The Brouwer fixed point theorem

John H. Palmieri

Department of Mathematics University of Washington

ACMS seminar, 3 March 2011

Suppose that S is a set. A function $f : S \to S$ has a fixed point if there is an element $x \in S$ so that f(x) = x. A fixed point theorem is a theorem like this: with some conditions on S or f or both, f must have a fixed point.

Examples

- Any contraction from \mathbb{R} to \mathbb{R} has a fixed point.
- The intermediate value theorem implies that every continuous function f : [0, 1] → [0, 1] has a fixed point.

My topic: the Brouwer fixed point theorem, which generalizes both of these.

A function $f:[0,1] \rightarrow [0,1]$ is a contraction if f contracts distances: for all $x_1, x_2 \in [0,1]$,

$$|x_1 - x_2| > |f(x_1) - f(x_2)|.$$

Theorem

Any contraction $f : [0,1] \rightarrow [0,1]$ has a unique fixed point.

Outline of proof.

Pick any $x_0 \in [0,1]$. Define a sequence $\{x_0, x_1, x_2, \dots\}$ by

$$x_1 = f(x_0) x_2 = f(x_1) = f(f(x_0)) x_3 = f(x_2) = f(f(f(x_0)))$$

Then $\lim_{n\to\infty} x_n$ is the (unique) fixed point of f.

Consider $f(x) = \cos x$ on [0, 1]. Let $x_0 = 1/5$ and let $x_1 = f(x_0)$. Let $x_2 = f(x_1)$. Let $x_3 = f(x_2)$. Iterate 20 more times... (The actual fixed point is approximately 0.739.)

The same theorem holds in 2 (and higher) dimensions

Examples	
 Maps 	
2 Disks	

The Brouwer fixed point theorem removes the contraction condition.

Theorem

Let S be the unit interval [0,1] or the unit square or the unit cube or ... Let $f: S \to S$ be a continuous function. Then f has a fixed point.

- The fixed point need not be unique.
- There is no obvious limit for finding it: consider rotations or the following example.

Consider f(x) = 1 - x on [0, 1]. Let $x_0 = 1/5$, let $x_1 = f(x_0)$, let $x_2 = f(x_1)$, etc. Then

$$x_0 = x_2 = x_4 = \dots = 1/5,$$

 $x_1 = x_3 = x_5 = \dots = 4/5.$

Two subsets X and Y of \mathbb{R}^2 are topologically equivalent (or homeomorphic) if there are continuous bijections $g: X \to Y$ and $g^{-1}: Y \to X$.

Examples

For example, the following are all topologically equivalent to each other:

- disk of radius 1: $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$
- disk of radius 2
- any disk
- triangle
- quadrilateral
- pentagon
- polygon

Theorem (The Brouwer fixed point theorem in \mathbb{R}^n)

Fix an integer $n \ge 0$ and let $D \subset \mathbb{R}^n$ be the unit disk:

$$D = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| \le 1 \}.$$

Then any continuous function $f : D \rightarrow D$ has a fixed point.

Proposition

Suppose that X and Y are topologically equivalent, and that every continuous function $f : X \to X$ has a fixed point. Then every continuous function $h : Y \to Y$ has a fixed point.

Proof of proposition.

Suppose that X and Y are topologically equivalent, and suppose that $h: Y \rightarrow Y$ is continuous. Consider

Since the bottom function will have a fixed point, so will the top one: if $g^{-1} \circ h \circ g(x) = x$, then g(x) is a fixed point for *h*: applying *g* to both sides gives h(g(x)) = g(x).

Introduction	Contractions	The Brouwer fixed point theorem	Sperner's lemma	Brouwer again

Examples

- contractions
- maps
- salad dressing, cocktails
- the fundamental theorem of algebra
- every real $n \times n$ matrix with all positive entries has a positive eigenvalue
- Hex can't end in a draw
- existence of Nash equilibrium

Theorem (The Brouwer fixed point theorem in \mathbb{R}^2)

Let $D \subset \mathbb{R}^2$ be the unit disk. Then any continuous function $f: D \to D$ has a fixed point.

There are many proofs of the Brouwer fixed point theorem, and I'm going to describe one using a result from combinatorics. First, because of the proposition, we can replace D with anything topologically equivalent to it. We will work with a triangle, instead.

Now for some combinatorics. Suppose T is a triangle, and suppose it has been subdivided into smaller triangles. Label each vertex with A, B, or C according to these rules:

- the vertices of the original triangle all have different labels
- on the side AB, all of the vertices are either A or B
- similarly for the other sides
- (no restrictions on the labels of vertices in the middle)

This is called a Sperner labeling. In a Sperner labeling, a triangle is called complete if its vertices have all three labels.

Theorem (Sperner's lemma)

At least one triangle in a Sperner labeling is complete.

Proof of Sperner's lemma:

- by dimension. In dimension 1: easy.
- In dimension 1: actually prove that there are an odd number of "complete" edges. (Count vertices labeled *A*.)
- In dimension 2: count the number of edges labeled AB:

 $x = #\{$ triangles labeled *AAB* or *ABB* $\}$ $y = #\{$ triangles labeled *ABC* $\}.$

Then we get 2x + y.

- On the other hand, if i is the number of AB edges on the inside and o is the number on the outside, then we get 2i + o.
- That is, 2x + y = 2i + o.
- Since *o* is odd, *y* must be odd.

Proof of the Brouwer fixed point theorem in \mathbb{R}^2 : Let T be a triangle, as above, and suppose $f : T \to T$ is continuous.

For every point x in T, draw an arrow from x to f(x). Chop T into smaller triangles. Label each vertex: label A if the arrow points northeast, label B if the arrow points northwest, label C if any other direction. This produces a Sperner labeling. Therefore there is a complete triangle with vertices A_1 , B_1 , C_1 .

Chop T into even smaller triangles and find another, smaller, complete triangle $A_2B_2C_2$. Repeat, using smaller and smaller triangles, getting complete triangles $A_nB_nC_n$ for each $n \ge 1$. By a basic fact in topology (compactness of T), the set of points $\{A_1, A_2, A_3, ...\}$ has a limit point P.

Since the triangles get smaller and smaller, P is also a limit point of $\{B_1, B_2, \ldots\}$ and of $\{C_1, C_2, \ldots\}$. So P is a point whose arrow must point northeast, northwest, and south, simultaneously. So the

In higher dimensions: the obvious generalization of Sperner's lemma holds in \mathbb{R}^n for any *n*, and using it, one can prove the obvious generalization of the Brouwer fixed point theorem.

Theorem (The Brouwer fixed point theorem in $\mathbb{R}^n)$

Fix an integer $n \ge 0$ and let $D \subset \mathbb{R}^n$ be the unit disk:

 $D = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| \le 1 \}.$

Then any continuous function $f : D \rightarrow D$ has a fixed point. The same is true if D is replaced by any space homeomorphic to it.

The Brouwer fixed point theorem

Brought to you by:

L. E. J. Brouwer

Emanuel Sperner