotient
map 7g: X — X/G is étale. A coherent G-sheaf on X is a coherent Ox-module ¥
endowed with @x-module isomorphisms T,: ¥ — g*# for each g G, which satisfy
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Ty = b*(T,)° Ty We call (rg) £ )¢ the descent of ¥ to X/G, and we refer to g — T,
as descent data.

PROPOSITION 24 [11, Proposition 2, page 707. The functors
F -oniF and L (1) L)

are mutually inverse equivalences between the categories of coherent Oy g-modules and
coherent G-sheaves on X. The equivalence sends locally free modules to locally free
modules of the same rank.

If g commutes with ¢ then (g, T, ')e Aut(X, o, &). Hence if every element of G
commutes with o, then G acts on B(X, o0, %) from the right as algebra auto-
morphisms. In this case we will call (X, o, ) a G-triple, and will write simply f*
instead of T, *(f?) for the action of g on a section f of &.

PROPOSITION 2.5. Suppose that (X, 0, %) is a G-triple, with G acting freely
on X. Let ¢ be the automorphism of X/G induced by o, and let ¥’ be the descent
of & to X/G. Let u.n(¥ - be the canonical isomorphism. Then
(mg, w): (X, 0, L) (X/G, o', L'} is a morphism of triples inducing an isomorphism
¢:B(X/G,¢’, #')— B(X, 0, ).

Proof. The key point is that (&), is the descent of ¥, to X/G: this is a
consequence of the fact that n distributes across tensor products. Therefore,

B(X/G,¢', &) = H(X/G, (n6)s Zn)°) = B(X, 0, Z);.
The result follows. O
From now on we suppose that

(X, 0, &) is a triple, such that ¢ is of finite order n = rs,

the group generated by o acts freely on X,

X is projective, reduced and irreducible,

b~ P,

and . is g-ample. By [6, Lemma 4.1] this is equivalent to %, being ample. In
fact, it is equivalent to .%, being ample, since £?° =~ &, implies £, = (Z,)®".

We will call triples satisfying these hypotheses (r, s)-triples. An (r, s)-triple is also a
(1, n)y-triple. To an (r, s)-triple we attach groups

G=<s), H=(*) G =)

of automorphisms of X. This gives rise to a commutative diagram of étale morphisms:

x Lo, x/6

lﬂa lﬁG/G'

X/H 18, X/G

The induced action of ¢ on each of these quotients of X will also be denoted by o.
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Since X is projective and irreducible H°(X, Ox) = k. Thus the automorphism
group of an invertible @x-module is k*. In particular, the isomorphism
u: L7 = P is determined up to a scalar multiple. Changing u by a scalar multiple
we can, and do from now on, assume that (6%, u) =Id, or equivalently
wu™ .. u*"""" = 1d. This determines u up to multiplication by an rth root of 1.
Define v: 7 > %, as in (2.2). Let p and 1 be the automorphisms determined by
(6, u) and (o, v) as in (2.2). Although u, and hence 7, is only determined up to an rth
root of unity, 7° is independent of any such choice. Thus 7" is a canonical
automorphism of B(X, ¢*, %) = B(X, 5, £)°.

Since (¢°, uy’ = Id, the map H — Aut(X, ¢, &) given by ¢* — (¢*, u)’ is a group
homomorphism, whence .% is an H-sheaf, with (6%, T:!) = (¢°, u)’. Furthermore
(o, v)* = Id which ensures that %, is a G-sheaf, and hence a G'-sheaf. Thus (X, ¢, &)
becomes an H-triple, and (X, ¢°, Z,) becomes a G-triple. The H-action on B(X, g, &)
is generated by p, and the G-action on B(X, ¢°, &) is generated by 1. Note that
pr=1land 7" = 1.

PROPOSITION 2.6. Let (X, 6, &) be an (r, s)-triple, and let &' be the descent of &,
to X/G'. There is a canonical injective algebra homomorphism

B(X/G, 0%, &)~ B(X, 0, L)

whose image is the G' = (1" )-invariants of B(X, 6, LY. This map sends elements of
degree i to elements of degree is.

Proof. This map is the composition B(X/G',¢*, ¥')— B(X,0%, %)~
B(X, 0, £)®, where the first of these maps arises as in (2.5) using the fact that Z;is a
G'-triple. U

Now G/G’ acts on B(X, 0, )¢ =~ B(X/G, ¢*, ¥’} with the action generated by
the restriction of 1.

THEOREM 2.7. Let (X, 6, %) be an (r, s)-triple. Write B = B(X, 6, &) and B’ for the
image in B of B(X/G', 0%, ¥’') under the canonical map described in (2.6). Fix an
integer m. Then

{ye Blyx=x""y forall xe B"} = @ Bj.
j=m{modr)

Proof. To see that the right side is contained in the left side let ye B} with
Jj=mmodr). If xe B;, then by (2.2d) y*"x = x*’y. But p/ = p™ since p" =1, and
elements of B’ are 7" -invariant by (2.6), so yx = x*"y as required.

Conversely suppose that 0 s ye B, is in the left side. Let xe By, By (2.2d)
x%y = y#"x = yx = x*"y. Since B is a domain it follows that ' = p™ on B®™. Thus
7" = 1 on B™. But .% is g-ample, so 7 is still of order n on B™. Thus ! = js for some j.

Therefore p™ = = p/ on B™ by (2.2c). By the g-ampleness it follows that r
divides j — m. Finally we show that y is "-invariant and, hence, in B’ by (2.6). Since
¥ is g-ample B; #0 for some ir=r(modn). If 0+# xeB, then by (2.2d)
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y'x = x*'y = x*"y = yx. Thus y*" =y and y is 7"-invariant by the careful choice
of ir. N

COROLLARY 28. Let (X,0,%) be an {r,sytriple. Let BX/G,0o',¥%')—>
B(X, o, £)*) be the canonical map described in (2.6). The restriction of this to the rth
Veronese subalgebra gives an isomorphism

B(X/G', 6*, £\ = Z(B(X, 5, £)").

This isomorphism sends elements of degree i to elements of degree is.
Proof. If we take m = 0 in (2.7), we see that the centralizer of B® in B is (B)™
which is the image of B(X/G', ¢°, #')* as required. O

Let G = Hom(G, k*) be the group of k-valued characters of G. If o€ G, define
Oxle) = {f € () Ox| f* = olg) f for all ge G}.

As remarked in [11], each Oy /(o) is an invertible Oy g-module, the multiplication in
(n6)«Ox induces isomorphisms O(a) ®q, ., O(f) = O(ap), and the map a— Oy6(e)
defines an isomorphism

G =5 Ker(Pic(X/G) — Pic(X)).

For each ae G, Ox,c(2) is the descent of Oy to X/G with descent data g — (g, a(g)). If
the order of G is prime to the characteristic of k, and G is Abelian, then
(6 ) Ox = ®G Ox6(o).

We now assume that char(k) does not divide r, and apply this to the situation
described earlier.

Let 4 be the descent of ¥ to X/H, and &” the descent of % to X/G. We will
continue to write .#' for the descent of &, to X/G’. 1t is easy to see that %" is the
(G/G')-descent of &¥.

For cach ae H, define (o) = Oxp(®) B, ,, A and for each ue(G/G'Y, define
L") = Ox;6(@) By, £ We obtain two important decompositions:

H(X, £) = H°(X/H, (ng), &) = G'%HO(X/H, M(@)),

H(X/G, &) = HX/G, (tgi0)e €)= @ H(X/G, £" (@),
ae(G/G'Y

The first of these is the decomposition of B(X, o, &), into its p-eigenspaces, and the
second is the decomposition of B(X/G’, ¢°, £’), (or equivalently B(X, 5, £)¢') into
its r-cigenspaces.

For each acH, (X/H, o, #(x) is a triple, so we define .#(a), =
M) D M) ® - ® #(2)*"~". The isomorphism G/G' — H given by g — ¢°, gives
an isomorphism of character groups H — (G/G'Y.

PROPOSITION 2.9. Let xe H = (G/G'). Then %" (o) is the descent of M (), to X/G.
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Proof. First observe that .#(x); can be made into a G/H-sheaf with descent data
o™ — T' where T:.d(x); - o* M(0); is just the permutation a; ® g, ® - ® g, -
a, ® - Qa,®ay.

It suffices to show that Ox;s(x) is the descent of Oyg(x); to X/G. Then
Oxu(®) = Oxu f < (my)y A'x where fe K = HY(X, A'x) satisfies ™ = a(c®)f; the
existence of such an f is guaranteed by Kummer theory. Now define
h=ff"...f""". Then O (@), = Oxmh so the G/H descent of Oy u(®), to X/G is
Oxch. But b = a(o*)h so Ox;ch = Ox6(a). O

PROPOSITION 2.10. Let E be an elliptic curve and n: E — E' a quotient by a finite
subgroup. Let D e DiV(E) and assume that deg(D) > 0. Let K and K’ be the function
fields of E and E'. The restriction of the norm mapping N: K — K’ gives a surjective
map from H°(E, Oyx(D)) to H(E', Og.(r(D))).

Proof. Set D' = n(D). Let 0 # f" e HY(E', Og(D’)). Suppose that its divisor is

d
div(f)= Y (p) = D'
i=1

Choose preimages py,...,ps—1€E of pi,...,pi—1. Because E is an elliptic curve,
there is a unique point geE such that D is linearly equivalent to
(p1) + -+ (pa-1) + (q). Let feK be such that div(f)=(pi) + - + (pa-1) +
(q) — D. Then fe H°(E, Ox(D)) and

div(Nf) = (p1) + - + (Pa-1) + (@) = D

where ¢ is the image of g in E'. It follows that ¢ is linearly equivalent to pj. Since E’
is not a rational curve this forces ¢ = p;. Hence, f* = ¢- N(f) = N(c*"f) for some
cek. O

COROLLARY 2.11. Let X be an elliptic curve and o the translation by a point of
finite order. Then the map B, — B, given by y — y* gives, on restriction, a surjective
mapping HO(X/H, #(%) to H*(X/G, " (%)) for each a.¢ H.

Proof. Both E:= X/H and E':= X/G are elliptic curves and ngy: E - E' is as in
the previous result. Indeed 7y is a cyclic étale cover with Galois group G/H.

Since #"(«) is the descent of .#(a), one of these has only the zero section if
and only if the other does. Suppose that 0% xe H(X/H, #(x)) and set
D = div(x) e Div(E). Thus .#(a) = Og(D)x and x* = a(p)x.

Put y = x* 7! in (2.2b): thus (x°) = x*x°~ ! = a(*)x*. Hence, x* is G’-invariant and
x'e HY(X/G, #"()). Since x* = x @ x° ® ... @ x°"" the divisor of x* as a section
over X/G is ngu(D). Thus £"(o) = Op (g u(D)x".

Let 0 # fxe H(X/H, .#(x)). Then

(Y =) ® - R(fr)”™
=7 ST BT B @ = (7

But Gal(k(E)/k(E")) = G/H so (fx)* = (Nf)x* where N: k(X/H) - k(X /G) is the norm
map. Hence, by (2.10) fx — (fx)° is surjective. O
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The last two results of this section treat the case relevant to the Sklyanin algebra.
Thus X = E will be an elliptic curve, o will be translation by a point of order n = rs,
£ will be of degree d = 3, and we assume that r divides d and is prime to the
characteristic of k. These hypotheses apply in (2.12) and (2.13). In particular (¢°)? = 1
whence ¥ = %,

DEFINITION. We say that 0 # xe B, is good if its divisor of zeroes D := (x), has
the following property: each point in Supp D occurs with multiplicity 1, D™ = D, and
Supp(D) ~ Supp(D?’) =@ for 0 < j < s.

If x is good then

() = @x™) = (x7) = ()" = (x),

so x is a p-eigenvector. Furthermore, if x* = { ™' x then {" = 1, so we may replace u
by ¥’ = {u and the p’ determined by ' is A, > p, and x*" = x. Given a good x we will
frequently choose a p such that x is p-invariant.

PROPOSITION 2.12. There is a basis {xy,...,x,} for B(E, 0, &), such that
(a) each x; is good, and
(b) {x3,...,x%} is a basis for B(E, o, ).

Proof. For each ae H set
Bi(®) = H°(E/H, M(®)) and B () = H*(E/G, £"(%)).
The preceding discussion gives decompositions

Bi= @B B= @ B
acH ac(G/G'Y
such that x — x* is a surjective morphism Bj(x) = B (a). It suffices to prove that for
each o€ H, there is a basis {x1,...,%.} for Bi{a) such that each x; is good, and
{x},...,x3} is a basis for BS'(«). We observe that .#(x) and #"(o)) have the same
degree and, hence, By (x) and BY(x) have the same dimension.

Suppose that 0 # xe B;(2). Let D = (x). Since p(x) is a scalar multiple of x, it has
the same divisor as x. But p(x) = u(x™), so (p(x)) = (x*) = (x)° °. Thus D* = D.
Furthermore {0 # x & B, (2)|(x) N (x)” = @ for all 0 < j < s} is Zariski open in B («).
Hence, {xe B;(«)|x is good} is Zariski open in By(x). Since the map x — x° is
surjective the image of a dense subset of B («) is dense in BY (x). In particular the
image of this map cannot be contained in a proper subspace of B (). Hence, the
image of the morphism ¢: B,(a) — B () given by ¢(xi,...,x) = (x},...,x5)
contains some linearly independent clement. However, the linearly independent
elements of BY () form a Zariski open set, and hence their preimages in B, («) form a
nonempty Zariski open set. But

{(x1,...,x.)e By ()| each x; is good, and {xy,...,x,} is linearly independent}

is also nonempty and open. The intersection of these two sets therefore contains an
element which satisfies the proposition. O
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DEFINITION. A good basis for B, is one satisfying the conditions of (2.12).

COROLLARY 2.13. Let x4,...,x; be a good basis for B(E, 6, &),. Then

B(Ea g, '29) = k[xla R ’xd:la
B(E/G',0°, ') = k[x},...,x3],
Z(B(E, 0, L)) =k[x3,...,x3]®.

Furthermore, if x¢! = {™1x; then x} is (A, ° p)-normalizing, where A, is the automorphism
acting as scalar multiplication by {’ on degree j elements.

We remind the reader that we always take account of the original degrees of elements:
for example, x% € k[x5,...,x3]".

Proof. Since deg(#') = deg(¥) = 3, both B(E, 0, &) and B(E/G', o°, &) are gen-
erated in degee 1. Hence the equalities follow from (2.8} and (2.12).

Now suppose that x = x; has p-eigenvalue {7*. If ye B(E, 0, ¥); then y’x* =
(x*yy = {~*x°y where the equalities follow from (2.2d) and (2.2a), respectively. []

3. Generators of Z(A4) and Z(A“)

We consider the situation relevant to the Sklyanin algebra, namely X = E is an
elliptic curve, ¢ is translation by a point of order n =rs and % is of degree d > 3.
Using {2.1) we will identify B(E, ¢, &) with a subalgebra of its localization B(¢, 0, Z;)
which is isomorphic to the Ore extension K[t,t™*; ¢]. Since the action of 6 on K
agrees with conjugation by ¢, we extend ¢ to an automorphism of K[z, ¢™*; ] by
declaring t7 =t

LEMMA 3.1. Fix an arbitrary factorization n =rs. Let & be a ¢*-derivation of
K[t t™1; 0] of degree | such that s — | is not divisible by n. Then there exists fe K
such that 8 is the inner o°-derivation by ft'. If 8(t) = 0 then fe K€.

Proof. We must show that there is an fe K such that

(1) 8a) = fl@™ — a®), forall ac K, and

2) oy =(f - [
Define ¢: K — K by 6(a) = ¢(a)’. Then using the product rule to expand each side of
the equation 6(ab) = d(ba), we find on choosing be K such that b*' # b that (1)
holds with f = ¢(b)/(b* — b™). Define ge K by 8(t) = gt'** and use the product rule
on &(th) = d(b°t) to get (2). O

LEMMA 3.2. Let D be a divisor of degree > 3 and let V = H(E, Og(D)). For an
arbitrary divisor D', and a point pe E, let m(p, D') denote the multiplicity of p in D'.
With | and s as in Lemma 3.1, we have, for each pe E,

inf {m(p, w* — w™)|we V} = —max{m(p, D" "), m(p, D°"")}.

Proof. By symmetry (i.e., interchanging ! and s if necessary) we can suppose that
m(p, D°"') < m(p, D°""). Note that since ¢° and o' are unequal translations, p” # p*'
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for each p. Since deg(D) > 3, there is a we V such that m(p, (w’')) > —m(p, D°~') but
mip, (W*)) = —m(p, D°"7). That w shows that the infimum is less than of equal to the
maximum. The other direction is obvious. M

THEOREM 3.3. Fix an arbitrary factorization n=rs with r|d. Suppose that
xe B(E, 0, &), is good. Choose p such that x* = x. Let é be a p-derivation of
B(E, 0, &) of degree | such that §(x) = 0.

(@ If I<0thend=0.
(b) If 0 << nthen §is an inner derivation by cx' for some ce k.

Proof. Extend ¢ to the central localization B(¢, o, &;). Identify B({, g, ;) with
K[t,t™1; 0] via the isomorphism sending x to t. Thus, both p and § extend to
K[t,t™*; o] via this identification. Recall the definition prior to (3.1) of the automor-
phism ¢ of K[t,t™!; ¢]. Since the restriction of p to K agrees with ¢° and since
x? = x implies that t* = ¢ = ¢*°, it follows that p = ¢°. Thus 6 is a ¢°-derivation of
K[t,t%; 0]

Set D = (x) and V = Og(D), whence By = V1.

(Case 1: s=n,p =1, a derivation.)

If I > 0, then, by Lemma 3.1, 6 is inner by ft' for some fe K¢. We must show f
has no pole. Since 3(B) = B we have 4(B;) < B;,,. By a trivial calculation
fw™ —w)e H*(E, O(D + D°™" + --- + D°™")) for all we V. Therefore by Lemma 3.2,
for each point ge E/G, we have

m(g, (f)) > max{m(p, D~""), m(p, D)} — §,

for each p above g, where S is the sum of the numbers m(p, D~%") for 0 < i < L Since
x is good, at most one of these numbers is not 0. Choose p above g so that the
nonzero one is m{p, D), and find

If 1=0, then dlg is a k-derivation of K such that (V)< V. We may write
0 = g{d/w), where @ is a nonzero differential of the first kind, and ge K. Let p
be a point of E. If m(p,D)=0, choose feV such that m(p,(f))=1. Then
m(p, (df /o)) =0, so g has no pole at p. If m(p, D)=m >0, choose feV such
that m{p,f)y = —m. Then m(p, (df/w))= —m —1, so g has a zero at p unless
m is divisible by the characteristic of k; but x is good, so D does not have a
multiple point, i.e. m = 1. So ¢ has zeros but no poles whence § = 0, as was to be
shown.

If ] = —1, then by Lemma 3.1, we have, as in case [ > 0 above,

m(g, (f)) > max{m(p, D~*), m(p, D)},

for each p above g, (the sum S has no terms, so is 0), so f has zeros but no poles.
If I < —2, then § is trivially 0.
(Case 2: s <n, p of order r > 1.)
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Suppose that ! —s is divisible by n. This happens for an /> —1 only if
I=—15=1, and n = 2. We settle that case. We have p =0, of order 2, s0o d is a
o-derivation taking V to k. Define the k-lincar map ¢: K — K by d(at) = a(¢(a)).
Then ¢ is a k-derivation of K taking V to k, so taking V into V, and we have seen
that the only such derivation is the zero derivation.

In all other cases, Lemmas 3.1 and 3.2 apply, as in Case 1.

We are almost ready to lift the generators of Z(B(E, ¢, %)) and Z(B(E, 6, Z)") up
to 4 and to obtain generators of Z(4) and Z(A®).
Recall that a = 6 — d denotes the degree of the central elements g;,..., gp-

LEMMA 34.

(a) There is a unique lifting of p to an automorphism of A.
(b) Suppose that rla. Each of the central elements g,,. .., g, is p-invariant.

Proof. (a) Since the map 4 - B is an isomorphism in degree 1 there is at most one
lifting of p to A. Since a is prime, the only case to consider is r = a, because p = 1 if
r=1

Let p also denote the automorphism of P(A¥) given by

p(x)(p) = x(p*) for xe A; and peP(4F).

If pe E = P(A¥), then p(x) = u(x"")(p) = x(p”) so plp = ¢°. Since p* =1 this is
translation by an a-torsion point we E,
Now let fe R, = A; ® 4;. We must show that (p ® p)(f)e R,. If pe E then

(P ® (NP, p7) = f(p,p" ") =0,

This proves the result for d =3. Now suppose that d =4, and consider
(p @ p)(f)(e;, e;), where ¢; is the vertex of one of the quadric cones containing E. By
[10] these 4 points may be characterized as the only points of P*\E which lie on
infinitely many secant lines to E. Furthermore, for each e;, there is a unique w; € E,
such that e lies on the secant line /,, through p, ge E if and only if p + g = w;. The
action of p on P(4¥) sends the line I, t0 [, 4+0- Since 2w = 0 this line passes
through e; also. Therefore, ef = e;. Hence, (p ® p)(f){e;, &) =050 (p ® p)(fle R,.

(b) Suppose that d = 3. Since p is of order 3 and k is algebraically closed of
characteristic different from 3 we can choose basis elements x, y, z for 4, which are
eigenvectors for p. As is well known, the eigenvalues are distinct (if, for example,
p{x/y) = x/y, then p = ¢® would fix the points on E where z = 0, contradicting the
fact that ¢° is a translation). So we can suppose that p(x) = x, p(y) = {y, p(z) = (*z,
where { is a primitive third root of 1. The cubic equation f(x, y, z) = 0 defining E is
preserved by p, so must be of one of the three forms

ax3 + by + cz® +dxyz =0, ax’y+by*z+cz’x=0, or
axy? + byz? + czx?* =0
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for some a, b, c,d € k. The last two are not possible, because then (1,0, 0) € E would
be a fixed point for ¢°, and for the same reason, the coefficients a, b, ¢ in the first
equation are not zero. Therefore, after scaling x, y, z, we can assume that the cubic
defining E is in the ‘canonical form’ f=x®+ y®+2z® —mxyz and that
p(x) = x, p(y) = {y, p(z) = (*z. Let (1, —1,0)" = (a, b, c).

As explained in the introduction to [4], the algebra A is defined by the three
relations fi{x, y, z) = 0, where

fl(X: Y,Z)‘ZQYZ -+ bZY + CXZ,
f(X,Y,Z)==aZX + bXZ + cY?,
f3(X,Y,Z)=aXY + bYX + cZ>

(Strictly speaking, the argument in [4] applies only in case ¢ is not of order dividing
3, in which case abc # 0 and the equation for E can be written

abe(x3 + y* + 23) = (a® + b3 + 3)xyz.

However, it is not hard to see that the set of points (g, b,c) e E for which those
relations define A4 is closed, and, consequently, they are the relations also if 6% = 1.}

Let T=T{4,) = k{X,Y,Z) be the tensor algebra on A4,, with X, Y, Z denoting
the elements of T, whose images in 4 are x,y,z. Let A = T/J. Then each of the
3-dimensional spaces

Ty =kX + kY +kZ and J, = kfu(X,Y,Z) + kf5(X, Y, Z) + kf5(X. Y, Z)

is isomorphic, as a representation of the group {p>, to the regular representation.
Since A3 = T3/J5 is of dimension 10, it follows that dim(J5) = 17. But J; is the sum
of the two 9-dimensional spaces T,J, and J,T;. Hence these spaces intersect in a
1-dimensional space. That space contains the element

Xfi+ Y+ Zfs=f1X+HLY+f3Z,

which is fixed by p. It follows that the trivial representation of {p) occurs with
multiplicity 3 + 3 — 1 = 5in J3, and therefore with multiplicity 9 — 5 = 4in 45. On
the other hand, it occurs only 3 times in B;, by Proposition 2.5 applied to the
{py-triple (E, g, &), because the descent of & to E/{(¢*) is of degree 1. Since
Bs = As/kg, it follows that g is fixed by p.

Suppose that d = 4. As in [13] there is a basis {xo,..., x3} for 4, such that the
defining equations of E are linear combinations of the x?. Hence, the vertices
€q,-.., €3 of the 4 quadric cones containing E are defined by the vanishing of three of
the x;. Since e} =e; each x; is a p-eigenvector. Since p? =1, each x}e A4, is
p-invariant. Since the central elements g, and g, are linear combinations of the x7’s
[13] they are also p-invariant. O

Remarks. (1) According to [2, 10.17], the central element for the 3-dimensional
case, when the generators and relations are as in the proof of (3.4), is

g =(c® — b3}y — axyz) + (¢® — a®)byxz — cx®),



36 S. P. SMITH AND J. TATE

which is obviously fixed by p. But checking that this element is central (and not 0)
seems not so easy.

(2) Actually the proof of (3.4) makes no use of the fact that o is of finite order, or
of the relation p = ¢*® between p and g, except to deduce that p is a translation.
Hence we have really shown when d = 3 that g is fixed by every automorphism of
A which induces on E a translation, that is, by the elements of the Heisenberg
group of order 27 generated by the two automorphisms (x, y, z) - (x, {y, {?z) and

(x, y,2) > (y,2,x).

LEMMA 3.5. Suppose that r|a. Let 0 # xe B(E,0, %), be good, and choose p
such that x° = x. Then there exists u e A, which is p-normalizing in A, and is of the
Sform

u=x"+ ) ¢xTH
1<j<h
with each c;e k[ gy, ..+, Gmlaj-

We remind the reader that we always take account of the original degrees of
elements: for example, g’; € klgi,.... Gmlaj-

Proof. Write J:==(g,,...,9,), whence B= A/J. Since g,,...,g, is a regular
sequence, for all [ > 1, J//J'*1 is a free B-module with basis the monomials in
dis---»gm Of degree al.

By (2.13) x® is p-normalizing in B. Hence for all y € 4, x°y — y*x° € J. Passing to
the image in J/J? viewed as a B-module with basis {g;,...,dn}, We may write
X'y — y°x* = Zj ;Wi )g; for unique elements y,(y) € B.

If ye A, write y for the image of y in B. Claim: The maps é;: B — B defined by
0 ¥) = ¥;(y) are p-derivations of degree s — a, with the property that d;(x) = 0.

Proof: To see that J; is well-defined, suppose that y = w. Thus w — y = Z, a;g; for
some a;€ A. Therefore x*(w — y) — (W — y)°x* = Z(x*a; — afx")g; € J> where we
have used the p-invariance of the g;. It follows that y;,(w — y) = 0 for all i whence
6,w) = 6;(y). A straightforward calculation shows that &; is a p-derivation. Since x
commutes with x*, we have J;(x) = 0 for all i. This proves the claim.

Hence by (3.3) with [ = s — a, J; is an inner p-derivation by o;x*~° for some «; € k.
Therefore if we define ¢; = — £ q;cm g € k[ g1, ---, Imls W obtain (x° + ¢, x°7 %)y —
yP(x* + ¢y x* %) eJ? for all ye A.

Now we proceed by induction in the same fashion, using the fact that each
JYJ'*1 is a free B-module with basis the monomials in g4,..., g, of degree la. At
this stage, one obtains p-derivations of B of degree s — la. However, if s —la <0
such a derivation is zero by (3.3a), so eventually we obtain an element u of the
prescribed form such that uy — y?ueJ™ for all m> 0, and hence uy = y*u as
desired. This completes the proof of the lemma. O

LEMMA 3.6. Let R be an N-graded k-algebra, and g4,...,9,, a regular sequence of
homogeneous central elements of positive degree. Set R:=R/(gy,-..,gm). Let Z be a
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graded subalgebra of Z(R) and let Z be its image in R. Suppose that Z = Z(R).
Then

(@) Z(R)=Z[g1,-- gm];
{(b) if R is finite over its center, R is finite over its center;
© Z(R)n(giR + - + gnR) = g1 Z(R) + -+ + g, Z(R).

Proof. I (a) is true for m = 1, then repeated application of (a) establishes its truth
for m > 1. The same comment applies to (b). Hence to prove (a) and (b} we assume
that we have a single regular homogeneous central element g of degree d > 0.

{a) We show by induction on i that Z(R), « Z[g];. Thisistruefori=0. Leti > 0
and let ae Z(R);. Since Z(R) < Z(R) < Z there is an element ze Z; such that
a=1z+bgforsomebeR;, ;. Nowa—z=bgeZ(R)and hence b e Z(R) as g is not
a zero-divisor. Since deg(b) < i, we have b e Z[ g] by the induction hypothesis. Thus
a=1z+ bgeZ[g] as was to be shown.

(b) Suppose that the images of {a;|i € I} generate R over its center. Without loss
of generality we may suppose that all the g; are homogeneous. Let fe R;. We shall
show by induction on j that f is in £,Z(R)a;. Write f = X, z;a; + gb with z;€ Z(R)
and b e R;_,;. The result follows from the induction hypothesis applied to b.

{c) We proceed by induction on m. If m =1 and g,ae Z(R), then certainly
a e Z(R) since g, is regular. Suppose that (¢) is true for m — 1.

Let a; € R be such that Z;g;a; € Z(R). Let ¢: R — R/g; R be the natural map. Since

M=

@(g1)o(a;) € Z(R/g,R)

i=2

il

the induction hypothesis applied to R/g; R + --- + ¢, R as a quotient of R/g, R gives
2 e(g0)ela) = Y olg:)eb:)
i=2 i=2

for some b; € R such that @(b;) € Z(R/g, R). However, by (a)

Z(R/g1R) = ¢(Z)[0(g2),---, ®(gm)]-

Hence, there exist elements ¢; € Z[g4,..., 9m) and d; € R such that b; = ¢; + g,d;. It
follows that

m

g:a; = z gic; + g1d;) mod(g; R),

i=2

ast

s

whence

gia; = Z giC; + g1u

i=2

(g E

Il
-

i

for some u € R. Since ¢; € Z(R) it follows from the regularity of g, that u € Z(R) also.
Hence, Z;g;a;€ 9, Z(R) + --- + 9,Z(R) as required. O
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We emphasize that there are two cases in the next theorem, namely r = a and
r = 1, the second of which gives generators for Z(A4).

THEOREM 3.7. Let A be either the 3-dimensional or 4-dimensional Sklyanin algebra.
Suppose that rla. Let xi,...,x; be a good basis for A;. Then Z(AV)=

K[ty tg1"Lg1s .. gm] Where
(a) each u; is of the form

U, = Xf + Z C,-jxf-””

1<jsé

fOl" some ¢;; € k[gla ARLE gm]rj;
(b) If x? = {"x then u; is (A;° p)-normalizing in A;
(¢} A is a finite module over its center.

Proof. (a) (b) Since x; is (A ° p)-invariant, (3.5) yields elements u; of the prescribed
form which are (A;c p)-normalizing in 4. Set Z = k[u,...,u,]™ and R = A", Since
r|a each g; € R. Under the natural map A — B the image of R is B and the image of
Z is Z(B") by (2.13). Since

BY = AV/A"\(Ag; + -+ + Agw) = R/Rgy + - + Ry

we may apply (3.6a) to conclude that Z(R) = Z{g,,..., g, ] as required.
(c) This follows from (3.6b) and (2.3) in the case r = 1. O

Notation. Recall that b = gcd(a,n). After (4.2) we will reserve the notation
uy,..., uy for the elements of degree n/b which are obtained in (3.7) when r = b, and
will use the notation z; for the u; obtained in (3.7) when r = 1. Thus

Z(A) = k[zl""nzd][gl7--'9gm:|

and if b = 1 then u; = z;. We will show in (4.6) that we may take z; = u! in general:
we can’t do this yet since we don’t know that uf,..., u} are linearly independent.

4. The Relations in Z(A4) and Z(4®)

From now on we dispense with generalities and restrict our attention to the Sklyanin
algebras.

Given Theorem 3.7, the first step towards obtaining defining relations for Z(4)
and Z(A®) is to determine defining relations for k[uy,...,u;]. We do this by
simultaneously giving a more functorial description of k[u,,...,u;]. We will show it
is isomorphic to a twist of a polynomial ring, and using the isomorphism in (4.1), this
twisted ring has a good description in terms of the original data (E, o, £).

PROPOSITION 4.1. Consider a triple (P", 6, 0(1)). Let w:0(1)° = O(1) be an
isomorphism, and let 8 ¢ Aut B(P", 1, O(1)) be determined by (o, w) € Aut(P", 1, O(1)).
Then the identity map B(P* 1, O(1))}, » B(P" 0, 0(1)); extends to an algebra iso-
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morphism
@: B(P",1,0(1))’ = B(P", 6, O(1)).

If 6™ =1 then w may be chosen such that 6" = 1.

Proof. Since B(P" 1, (1)) is a polynomial ring, its twist B(P", 1, 0(1)) is gener-
ated in degree 1 and its ideal of relations is generated by the relations of degree 2
[17]. If x, y € B(P", 1, ©(1)) then

xﬂ*y - xﬂyg ___yﬂxﬂ =}/'B*X.
Letting x and y run through a basis for B(P", 1, ¢(1)) we obtain ("3') linearly
independent relations of the form x? ® y — y° ® x. Hence, these are defining rela-
tions for B(P", 1, O(1))°.

Notice that (o, w)e Aut(P", 0,0(1)) also, and as such it determines pe
Aut B(P", ¢, 0(1)). Furthermore, p and 0 agree on

B(P",1,0(1))f = HP", 6(1)) = B(P", 5, O(1)),
since

0(x) = w(x") = p(x) for x e H*(P", O(1)).
By (2.2a), if x, ye B(P", 6, 0(1)); then xy = y?x so the identity map does indeed
extend to an algebra homomorphism ¢. Since B(P", o, O(1)) is generated in degree 1,
¢ is surjective, and since the two rings have the same Hilbert series, ¢ is an
isomorphism.

As in the discussion after {2.2) we may replace any particular w by a suitable scalar

multiple such that § and ¢ have the same order. |

Remark. If we are in the situation considered in (2.2) then, by (2.2a) x*y = y*x for
x, y € B(X, 0, £),. Hence the subalgebra of B(X, s, #)® generated by the elements
of degree s is a quotient of a twist of a polynomial ring.

Define P’ = P(H%(E/G’, £")*) = P** and let j: E/G’ — P’ be the inclusion. Then
&' = j*0u(1) and we can make the identification

HO(P',0(1)) = HYE/G', ¥") = B(E/G',0°, £'){ .
The resulting action of p on H°(P’, (1)) induces an automorphism u of P’ which
extends the automorphism ¢* on E'. Let w: j*0(1) — .#’ be the natural isomorphism.
Then (j, w):(E/G’,6°, &') - (P, u, O(1)) is a morphism of triples, so determines an
algebra homomorphism

a: BP, 1, ©(1)) > B(E/G', 6%, &').

PROPOSITION 4.2. Identify B(E/G’,6%, %') with B(E,c, £)9% as in (2.6). Let
B:k[uy,...,us1— B(E/G', 0%, &) be the restriction of the surjection A — B. There is a
unique surjective algebra homomorphism

7B, 1, O(1) - k[uy, ..., u,]
such that o = Boy.
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Proof. Suppose that the good basis x,,..., x, for B(E, 6, &), satisfies x/ = {; ' x;.
By (3.7b) u; is (Ag, o p)-normalizing, and therefore (A, - p)-invariant. It follows that
uu; = ({7 u;m, or equivalently ufu; = ufu;. Therefore w’v=v*u for all
u,veklug,..., ug]s.

There exists d: O(1)* =5 0(1) such that the automorphism of B{P", 4, ¢(1)} induced
by (d, u) agrees in degree 1 with the action of p on H%P’, ©(1)). Hence p extends to
an automorphism of B{P, u, O(1)).

The maps « and f§ commute with the action of p and are isomorphisms in degree 1.
Since B(P', u, ©(1)) is generated in degree 1 and has defining relations x?y = y*x for
x, y of degree 1, it follows that the map B~ 'a in degree 1 extends to an algebra
homomorphism 7. O

Notation. Recall that b = ged(a, n). From now on we will reserve the notation
Uy,...,uy for the clements of degree n/b which arise in (3.7) with r = b. Thus
Z(A®Y = k[uy,...,us1[g1,...> gm 1. Furthermore we will only use s to denote n/b and
will no longer use r to denote n/s. We will also write E' = E/{¢”) = E/(¢*) and
E"==E/{c). We will write &£’ for the descent of %, to E’ and will write #" for the
descent of %, to E”. We will use P’ to denote P(H°(E’, #')*) and will use P” to denote
PH°(E", £")*). We will write j:E'— P’ and i:E” - P” for the two closed
immersions. Hence, the two cases of (4.2) treat the u; as linear forms on P, and the z; as
linear forms on P”. The notation y and # from (4.2) will only be applied to k[uy,..., 4s].

Suppose d = 4. We will denote the image in E' of pe E by p’, and the image of
p~—(s—1)t by p°. If p, g € E we will write [, for the secant line they span, and [,
will denote the secant line in PP’ spanned by their images. The 2-torsion subgroup of
E will be denoted by E,. The natural copy of E in P(4%) may have its identity
located so that py, ps, P3, ps € E are coplanar if and only if their sum is zero. We will
assume this has been done (cf. [10]). In that case, the pencil of quadrics containing E
may be labelled Q(z), (z € E) so that Q(z) = U {l,,|p + g = +z}. The ‘same’ is true of
J(E') < P, since if x; vanishes at p;, p,, ps, P4 € E then u; vanishes at their images
Pi» P52, D5, pa€ E’, and these sum to zero also.

Our next goal is to show that the map y: B(P', p, Op(1)) — kluy,..., u;] obtained in
(4.2} is an isomorphism. The idea for proving this is that if kfu;, ..., u,] were a proper
quotient of B(P', u, (1)) then its point modules would be parametrized by a proper
subvariety of P’ and consequently its line modules would be parametrized by the
lines lying on that subvariety. However, we will show that kfu, ..., u;] has too many
line modules for this to happen. The line modules for k[u, ..., us] will be realised as
subspaces of line modules for A.

BASES FOR LINE MODULES

We begin by recalling that most line modules over the 3-dimensional and 4-
dimensional Sklyanin algebras have a nice basis.
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First let d = 4. By [10, Proposition 5.6] if p, g € E are such that p — g ¢ 2Zz then
the line module M(p, q) corresponding to the secant line I, has a basis {e;;|i, j > 0}
such that

(a) degle;) =i+,

(®) Aeyli +j1= M(p + (j — i)yt q + (i — j)),

(© X.ejjeke .y ;+ ke iy forall Xed,,

(d) if X € A; then X.e;;€ ke; 14 ; if and only if X (g + (i — j)r) = 0,
(e) if X € A, then X.e;;€ke; ;. if and only if X(p + (j —i)1) =0.

All these properties follow from the existence of the short exact sequence
0->M(p+1.q—1)[-1]1->M(p,g > M(p)—0.

The element e, is chosen to be a generator of the kernel of the map M(p, q) = M(p).

Now take d = 3. Although it is not stated explicitly there, the results in [5] show
that there is a similar result for the 3-dimensional Sklyanin algebra. Suppose that
p — q ¢ 3Zz. There is a short exact sequence

O0-M(p+2t,q—1)[— 11> M(p,q) > M(p)—0.

The element ey, is chosen to be a generator of the kernel of the map M(p, ) — M(p)
and e;o is chosen to be a generator of the kernel of the map M(p,q)— M(q).
Proceeding inductively, the line module M(p, q) corresponding to the secant line /,,
has a basis {e;;|1, j = 0} such that

(2) degle;) =i+]j,

(b) Aey[i + 1= M(p +2j — i), q + (21 — j)0),

(c) X.ejekeyqi;+ ke, forall Xed,,

(d) if X € A, then X.e;; € ke; ., ; if and only if X(g + (2i —j)z) = 0,
(&) if X e A, then X.e;;eke; ;. if and only if X(p +(2j — i)t} =0.

ANNIHILATORS OF LINE MODULES

For the 4-dimensional Sklyanin algebra, there is for each ze E an clement
Q(z) e P(kg, + kg,) with the property that £(z) annihilates all line modules M(p, q)
for which p + g = z[10, §6]. Moreover, £(z) = Q(—z — 21) and there are no other
equalities,

PROPOSITION 4.3 [17, [14]. Let A be either the 3-dimensional or 4-dimensional
Sklyanin algebra. Then

dim Hom (M (p — st,q — s7), M(p, 9)[s]) = 2,

and, if p-—qé¢aZr, any submodule of M(p,q)[s] which is isomorphic to
M(p — st,q — st) is generated by a linear combination of ey, and eq.
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Proof. Although the resuit holds for all p, g € E (and is proved in this generality in
[1] and [14]) we only need it in the case p — g ¢ aZt and, therefore, give a proof for
that special case.

We first prove this for the 4-dimensional Skiyanin algebra. Because line modules
are critical, a nonzero map between line modules is injective, so it suffices to look for
suitable submodules of M(p, q). It is clear that ey, and ¢y, both generate submodules
of M(p, q) isomorphic to M(p — st,q — st)[ — s]. Therefore, to prove the lemma it
suffices to prove that the only other elements generating such a submodule, are
Aregs + Azeg for Ay, Ay ek

Suppose this is not the case. Then there exists 0 £ e € M(p, g), of the form

€ =€+ Up1€41,j—1 F - F Tt mCivm,joms
where

%iem 70 and O <i<s—m<s,
with the property that

Ae =~ M(p — st,q — st)[—s].

Let u,ve A, be such that ¥ (u,v) =1,_, 4_s. Thus, ure =v-e=0. Since u+e =0,
the component of u-e; in ke, ;4 is zero, and the component of u*e;p ;j—p in
ke;ym+1,j—m 18 also zero. It follows {rom the previous remark that

wg+@—jr)=ulp+(G—-—m—i—mp)=0.

The same argument applies to v. Since i + j = s, it follows that
{g+Qi—s)t, p+(s—2i—2mr} <l g gmse

The hypothesis that p — g ¢ 271 forces
q+Q2i—s)t=q—st and p+(s—2i—2m)t=p-— st

Thus, 2it = 2mr = 0. But this is impossible since 0 < i < s — m. Hence, there is no
such e.

Now we prove this for the 3-dimensional Sklyanin algebra, under the hypothesis
that p — g ¢ 3Zr. The proof proceeds as for the 4-dimensional case, except that now
the line I,_, , -, is defined by a single linear form, say v, satisfying

g+ Qi—j)y=v(p+2j—-2m—i—m)r)=0.
Since i + j = s, it follows that
{g+@Bi—9,p+2s—3i—3m)t} < Lo gmser

However, there are three points of E lying on this line, the third being
—(p + g — 2s1). The hypothesis that

p—qé¢3Zr and O<i<s—m
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forces
g+@Bi—syr=p+2s—3i—-3mr=—(p+q— 27

But this also contradicts the hypothesis that p — g ¢ 3Zt. Again we conclude that
there can be no such e. |

PROPOSITION 4.4, Let A be either the 3-dimensional or 4-dimensional Sklyanin
algebra.

(a) Let M(p) be the point module for A corresponding to p € E. Then M(p)® is the
point module for k[u,,..., 4] corresponding to p°, the image of p — (s — )1 in
E'

(b) Let M(p,q) be a line module with p— q¢aZt. Then @, okey ;s is a
kfuy,..., usl-module, and as such is isomorphic to the line module corresponding
to the secant line I, through p° and q°, the images of p — (s — 1)t and
qg—(s—1rinE"

Proof. (a) To show that M(p)® is a cyclic k[u4,..., u;]-module, it is enough to
show that M(p), < k[uy,...,us]" M(p)g and proceed by induction. If this is
not the case, then u;* M(p)o =0 for ail i. But the action of u; on M(p) is the
same as the action of its image in B, namely x§. Thus x§-M(p), =0, whence
x{p — (s — 1)7)...x;(p} = 0. Hence, u;(p°) = O for all i, which contradicts the fact that
the u; span the global sections of the very ample #’. Hence M(p)® is cyclic.

Recall that if b € B; then b+ M(p)o = 0 if and only if b(p° “"") = 0. Hence, M(p),
is killed by those elements of k[u,,..., u,], vanishing at p — (s — 1)z, as required.

(b) Suppose that Au;eq, is nonzero. Recall that u; is (4, - p)-normalizing for some
{ek If xe Ay then xueqo = { ™ u;xP " ego. Hence, x - u;eqo = 0 if

0 = xp_l(qu) = x(ip—sr,(}"sf)'

Therefore, Aueqq is a quotient of M(p — 51,4 — st)[ — s]. But line modules are
critical, so Aueqo = M{p — st, g — s1)[ — s]. Therefore u;eq € keg; + ke by (4.3).
By induction (using the comments before (4.3)) ©; ;. oke; ;s is a k[uy,...,u;] sub-
module of M(p, g).

To prove it is cyclic, we first show that eg, e, €k[uy,...,u;] €q0. Since
p—q¢aZt, p° and ¢° arc distinct, whence there exists u € k[u,,...,u, ], such that
uw(p®y =0 but u(g®) # 0. Consider the point modules M(p) and M(q) which are
quotients of M(p, g). By (a) these contain copies of M(p°) and M(q°). The images of
{es,0/i = 0} and of {eq ;| j = 0} are bases for M(p°) and M(q°), respectively. Since
u*M(p°)o =0 and u-M(q°)o # 0 it follows that u- ey, is a nonzero multiple of eq,.
Thus egs € k[uy,...,us] " ego and similarly for eyo. By induction it follows that @ ke;,
is a cyclic module over k[u,,...,u;] and, hence, a line module since it has the
appropriate Hilbert series. By (a) M(p°) and M(g°) are quotients of this line module,
so it corresponds to [,c0. O
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Remark. The aesthetically unpleasing result in (4.4a), that the point module
M(p)® for k[u,,...,u,] corresponds to p’ — (s — 1)t’, rather than to p’, is a con-
sequence of the fact that our definition of B (and, hence, A) is better suited to right
modules than left modules. The problem occurs for any twisted homogenecous
coordinate ring B(X, 0, %) and left point module M(p): the Veronese submodule
M(p)®™ is the point module for B(X, o, )™ =~ B(X, ¢™, &,,) corresponding to the
point p°~™*". However, if N(p) is the right point module corresponding to p, then
N(p)™ corresponds to p also. Thus, if in (4.4a), we had worked with the right point
module N(p), then N(p)® would have been the point module for k[uy,...,u,]
corresponding to p’. These comments also apply to (5.11a) below.

TWISTING

Let R be a Z-graded k-algebra and let 8 € Aut,(R). In the introduction we defined the
twisted algebra (R x). We will call this the right twist of R to distinguish it from the
left twist (°R, ©) which is defined as follows: as a graded k-vector space, °R = R, but
the multiplication © is given by

x @ y=x%y

for xeR;,yeR;. The categories of graded left modules over R and °R are
equivalent via the functor M — °M, which is defined as follows: if M is a graded left
R-module, then M = M as a graded k-vector space, and the action of x € °R; on
me M, is given by

x ®m=x"m.

It is worth noting that there is an algebra isomorphism ¢:° 'R — R® given
by o(x)=0'"x) for xe® 'R;. Therefore we will apply these remarks to
IB(P', 1, Op(1)).

One may associate to a d-linear R-module M, the (d — 1)-dimensional linear
subspace ¥"(Anng,(M,)) in P(RT). It is an easy exercise to prove that, if M is a linear
R-module, then °M is a linear °R-module, and the subspaces of P(RT)associated to
M and °M are the same.

If I is a O-stable ideal of R, then I is also a two-sided ideal of °R, and °R/I = %(R/I).
There is a partial converse to this, in that a two-sided ideal I of °R is a left ideal of R
because I > RO I; = 04R)I; = RI; for all j. However, we are concerned with
twisting a commutative ring, in which case the following holds.

LEMMA 4.5. Let R = kIR, ] be a commutative graded k-algebra, generated in degree
1. Let I be a two-sided ideal of °R, and let M be a linear R-module. Then

(a) I is an ideal of R, and
(b) IM =0 if and only if I ©°M = 0.
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Proof. (a) The previous paragraph showed that [ is a left ideal of R.
(b) For all j >0 we have 8I)R; = I © R; < I. Therefore

I@eMlz I@RJGOMO = QJ(I)RJMO L IMO‘

Hence, if IM =0 then I ®°M = 0. Conversely, if I ©°%M =0, then I © %M, =0,
whence IM, = 0. However, I = IR and M = RM,so IM = 0. Il

THEOREM 4.6. Let A be either the 3-dimensional or 4-dimensional Sklyanin algebra.
Then

(a) k[ulﬂ cees ud] = B([pla 19 (OP’(I))G = B([P)Ia Hs (OP’(l)L
(b) If we define z; = ul then Z(A) = k[z1, ..., 24, G1s -+ » Gml-
(c) The central elements zy, ..., z4 are algebraically independent.

Proof. (a) The union of the secant lines {l,,.|p,q' € E'} is P’. The union of those
for which p’ # ¢’ (i.e. p — q ¢ aZt where p, q € E are preimages) is a dense subset of
P’. By (4.4b) each of these lines corresponds to a line module for k[uy,...,u,]. By the
equivalence of categories and the fact that twisting preserves the variety associated to
a linear module, a point on one of these lines corresponds to a point module for
k{u,,...,us]. Hence k[uy,..., u;] has point modules corresponding to a dense subset
of P,

Let I be the kernel of the surjective map y: B(P’, 1, 0(1))° — k[u,,...,u;] in (4.2). If
L is a point module for k[u,...,u,;] then L = "M for some point module M over
B(P', 1,0(1)). But I annihilates L, so by (4.5) I (as an ideal of B(P', 1, O(1)))
annihilates M. Hence the point of P’ corresponding to M (which is the same as the
point corresponding to L) lies on the subvariety ¥"(I). But there are point modules
corresponding to a dense subset of P’, s0 I = 0.

(b) The proof of (4.2) showed that wu; = ({,{7 ')’u;u;. Since the relations for
B(P’, 1, 0(1))° are generated by (%) independent quadratic relations, it follows from
(a) that these generate the ideal of relations for &[uy,...,u,]. A simple exercise using
the Diamond Lemma shows that {u%...u¥|(iy,...,i))eN?} is a basis for
k[uy,..., u;]. In particular, the elements u3, ..., u} are linearly independent. Since the
bth power of a -normalizing element is y®-normalizing, each u? is central in A.
Since the image of u? in B is x?, the result follows from (3.7).

(¢} The PBW basis for k[uy,..., u,] shows that the set of all monomials in the z; is
linearly independent, whence the z; are algebraically independent. O

Notation. From now on we will write z; = u?. Thus

Z(A)y = k[ul, ..., ul g1, s Gl

Remarks. (1) Since k[uy,..., u,] is a twist of a d-dimensional polynomial ring it is a
Notherian domain of Gelfand-Kirillov dimension d, and it is a Koszul algebra of
global dimension d.
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As remarked in the previous proof, k[u,,..., u;] has defining relations of the form
uu; = (505 ) uyu;, where (..., , are the eigenvalues of p on B . Since p? =1 these
are bth-roots of 1. In particular, if b|s, then k[uy,..., u;] is commutative. If d = 3 and
3|n, these eigenvalues are the 3 distinct cube roots of 1, so (after relabelling) the
relations are u;u; +, = (®u;4 qu; for i = 1,2, 3 where { is a primitive cube root of 1. If
d =4 and 2|n then the eigenvalues are 1,1, — 1, — 1 (that each p-eigenspace is
2-dimensional comes from the discussion prior to (2.9)).

(2) Since zy,...,z; are algebraically independent it follows that the map
B(P", 1, Op(1)) — k[z4,...,2,] given in (4.2) (for r = 1) is an isomorphism.

Next we determine the defining relations of k[uy,...,us1[ 9155 Gl

Notation. Let M(p,q) be a line module for either the 3-dimensional or 4-
dimensional Sklyanin algebra having a basis {e;;} of the form described earlier. If
m = I y;;e; then we define I(m):= {(i, j)| u;; # 0} and call this the set of bi-degrees
occurring in m.

THEOREM 4.7. Let A be the 3-dimensional Sklyanin algebra. Then there is a relation
in k[uq, u,,us, g of the form

g° + fiug, uz,u3) =0

where f3(uy, Uy, us) is a cubic form in uy, u,, us. In fact, if we identify B(E’, u, ¥’); with
B(E’, 1, %)s, as we may since u*> = 1, then f3(uy, uy, u3) is the cubic defining E’ in P'.

Proof. Write U = k[uy, u,, us]. Since deg(#’) = 3 the same arguments as those
used for B(E, ¢, #) in [4] show that :U = B(P', u, O(1)) —» B(E’, u, &’) is injective in
degrees s and 2s and that ker(f) is generated by a single element of degree 3s, which
we will label f3(uq, u,, us).

Thus f3e UngA and we may write f3 =gw for some we A3, 3. Now f3¢€
k[uyg, uy, uz]™ < Z(A®), whence w e Z(4®) also. Thus

gW € gk[ula Uz, Us, g:|3s—3 = UZSQS/s + Usg25/3 + kgs

(If 5/3 ¢ Z then the terms U,,g¥® and U,g** do not occur.) Hence, there exists
Sfaluy, uy, us) € Uy and fi(uy, us, usz) € U, and ¢ € k such that

fi+ 2,07 + fig*”P +cg* =0

in A. We will show that f, = f; = 0 and that ¢ # 0. If (3, s) = 1 this is easy: since s/3
and 2s/3 are not integers both f, and f; are zero, and by the PBW basis for U, ¢ # 0.
Unfortunately the general case is more complicated. Hence in the rest of the proof we
suppose that 3|s. This ensures that 37 # 0.

We will consider the action of f3 + f,9°° + f19*/* + cg® on the generator of
a line module. To this end, let p,ge E be chosen with the property that
p—q¢3Zt, 2p +q¢ 377 and p + 2q ¢ 3Z7. Then the line [,, through p and ¢
meets E at 3 distinct points. Notice that given any p € E there are infinitely many
choices of g for which this is true (i.e. a general secant line has this property). Fix
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a basis e; for M(p,q) of the type described earlier. Recall that Ae;[i +j]
M(p +(2j —~ i)r,q + 2i — j)r) and if p and g are replaced by p + (2j — i)z and
g + (2i — j)r then the above hypotheses on p and ¢ still hold.

We will consider the bi-degrees occurring in f3eq0, 9> 2€00, 9°°f1€00 and g*eqo,
and will exploit the fact that there must be some cancellation amongst these
bi-degees since (fs + f29°° + f19%7° + cgego = 0. If ue Uy = ku, + ku, + kus,
then I(ueqq) < {(s, 0), (0, s)} by (4.4b). Hence,

H(f3 eOO) < {(339 0)3 (2S7 S), (S’ 25)9 (03 35)}a
I(f2€00) = {(250), (s, 5), (0, 29)},
H(f1e00) = {(s,0), (0, 5)}.

Now consider g-ego € kesg + keyy + keyy + kesq. Since g annihilates every point
module IT(gego) = {(2,1), (1,2)} and by induction

(g'e;) < {( ) + 2, 1) + B, 2) e + B = I}
More particularly, we have
SUBLEMMA: Suppose that 3t # 0, and that

p—g¢ 3, 2p+q¢3Zt and p+ 2q¢2771.

Then H(ge()()) = {(2a 1)9 (19 2)}

Proof. Suppose this is false. For example, suppose that gego € key,. Recall the
discussion in [14,§1] on composition factors of modules of Gelfand—Kirillov
dimension 1. Since [,,E = {p, q,*} consists of 3 distinct points, the three point
modules M(p), M(q), M(r) are nonisomorphic irreducible objects in Proj(4). But
these are all quotients of M(p, g) which are killed by g and, hence, are quotients of
N:= M(p, q)/Ae,,. Therefore, these are the composition factors of N. However,
consider the composition series N o Aeg,/Aey; D Aegy/Aes, = 0. The composition
factors are respectively M(p), M(p + 27)[ ~ 1], M(g — 27)[—2]. Up to isomorphism
in Proj(A) these are M(p), M(p + 31), M(g) from which it follows that r = p + 37 and
by collinearity of these points 2p + g + 3t = 0. However this possibility was ex-
cluded, and from this contradiction the Sublemma follows. O

The hypotheses on p and g allow us to apply the Sublemma with e;; in place of eg.
Therefore induction shows that {(i + 21, j + ), (i + [, j + 2])} < I(g'e;).
Suppose that (2s, 0) € II( f,e00). Then

8s s
(‘é‘a g) € I(g*f2e00)
but a simple calculation shows that

8
(_;7 %) ¢ T1( f3e00) L II(g*f, ego) V I(g’eqo).



48 S. P. SMITH AND J. TATE

Hence the coefficient of ey in (fs + g%°f, + ¢*3f1 + cg%)eoo is nonzero. It
follows that (2s, 0) ¢ II( f,eq0). Similar considerations apply to (0, 2s), from which
we conclude that TI{ f5eq0) < {(s, 5)}. In particular it follows that f, annihilates the
degree 0 component of M(p). But this is true for all pe E so f,M(p) =0 for all
p € E, whence the image of f, in B is zero. But f maps U, injectively to B so
fa=0.

Suppose that (s,0) € I1( f1eq0). Then

Ts 2s
(3‘; —3') € H(stﬁfzeoo)

but

s 25
(‘é‘: —3'> ¢ I1( f3e00) © (g €oo)-
Hence, (5,0) ¢ TI( f1eq0). A similar argument applies to (0,s), whence fiego = 0. It
follows (as for f,) that f; =0.
Hence there is a relation of the form f3 + ¢g® = 0. By the PBW basis for U, ¢ # 0,
so replacing f3 by ¢~ 'f5 gives the result. d

THEOREM 4.8. Let A be the 3-dimensional Sklyanin algebra. The center of A is
Z(A)=k[zy,22,23,9], where z{,22,23 € A,,g € As, and the ideal of relations among
these generators is generated by a single relation of degree 3n of the form

filz1,22,23) + 9" =0 f(3n)=1,
fal(z1,22,23) + 32%¢° + 329 + g" =0 if 3|n,

where f5 is a cubic defining i(E") < P”, and z is a linear form on P" vanishing on the
three images in E” of the nine inflection points of E'.

Proof. The Hilbert series of Z(B) is that of a plane cubic but with the linear forms
in degree n, namely

1—¢3n
) = {1 =y
Since Z(A)/gZ(A) = Z(B) it follows that

1— t3n
Hyw(t) = A=)
Since the Hilbert series of the polynomial ring k[ Z, Z,, Z5, Gl is (1 — ") *(1 — ¢3)7*
it follows that the ideal of relations is generated by a single relation of degree 3n.
Now we show that the relation of degree 3n is of the prescribed form. If (3,n) =1,
then this is just a restatement of (4.7) since u; = z; in that case. So suppose that 3|n.
Let fyeklug,us,u3]3 be as in (4.7). The u; may be labelled such that u; is
(g0 p)-normalizing where { is a primitive cube root of 1. Therefore, since f3 is
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central, it must be a linear combination of u3,u3,u3, u,u,u;s. The coefficient of
u U u; is nonzero, otherwise the images of zy,z,,z; in B would be linearly
dependent. Hence we can rewrite the relation in (4.7) as

Augusty =z + g5,

where zekz; +kz, +kz; and 0 # 1 €k Raising each side to the third power and
rearranging the terms, we obtain a relation of the form

23 — uz 2,25 + 32295+ 3zg% + g" = 0.

Since z3 — uz;z,25 is in the kernel of the map k[z, z,, z3, g] — B and the image of
this map is isomorphic to B(E”, 1, "), it follows that z® — puz,z,z5 vanishes on E”.
Hence, there is a relation of the required form with f3 = z® — uz,z,z5.

Concerning the description of z, the inflection points of E’ are the points where
one of the u; vanishes. Their images in E” are therefore the points where some z;
vanishes, and since z® — uz;z,z; = 0 on E”, these are the points where z vanishes.
Finally, z # 0 since E” is a smooth elliptic curve, not a ‘triangle’. O

Since the embedding of E’ in P’ is obtained via the degree 4 line bundle &7, there
is a pencil of quadrics in P’ containing E’. These may be labelled as 0(z'),{z' € E') in
such a way that Q(z’) is the union of the secant lines {l,,|p' + ¢ = +z'}.

THEOREM 4.9. Let A4 be the 4-dimensional Sklyanin algebra. In k{uy, us, U3, 4, 91,95 ]
there are two relations of the form

rie=filty, Uz, us, ug) + hi(g1,9,) =0 (i=1,2),

where [, f» are linearly independent quadratic forms in uy,u,, Us, 4y, and hy, hy are
degree s forms in g, and g, having no common factor.

Proof. Write U = k[u,,u,,us,u,]. Since deg(#’) =4 the same arguments as
those for B(E, s, #) show that : U = B(P', u, O-(1)) = B(E’, u, &) is injective in
degree s and that ker(f) is generated by two (linearly independent) elements of degree
2s, which we will label fi(uy, 4, us,u4), (i = 1,2).

Since

fieUP < Z(4®) and fieker(f)=g:4 + g24,

it follows that f;€ Z(A®) (g, 4® + g,A?). Hence, by (3.6¢) applied to A, f; e
G1Z(AP) + g, Z(AP). Since deg(f;) = 2s, it follows that

fieUklg1,9:1s + k[ g1, 9272

If s is odd then f; € k[ g1, g2 ]2 If s is even this is not immediately clear, so we write
fi=1lm; + h; with [; a linear form in the u;, m;ek[gy,9,]s and hiek[g1,9:]2s.
Therefore, from now on we suppose that 2|n and we will show that I;m; = 0.

We will consider the action of f; — I;m; — h; on the generator eqo of a line module.
To this end, let p,ge E be chosen with the property that p —g¢2Z7. Fix a
basis e¢; for M(p,q) of the type described earlier. Recall that Ae;[i+j]=x
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M(p+(j—i)r,q+ (i—j)r) and if p and g are replaced by p -+ (j— i)t and
g + (i — j)r then the hypotheses on p and g above still hold.

We will consider the bi-degrees occurring in f;*ego, Iim; - €00, and h;-ego. Since
(f; — Lm; — b;)- e = 0, there must be some cancelling amongst these bi-degrees. If
ue Ug = kuy + ku, + kus + kuy, then I{uey) = {(s,0), (0, s)} by (4.4b). Hence

I1(fi* €00) = {(25,0),(5,5),(0,25)} and TI(;*eoo) < {(s,0),(0,5)}.

Since g, and g, annihilate the point modules M(p) for p e E, Il(g;* eo0) < {(1, 1)},
whence

I(h;* ego) < {(5,5)} and TI(m;-eq0) = {(3,%)}-
Since f; € ker(B), f;*M(p) = 0 for all p e E. Thus, II(f;* eqo) < {(s, 8)}
SUBLEMMA. Suppose that m; # 0. For a dense set of lines

TI(m; - eqo) = {(%, %)}

Proof. Since m; € k[ gy,9, ], it is a product of s/2 linear forms in g4, g,. Hence, we
may write m; = Q(z,)...Q(z,,), where Q(z;) annihilates precisely those line modules
M(p,,q;) such that p; + g € {z;, — 27 — z;}, and acts faithfully on all the other line
modules. In particular, each Q(z;) acts faithfully on a dense set of line modules.
Hence, so does m;, and the result follows. I

Similarly, for a dense set of lines TI(h;* eqo) = {(s, s)}. We may also prove if [; # 0
that for a dense set of lines TI(/;* eg0) = {(s, 5)}. In summary, if [;m; # O there is a
dense set of lines for which

TI(f;* eo0) = {(Sa s)}, I(lim; - eg0) = {(%,§)}, II(h; - ego) = {(s, 5)}-

It follows at once that (f; — l;m; — h;)* eqo # O for these lines. This is a contradiction,
so we conclude that [;m; = 0.

To show that hy, h, have no common factor we need a more precise description
of them. Fix one of the relations f+ h =0 with fe U,, and he k{g,, 9.1, Since
f is central, Uf is a 2-sided ideal of U = B(P’, 1, 0(1))? and, hence, of B(P', 1, 0(1))
by (4.5a). By (4.5b), the line modules (respectively, point modules) for U/Uf are all
of the form °M where M is a line module (respectively, point module) for
B(P', 1, 0(1)) which is killed by f (viewed as an element of B(P’, 1, 0(1))). Since
twisting preserves the variety associated to a linear module, the line (respectively,
point) modules for U/Uf correspond to the lines (respectively, points) lying on the
quadric ¥'(f) < P".

Since fek[g., g, ]2, it annihilates all the M(p) and, since M(p) contains a copy of
M(p°), U/Uf has point modules corresponding to every p°e E’. Therefore,
¥ (f) > E’, and there exists z' € E' such that 7°(f) = Q(z'). Therefore, the line
modules for U/Uf are precisely the M(p',q') for p’ + ¢’ = +7".

Let z € E be such that no two of {Q(z + jbr)|0 < j< s — 1} annihilate the same
line module. Let 2z’ be the image of z in E’. Now choose 0 # f e kf, + kf, such that
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v (f)=0(z') and let f+ h=0 be the corresponding relation. We will show
that
s—1

h=1] Q( + jbr).

j=0
Fix j and pick p, g such that
p+qg=z+jbt and p—qg¢2Zr.

Let p°,g° € E' be the images of p — (s — )t and g — (s — 1)z. Thus, p° + ¢° = 2’ since
the image of 2t in E’ is zero. Therefore, f+M(p°¢°)=0. But M(p° ¢°)
embeds in M(p,q) by (4.4b), so f annihilates M(p,q),. Since f is central 0 =
f*M(p,q) = h- M(p, q). But Anny,, ,;M(p,q) is generated by Q(p + g) € k[g1,9,].
To see this, first observe that this annihilator is a prime ideal since M(p,q) is
critical. This prime ideal is not maximal since M(p,q) is not a B-module. Thus
h is divisible by Q(z + jbt). Since this is true for all j,h has the required
property.

Choose zy,z, such that no two of {Q(z; + jbr)|0 <j < s—1,i = 1,2} annihilate
the same line module. The above argument applied to z; and z, gives relations
fi+ h;=0( =1,2) such that

s—1

hi =[] Qfz: + jbr).

j=0
The careful choice of z; and z, ensures that h; and h, have no common factor. []

THEOREM 4.10. Let A be the 4-dimensional Sklyanin algebra. Then Z(A)=
klz1,22,23,24,01,92] and the ideal of relations is generated by two relations of
degree 2n, both of which are of the form

Qi(zl,22,23,24)+hi(g1,g2)=0 (i=192) !/‘(29’1): 1)
qi{z1, 22, 23, 24) + (21, 22, 23, 24) (g1, 92) + hi(glaQZ)Z =0 (=12 if2ln,

where qq,q, are quadratic forms defining i(E") < P",l; are linear forms and h; e
k[g1,92]as-

Proof. First we show that there are two relations of degree 2n of the prescribed
form. If n is odd then s = n and z; = u;, so the theorem is just a restatement of (4.9).
Suppose that n = 2s, so z; = u?.

We may label the u; such that u; and u, are p-normalizing, whereas u, and u; are
{A_1 = p)-normalizing. Thus

Z(A)ﬁk[ul,...,u4]33 = ku% + e kui -+ ku1u4 -+ kuzu?,.

Let r= fluy,...,us) + B{gy,g,) be any linear combination of the relations
o= fitty,...,us) + hi{g1,g,) occurring in (4.9). If feku? +--- + kuj, then the
images of z,,...,z, in B are linearly dependent, which contradicts the fact that
dim Z(B), = 4. Hence, f¢ ku? + --- + ku?. Therefore, we can choose r{ and r, such
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that
freuuy +ku? + -+ kuZ and f, €euyus + ku? + -+ kul.

Consider r,. This can be written as u,u, = a; — hy where a; ekz, + --- + kz,.
Squaring both sides of this gives a relation

a? —z,z4 — 2a:hy + h2 =0

of the prescribed form with g, = a? — z,z,. From r,, we obtain a similar relation
with g, = a2 — z,z; for some g, € kz; + -+ + z4.

It remains to show that ¢; and g, are defining equations for E”. The same sort of
argument as in the proof of Theorem 4.8 shows that g, and g, vanish on E”, so it
suffices to show that ¢, and ¢, are linearly independent. If ug, + g, = 0 for some
0 # nek then pa? + a2 = pz z4 + z,z3. But this is impossible, since the left-hand
side is a reducible element of the polynomial ring k[z;,...,z4] whereas the right-
hand side is irreducible.

Consider the relations r; and r, as elements of the polynomial ring
k[Z,,Z,,Z5,Z4,G1,G,]. The Hilbert series of this polynomial ring is
(1—t")"*(1 — t?)"2 Since Z(B) = Z(A)/(g1,92), where g,, g, is a regular sequence,

(1+1")?
(1—1t"1 -2

Hy)(t) =

By comparing these two Hilbert series, one sees that if ry, 7, form a regular sequence,
then they generate the ideal of relations for Z(4). Thus it suffices to prove that r; is
irreducible. Write ry = g, + (r; — ¢;) where

q1€klZ,2,,25,Z,] and ry—q,€(Gy,Gy)
If r; is reducible then it factors as a product of homogeneous elements, say
ry =(x+ x")y +y') where

x, vek(Z,,....,Z,] and x|,y €(Gy,Gy).
Thus, g, = xy, but g, is irreducible (since E” is not contained in a hyperplane) so,

without loss of generality, x = 1. But x + x’ is homogeneous, so x + x’ € k. Therefore
r, is irreducible, as required. 0

PROPOSITION 4.11. Let A be a locally finite graded k-algebra which is bounded
below, and suppose that f,,..., fr€ A is a regular sequence of homogeneous central
elements of positive degree. Define B = k[ fy,..., f,] and m = Bf; + -~ + Bf,. Then

{a) A is a free B-module;

(b) Ha(t) = Hplt)" H 4/4(1)-

Proof. Tt follows from the hypotheses that B is a polynomial ring with Hilbert
series Hg(t) = I ¢; {1 — t9) 7%, where d; = deg(fi), and that

H gjma(t) = H4(OIL i1 — t%).
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Choose a graded vector space V < A which maps isomorphically onto A/m4 under
the quotient map A4 — A/mA. The multiplication map A ®, A — A induces a degree
zero map of graded B-modules ¢:B®, V- A, where B® V is given the tensor
product grading. Since

Hpey(t) = Hp(t)H 4, a(t) = H4(t),

@ is an isomorphism if and only if it is surjective. Define X = coker(¢). Apply-
ing the functor {B/m)®z— to B& V-»A4- X -0 gives an exact sequence
V- 4/mA - X/mX — 0. The definition of V ensures that X/mX = 0. Hence, by the
graded version of Nakayama’s lemma, X = 0. O

CORQOLLARY 4.12. In the 4-dimensional Sklyanin algebra, let hy, h, be as in (4.9).
Then k[ gy,g,] is a free k[hy, hy]-module of rank s*, and

(1 _ tZs)Z
Hyggy,0(8) = rt—z)’z“Hk[hx,hz](t)-

Proof. Since hy and h, have no common factor they form a regular sequence on
k(91,921 Thus, k{g;,g9,] is a free k[hy, hy]-module by (4.11), and its rank is given
by evaluating (1 — t%)*(1 —t?) %2 at t = 1. O

PROPOSITION 4.13. Let A be ¢ither the 3-dimensional or 4-dimensional Sklyanin
algebra. Let zy,...,z4 be the central elements in Theorem 4.6. Then A is a finitely
generated k[z4,..., z;]-module.

Proof. By Theorem 3.7, 4 is a finite Z(4)-module, so it is enough to prove that
Z(A) is a finitely generated k{[z,,..., z;]-module. This is clear in the 3-dimensional
case because {4.8) shows that Z(A4) is integral over k[z, z5, z5 ]. In the 4-dimensional
case, g, and g, are integral over k[h, h,]-module by (4.12), and h, and h, are
integral over k[zy,z,,75,24] by (4.10), whence Z(4) = k[z{, 23,23, 24,91,92] 18
finitely generated over k[zy,2,,23,24]. |

5. The Center of o/

Let S = Proj(Z(4)) and let o be the sheaf of (s-algebras such that o/(S)) =
A[f '], for each non-zero homogeneous f e Z(A4). Let & denote the center of 7.
Our goal is to understand %

LEMMA 5.1. Let A be a Z-graded algebra over a field k. Suppose Z(A) =
k(zi1,...,2,], with each z; being a homogeneous nonzero-divisor, of degree n,, say. Let
b:=gcd(ny,..., ny). Suppose A is finite over Z(A). Let S = Proj(Z(A)) and let o/ be
the sheaf of Us-algebras such that </(S,) = Alz;7']o for each i. Let & denote the
center of o/. Then

Spec & = Proj(Z(A®)).
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Proof. Fix an i and write z = z; and n = n;. Since S is covered by the open afline
sets Si,,, we must show that

Z(A[z7]e) = Z(AM)[z7  Jo-

Since the degree of z™! is divisible by b, we have A[z™ '], = A®[z7"],. Hence,
replacing 4 by A% and dividing all degrees by b, we can assume b =1 and 4 = A®.
Similarly,

Alz7 o= AP[z"']o and Z(D[z '] = (Z(4)™) [z To.
So we must show that, if ged(n;) = 1, then
Z((ALz7 Do) = (Z(ALz"* D)o-

This follows from the fact that an element ye A[z™'] which commutes with
elements of degree 0 is in the center of that ring. To show that such a y commutes
with an element x of degree d, say, it is enough to exhibit a central nonzero-divisor u
of degree — d, for then y will commute with xu« and, hence, with x. To construct u,
write

—d=ang + -+ an 4+ Aty
with a; 2 0 for j # i and put u = z{'...z{"...z;" [

THEOREM 35.2. Let A be either the 3-dimensional or 4-dimensional Sklyanin algebra.
Then

Spec # = Proj(Z(4™))
= Proj(k[uy, s, us, 441" [91,92]).
Proof. By Theorem 3.7,
Z(AP) = k[uy, uz, u3,us ][ 91,9,
Again by Theorem 3.7, A is finite over
Z(A)Y=kl[z1,...sZayG1senes Gmls

where each g; is homogeneous of degree a, and each z; is homogeneous of degree n.
The result follows from (5.1). O

Notice that
Proj(k[u;,..., us]™) = Proj(k[u,,..., u;]) = Proj B(P’, 1, Op.(1)) = P".

Therefore, the inclusion k[uy,..., us]® < Z(A"®) induces a morphism Spec Z — P’.
For d = 3, we show that this is an isomorphism and thereby give a new proof of
Artin’s result [1] that Spee Z = P2.

THEOREM 5.3. If A is the 3-dimensional Sklyanin algebra then the natural map
Spec & — P’ is an isomorphism, so Spec & =~ P2
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Proof. For a graded commutative algebra C, Proj(C) = Proj(C¥) so we may
replace a commutative ring by a Veronese subalgebra when computing its Proj.
Hence, by (5.2) Spec Z = Proj(Z(A®)®9). However, Z(A®)39 = k[u,,u,, us ]
by (3.7) and (4.7). But

k[uy,uy,u3] = B(P,1,0(1))° and 63 =1

0 k[uy, uy, u3 19 2= B(P', 1, 0(1))®®, from which the result follows. O

Spec Z FOR THE 4-DIMENSIONAL SKLYANIN ALGEBRA

For the rest of this section A denotes the 4-dimensional Sklyanin algebra. Let
fi + hy, (i = 1,2) be the defining relations in k[uy, u,, us, us, gy, g, ] described in (4.9);
they are of degree 2s.

LEMMA 54.
(@) Z(A®) = k[uy, uz, uz, 1y 1™ Onths.hak[915 921,
(b) Z(AYLSf 7110 = kLuy, a, uz, usJ”LS 7 To Pur sy, s 10k L 915 92, B o
Proof. {(a) Write
R =klhy, h,], U=1Fklu,u;,us,us] and T =k[g{,9,]

Since fi, f, € U™ and they form a regular sequence on U, they also form a regular
sequence on U™, Thus, by (4.11), U™ is a free R-module. Since multiplication gives a
surjective map U™ ®, T — Z(A™), it suffices to show that U™ ®, T and Z(4?)
have the same Hilbert series. Since both U™ and T are free R-modules,

Hymerr(t) = Hyew(t)H r(t)Hg(t) ™ .

However, Z(A®)(g1,9,) = UP/(f1,f2) so (using the fact that g, g, is a regular
sequence)

Hzon(t)Hr(t) ™" = Hye(t)Hglt) ™.

The required equality of Hilbert series follows.
(b} Fix i and write f = f;. By (a) we have

ZAPN S ]=UP S T)[f ' 1=UPLf "] By TS ']

The right-hand side of this is of the form M &g N, where § = So[ /, f 1] Il nis even,
then

M=UP[f "1=UP[f"]1=Molf, [ ']= M, ®s,S.
If n is odd, then
M=M® M) f']=M;®M,)Rs,S.
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Hence, if nis even M &g N = M, ®s N, and if nis odd M & N = (M, ® M,) ®s, N.
However, N = @ N, is a direct sum of §,-submodules, so

(M®SN)O=MO®SGNO ifnis cven
and

(M®SN)0=(M0 ®SQNO)®(M71®SON_”) if n is odd.
However, N_, =0 if n is odd, so in both cases (M ®5N)y = My &g, No. This
proves (b). O

The tensor product decomposition in (5.4b) leads to a fiber product decomposition
of a Zariski dense open subset of Spec Z. To describe this, we first define the
following varieties

S = Proj(k[g1,921),
S’ = Proj(kLf1, f21) = Proj(k[hy, b, ]).

Both P’ and Spec & contain copies of E’, namely

V(f1, f2) = Projk[uy, up, us, us1/(f1, f2)) = E

and

¥(g1,92) = Proj(k[uy, uy, us, us1"[91, 92191, 92)) = E'.
The next proposition describes the relation between these varieties.
PROPOSITION 35.5.

(@) There is a commutative diagram as follows (with the two vertical maps defined on
the complement of the copies of E' in Spec & and P’).

Spec & = P’

-
4

R

(b) The morphism © maps E' < Spec & isomorphically onto E' < P'.
(c) (Spec Z)\E’ = (P'\E’) x5 S.

Proof. (a) The maps in the diagram all arise from the obvious inclusions of the
corresponding subalgebras of Z(4®). For example = is induced by the inclusion
k[uq, sz, 43, us ] < Z(A®P).

(b} This is clear.

{¢) Since P'\E’ is covered by the two open affine sets f; # 0, (Spec Z)\E’ is
covered by the two open affine sets Spec(Z(A®)[fi']o). By (5.4b) this ring
decomposes as a suitable tensor product, thus giving the result. O
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To describe Spec Z in more detail we need to understand the map ¥:S— §/,
which requires a precise description of the relations f; + #; occurring in (4.9). An
explicit description of y is given in Lemma 5.8.

LEMMA 5.6. The map E - Ptkg, + kg.,) defined by z — {z) is a morphism.

Proof. Fix pe E. Write Ry < Rz = 4; @ A, for the spaces of relations for 4 and
B, respectively. The map z — Qz) may be described as a composition of simpler
maps as follows. First take z - z — p. Secondly, let ku + kv = 4; be the space of
linear forms vanishing on the secant line [, ,_,. Thus, ku + kv is an element of the
Grassmanian G(2, A,). We may also describe ku + kv as the orthogonal to the secant
line [,,_,, which makes it clear that the map z —p—ku + kv is a morphism
E - G(2,A4,). By [10, §4] dim((4; ® (ku + kv)) n Rg) = 2, so next we send ku + kv to
this 2-dimensional subspace of Rp. Again by [10,§4], this subspace of Rp has a
1-dimensional image in Ryz/R 4. This may be considered as a point of P(kg, + kg,),
and as such it annihilates A/4Au + Av = M(p, z — p). Hence, it is ©(z). Thus, we have
written z — Q{z) as a composition of maps

E— E— G2, A,) > G(2,Rg) > P(R,/Rp) = Plkgy + kg3),

where the maps G(2, 4) — G(2, Rg) = P(R,4/Rp} are only defined on the image of
the previous map. It is clear that each individual map is a morphism, hence so is their
composition. ]

LEMMA 35.7. If 2’ € E’' ler Q(z'} = P’ denote the quadric containing E' which is the
union of the secant lines 1, , ., for p’ € E'. Let v, and r, be a basis for the defin-
ing relations of kluy,u,,us, s, g1,921- There is a morphism r: E' — Plkry + kry)
such that r(p')= f, + hy, where f, €kl[uy,us,us,uslss vanishes on Q(p’), and
hy € k[ g1, 92125 is a nonzero scalar multiple of

s—1

I Q(p) = [] Q(p + ib1).
i=0

peE is a preimage of p’

The morphism r is of degree 2 and r(p’Y=r(q') if and only if p' = + ¢’

Proof. Tt is already clear from the proof of (4.9) that there is a map
r:E' - P(kry + kry) such that r(p') =f, + h,, where f, € k[uy,...,us],5 vanishes
on Q(p') and h, is some element in k[g;,g,]s. Since the map p' —kf, e
P(kf, + kf>) is a morphism, it follows that r is a morphism. Furthermore, for a dense
set of p’, (4.9) shows that h, is a scalar multiple of Q(p)Q(p + b1)...Q(p + (s — 1)b1),
where p € E is a preimage of p’. Since the map p — Q(p) is a morphism it follows that
h, is a scalar multiple of Q(p)Q(p + b1)...Q(p + (s — L)b1) for all p'. O
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LEMMA 58.

(a) There is a commutative diagram

E-—E'

Lo

s V,g

where W is the map in (5.5a), E — E' is the natural isogeny, E' — S' is the
quotient map for the Z, action p' — — p’ and E — § is the quotient map for the
Z,-action p— — (p + 21) on E.

(b) Denote the image of pe E in S by [ p], and the image of p € E' in S’ by [p'].
Then

[p] = Proj(k[g:,9.1/(Qp)) and [p']l=y([pl)= Projk[hy, h,]1/(hy)).
(c) The map ¥ is of degree s, and its ramification locus is the 2s — 2 points in
{[o+it]eS|lwekE,,0<i<s—2}

which is the image of (E; + Zt)\(E, — 1). The ramification index is 2 at each
point.

Proof. The projective lines

P(kgy + kg,) and S = Proj(k[g:,92])

are dual to one another. The composition E L, P(kg, + kg,)— S, where the second
map is the isomorphism sending a line to its orthogonal, is a morphism by (5.6). Its
fibers are the Z,-orbits, so it is the quotient morphism. By (5.7) the fibers of the
composition

E' > P(khy + khy) — S = Proj(k[hs, 1, 1),

defined by p’ — h, — ¥ (hy), are the sets {p’, — p'}, so this is the quotient map for
the Z,-action. Since  is induced by the inclusion k[hi,h,] < k[g;,g.], the
commutativity of the diagram follows from the fact that Q(p) divides k.. This proves
(a) and (b).

The map S — S’ is of degree s because both vertical maps are of degree 2 and the
isogeny is of degree s. The map E’ — S’ is ramified precisely at the 4 points of (E'),,
the 2-torsion subgroup of E’. Since E — E' is étale of degree s, the composition
E — E’' — 8’ is ramified, with ramification indices 2, at the 4s points lying over (E'),.
This set is E, + Z7. Since E — § is ramified precisely at the 4 points of E, — 1, it
follows that the ramification locus of § — S’ is the image in § of (E;, + ZT)\(E, — 7).
Since there are 4s points in E, 4+ Zz, this image consists of 4(4s —4) =2s —2
points. U
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Let p € E and write p’ for its image in E’. Denote by W(p) the closure of the fiber
6~ Y([p]), and by Q(p") the closure of the fiber 6’ (([ pl)). Thus =: Spec Z — P’
maps W{(p) isomorphically onto @(p’). Since

Q(p) = Ullgrld\r' € E g + 1 =p'}

is a quadric in P’ containing E’ we will also refer to W(p) as a quadric. Since Q(p') is
singular exactly when 2p’ = 0, W(p) is singular exactly when pe E, + Zt. By (5.8¢)
the image of (E, + Z7)\(E; — 1) in § consists of 2(s — 1) points. Since the rami-
fication locus of E—~S is E, — 1, the image of E, +Ztr in § consists of
2(s — 1) + 4 = 2s + 2 points. Thus, exactly 2s + 2 of the quadrics W(p) are singular.

THEOREM 5.9.

(a) The map =:Spec Z — P’ is a flat morphism of degree s.
(b) The ramification locus of n is the union of the 2s — 2 singular quadrics
U W(w + it).
weE2,0<i<s~2

Proof. (a) We must show for each yeSpec % that the scheme theoretic fiber
n~'n(y) is the Spec of an s-dimensional k-algebra. The inclusion {n(y)} < P’
corresponds to a surjective map of graded algebras k[u,, u,, us, us ™ — k[z], where
deg(z) = n, ie. {n(y)} = Proj(k[z]). Hence n~'n(y) = Proj(k[z,g;,g,]), where the
defining relations for k[z, g;, g, ] are obtained by evaluating the relations for Z(4®)
at y. Set w=1z if n is even, and w=1:z* if n is odd. Thus deg(w)=2s and
klz,91,921% = k[w,g,9,1%°.

By (4.9) k[w, g4, g,] is the quotient of the polynomial ring C = k[W, G, G,] by
the ideal (ry,r,) where r;==o;W + hi{G{, G,), (i = 1, 2) for some ay, «, € k. Since h;
and h, are without common factor in k[G,, G, ], the relations r, and r, are without
common factor in k[W, G,, G,]. Hence, r; and r, form a regular sequence in C, and
it follows that the Hilbert series of k[w,g;,¢9,] is

(1—¢2)2H(t) = (L + £ + - + 267 D)1 — ¢2) 74,
i.e. the dimensions are 1,0,2,0,3,0,...,5s~1,0,50,5,0,... so

dim(k[w,g1,g21[w™ " Jo) = s
as required.

{(b) By (5.5c) the map n:(Spec Z)\E' —» P'\E' is obtained from y: S — S’ by base
extension. Standard results imply that = is ramified at y if and only if ¢ is ramified at
8(y). Hence, by (5.8}, n is ramified at y € (Spec Z)\E' if and only if y€ W{(w + it} for
some we E, and some 0 <i<s— 2. Now each W{(p) contains E’, and since the
ramification locus is closed, the result follows. O

PROPOSITION 5.10. Spec & is a normal variety.
Proof. The following short proof was pointed out to us by M. Artin. By [15] 4 is
a maximal order in Fract(4). Two easy exercises show that if z is a central
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homogeneous element then A[z7'] and A[z™ '], are maximal orders. Hence, the
center of A[z~ 1], is integrally closed. Therefore Spec Z is normal, being a union of
open affine sets, each of which is normal. O

The proof of (5.10) shows that o/ is a sheaf of maximal orders over Spec Z. The
next result describes the points of Spec & where &/ is Azumaya.

First we need to know the fat points of 4. A fat point of A is an isomorphism
class of a 1-critical graded A-module in the category Proj{4). More details may be
found in [1], but we warn the reader that, in contrast to [1], we do not insist that
a fat point be of multiplicity > 1. Thus, each point module gives a fat point. Each
fat point is represented by a graded A-module which is generated in degree zero
and has constant Hilbert series. Such a representative is unique up to isomorphism
of graded A-modules, and is called a fat point module (see [1], [5], [14]). By [5,
Proposition 7.5], if z is a nonzero homogeneous central element of A4, there is a
functorial bijection between the finite-dimensional simple A[z~!]y-modules and
the fat points for 4 which have no z-torsion. Under this bijection a fat point
module F corresponds to F[z™'],. Moreover, the multiplicity of the fat point
equals the dimension of the corresponding simple module.

It is proved in [14] that A[z~'], satisfies a polynomial identity of degree 2s.
Therefore, by the Artin—Procesi Theorem, A[z '], is Azumaya of rank s? if and only
if every simple A[z~!],-module is of dimension s. Since the annihilator of a fat point
module is prime, a fat point module is supported at a unique point of Spec Z. Strictly
speaking, we should speak of the support of the .o/-module # associated to F, which
is defined by #(S(,;) = F[z™'],. Hence, y € Spec & is a non-Azumaya point for < if
and only y is the support of a fat point module of multiplicity <s.

The fat points for A have been classified in [14]: there is a 3-parameter family of
fat points of multiplicity s, each p e E gives a fat point of multiplicity 1, namely the
class of the point module M(p), and for each we E, and each j=0,1,...,s — 2 there
is a fat point module labelled F(w + j7) which is of multiplicity j + 1. These are all
the fat points. Hence, if s > 1, the non-Azumaya points of Spec & are the points
which support cither a point module M(p) or one of the F{w + jz). The modules
F{w + jt) are defined in [14], but the only property of them which we will use is that
there is a nonzero degree zero A-module map M{(p, ¢) — F(w + jt) whenever p,ge E
are such that p + g = o + jr.

If s =1 it follows from the above discussion that o/ is Azumaya at all points of
Spec Z, and from (5.9) that 7n:Spec & — P’ is an isomorphism. Therefore, for the
remainder of the paper, we assume that s > 1, or equivalently that n # 1, 2.

THEOREM 5.11.

(@) Let peE. Then the support of the point module M(p) is p'— (s — )7’ e
E’ = Spec Z.

(b) Let weE, and 0<j<s— 2. Then the support of the fat point module
F(w + jt) is the singular point of W(w + jt).
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(c) The non-Azumaya points of o in Spec Z are the points of E' and the singular
points of the quadrics {W(w + jt)|we E,;,0<j<s—2}. In particular, the
non-Azumaya locus is of codimension > 1 in Spec Z.

Proof. (a) By (4.4a) M(p) contains a copy of the point module M(p°) for
klug,us,us,us] where p° = p’ — (s — 1)7’. Hence the support of M(p) in P’ is p°.
Since the inclusion E’'— P’ is the composition E’— Spec Z — P’ and M(p) is
supported at a single point of Spec &, the result follows.

(b) Let y e Spec & denote the support of F(w + jr). Suppose that p, g € E are such
that p+ 9= +jr and p — g ¢2Zt. Since there is a nonzero A-module map
M(p,q) — F(ow + j1), Q(w + jt) annihilates F(w + jt). Hence, y e ¥ (Qw + j1)) =
W{(w + j7). Since = maps W(w + jr) isomorphically onto Q(w’ + j7'} it is enough
to show that z(y) is a singular point of Q(w’ + jt'). Notice that 2(w’ + jt'} = 0, so
this quadric is singular.

Since the map n:SpecZ — P’ arises from the inclusion kluq,...,u,]" c
Z(A®),n(y) is the support of F(w +jt) as a k[uy,u,,us,us]™-module. By
(4.4b) the k[u,,...,u,]-module generated by M(p,q), is isomorphic to the line
module M(p©,q°). Hence there is a nonzero k[u,..., us ]-module homomorphism
M(p,q°) = F(w + jt), so =n(y) is contained in the support of M(p°q°) as a
k[uy,us, us,us]™-module. But k[uy,...,u,] is a twist of the polynomial ring
B(P', 1, 0s.(1)) and M(p°,q°) is the twist of the line module for B(P’ 1, Op(1))
corresponding to the secant line p°q°. It follows that the support of M(p®, ¢°) is p°q°
which lies on Q(p° + ¢°) = Q(w’ + jt'). As we vary p and g, we see that n( y) lies on
infinitely many of the lines on Q(w’ + jt'), so #(y) must be the singular point of this
quadric.

(c) This follows from the discussion prior to the lemma. O

THEOREM 5.12. The singular locus of Spec Z is the union of E' and the vertices of
the singular quadrics W(w + it) for o6 E; and 0 < i< s — 2.

Proof. Let ye(Spec Z)\E' = (P'\E’) xs §. A criterion for the singularity of a
point in a fiber product is given in [7, Corollaire 17.13.6]. Since S’ is a curve this
criterion says that y is singular if and only if the differentials dys and d6’ vanish at
O(y) and n(y) respectively. This is equivalent to 8(y) being ramified over S’ and
n( y) being singular on its fiber over §’, which is the quadric Q(p’) containing it. By
(5.8¢), and the fact that 7 is an isomorphism on each quadric, this is equivalent to y
being the singular point of W{w + it) for some we E, and 0 <i<s— 2.

To show that Spec & is singular along E’ we use a method suggested by M.
Artin. Tt suffices to show that the generic point of E’ is singular. But the generic
point of E’ is of codimension 2, so if its local ring were regular, then o7, which is a
maximal order, would be Azumaya there because the non-Azumaya locus has
codimension > 1. But the set of points where <7 is Azumaya is open, so there
would be some closed points of E’ where o/ is Azumaya, thus contradicting
(5.11). O
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Remark. The fact that the singular locus and the non-Azumaya locus are
the same holds in rather general circumstances. In [9] L. LeBruyn proves that
if A is a positively graded, Auslander-regular algebra with the Cohen-Macaulay
property (as our A is), and A is a finite module over a Notherian central
subalgebra, and the non-Azumaya locus of the corresponding ./ is of codi-
mension > 1, then the non-Azumaya locus coincides with the singular locus of
Spec Z.

PROPOSITION 5.13. Spec & is a rational variety, but is not isomorphic to P>.

Proof. We define a map ¢:Spec Z — P! x P2 on a dense open subset of Spec 2
as follows. The first component of ¢ is the map 0:Spec & — S, and the second
component is the composition yn, where y is the projection P’ — P2 with center
some point p’e E’. Since p’ is in Q(q') for each q'€ E’, y gives a birational
isomorphism Q(q’) — P2. Hence for each q € E, yr gives a birational isomorphism
W(q) — P2. It follows that ¢ is injective, and hence an isomorphism on its domain of
definition.

Since Spec % is singular, it is certainly not isomorphic to P> O
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