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Abstract

In this thesis we explore the stochastic domination in determinantal pro-

cesses. Lyons (2003) showed that if K1 ≤ K2 are two finite rank projection

kernels and P1, P2 are determinantal measures associated with them, then

P2 stochastically dominates P1, written P1 ≺ P2, that is for every increas-

ing event A we have P1(A) ≤ P2(A). We give a simpler proof of Lyons’

result which avoids the machinery of exterior algebra used in the original

proof of Lyons and also provides a unified approach of proving the result

in discrete as well as continuous case.

As an application of the above result, we will obtain the stochastic domi-

nation between the largest eigenvalue of Wishart matrix ensemble W (n, n)

and W (n−1, n+1). It is well known that the largest eigenvalue of Wishart

ensemble W (m,n) has the same distribution as the directed last-passage

time G(m,n) on Z2 with i.i.d. exponential weights. We, thus, obtain

stochastic domination between G(n, n) and G(n − 1, n + 1)— answering

a question of R. Basu and S. Ganguly.

We also prove another stochastic domination result which combined with

the Lyons’ result gives the stochastic domination between the largest

eigenvalues of Meixner ensemble M(n, n) and M(n− 1, n + 1). It is also

known that the largest eigenvalue of the Meixner ensemble M(m,n) has

the same distribution as the directed last passage time G(m,n) on Z2 with

i.i.d. geometric weights, which in turn proves that the directed last pas-

sage time (with i.i.d. geometric weights) G(n, n) stochastically dominates

G(n− 1, n+ 1).
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Chapter 1

Point processes

This chapter aims to provide the background for the upcoming chapters. The primary

object of study in this thesis is a determinantal point process and stochatic domination

for a special type of determinantal process. Before we specialize to the main theme

of the thesis, we will introduce a general point process. There are different possible

approaches to introduce the point processes, some of which are specially suitable for

specific kind of point processes. The two common approaches to the theory of point

process is a) through random sequence of points, and b) through the theory of random

measures. In this chapter we briefly describe the two approaches.

In order to give a complete background for the upcoming chapters we will also

describe the notion on stochastic domination and coupling in this chapter.

1.1 Definitions and Examples

Roughly speaking, a point process is a probability measure on the space of locally

finite configurations in some locally compact Polish space. Much of the theory of the

point process is inspired from physics and inadvertently a lot of terminology has been

borrowed from physics. The points in a configuration are also referred to as particles.

Before we give a rigorous definition of a point process, let us look into some simple

examples to get an intuition.

Example 1. Let X be a subset of N which contains every natural number with

probability p independently. X is a random subset of N. This is an example of a

point process.

The above example is of course too simplistic but it contains the key idea that a

point-process is simply a random subset of some set. Another simple example of a

point process is given below.

2



Example 2. Consider a 3 × 3 matrix with each entry is independently distributed

according to a Bernoulli p distribution. And let X be the set of eigenvalue of such

a matrix. It is clear that X is a random subset of C, and is an example of a point

process.

Note that there are only 29 possible matrices in the above example. Using a

computer one can explicitly write down all possible values X takes, with their exact

probabilities. Also note that there is nothing special about 3, or about the Bernoulli

random variables. One can in general start with any random matrix ensemble and

the set of eigenvalues will give a point process on C. We will talk more about such

processes later.

With the above two examples we are now prepared to make a definition for the

point process. As we have already remarked a (simple) point process on a set S is a

random subset of S. In order to make this intuition rigorous, we start by identifying

a random set with a random (Radon) measure on the Borel σ-algebra of S. Note

that given a locally finite subset A of S, we can associate a measure µA on S defined

by µA =
∑
a∈A

δa. The locally finite assumption on A guarantees that µA is a Radon

measure. On the other hand, if we have a Radon measure η which only takes non-

negative integer values (or possibly infinity), then one can similarly associate it with

a locally finite configuration (i.e. a multiset) on S. This allows us to see point process

as a ‘random variable’ taking values in the space of Radon measures on S. To make

this into a formal definition, we shall always take S to be a locally compact Polish

space with a Radon measure µ. Denote by M(S), the collection of Radon measures

on the Borel σ-algebra of S which takes values in N ∪ {0,∞}. Equip the collection

M(S) with the vague topology (the topology which M(S) inherits as the subspace

of C0(S)∗), that is, µn → µ in M(S) if
∫
fdµn →

∫
fdµ for every f ∈ C0(S).

It is well known thatM(S) is a complete separable metric space. This identifica-

tion allows us to define a point process as a random variable on (S, µ) taking value

in M(S).

Definition 3 (Point Process). A point process X on (S, µ) is a random non-negative

integer valued Radon measure on S. It is called a simple point process if for every

s ∈ S, we have X ({s}) ≤ 1 almost surely.

It is instructive to think of a simple point process as a random discrete subset of

S. It should be pointed out that by the definition of the simple point process, X (D)

is the random variable which counts the number of points (or particles) in the set D,
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for any Borel subset D ⊂ S. The measurability of X turns out to be equivalent to

the measurability of random variables X (D) for every Borel subset D ⊂ S.

Let us explore a few more examples to understand these point processes better.

Example 4 (Discrete Poisson process). Let S be at most countable set with a Radon

measure µ. And let X be random multiset of S where the multiplicity of each x ∈ X
is an independent Poisson with intensity µ{x}. Equivalently X is random measure de-

fined as
∑
x∈S

Pxδx, where {Px ∼ Pois(µ{x})} is independent family of Poisson random

variable.

The above example also affords us an example of non-simple point process. We

do have a continuous analogue of the above process which we record below with a

caution that the existence of a process with the properties described below is not at

all immediate. We refer the interested reader to [5].

Example 5 (General Poisson process). Let S be a locally compact Polish space with

a Radon measure µ. Let X be the process such that for any A ⊂ S of finite measure,

the number of points in X (A) is distributed by Poisson random variable PA with

intensity µ(A) ≤ ∞. And for any collection of disjoint subsets A1, A2, . . . , Ak of finite

measure the collection of random variables {PAi : 1 ≤ i ≤ k} is independent.

We now turn towards the question of describing a point process. Inspired by the

general theory of stochastic processes, one would imagine that the natural way to

describe a point process would be by describing the probabilities of its cylinder sets

i.e. by specifying the Pr[X (Bi) = ki, 1 ≤ i ≤ m] for all m ≥ 1 and Borel subsets

Bi ⊂ S. Of course, in order to define a point process the assignment of probabilities

to the cylinder sets must be consistent meaning that∑
0≤km+1≤∞

Pr[X (Bi) = ki, 1 ≤ i ≤ m+ 1] = Pr[X (Bi) = ki, 1 ≤ i ≤ m].

This indeed is useful and very much in the spirit of general theory of stochastic

processes. But this is not the most preferred or the most amenable way to describe

a point process. The distribution of a point process is most often described by its

joint intensities/correlation functions. Of course, there are other ways to describe a

point process but we will not get into details here. We also caution the reader the

joint intensities do not always exist and even when they do, they need not completely

determine a point process, but for all our purposes specifying the joint intensities

would be enough. For a short but beautiful discussion of joint intensities we suggest
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the reader to look into Chapter 1 of [9], and also the survey paper [8], which contain

everything necessary for our purposes. For a full treatment of theory of point-process

and understanding full nuances, we also refer the reader to [5]. Here we content

ourselves with the definitions and facts that would be useful to us later.

Definition 6 (Joint Intensity). Let X be a simple point process on (S, µ). A sym-

metric, non-negative, locally integrable function ρk : Sk → R is k-th joint-intensity

(or correlation function) of X if for any family of mutually disjoint Borel subsets

D1, . . . , Dk ∫
k∏
i=1

Di

ρk(x1, . . . , xk)dµ(x1) . . . dµ(xk) = E

[
k∏
i=1

X (Di)

]
.

It is clear that if the joint intensities exist, they are determined uniquely (up to

almost everywhere equivalence). The key object of study in this thesis is a class of

processes called determinantal processes for which the existence of correlation func-

tions/ joint intensities is forced by the definition. Therefore, we will not spend much

time on the joint intensities here.

For the sake of completeness we remark that the joint intensities determine the

law of the point process if for every compact set D ⊆ S, the probabilities

Pr[X (D) ≥ k] ≤ exp(−ck), k ≥ 1

for some positive constant c. The proof of this fact is simple and follows from the fact

that under above conditions, the random vector (X (D1, ) . . . ,X (Dk)) has convergent

Laplace transform in a neighborhood of origin for any compact set D1, . . . , Dk. This

allows one to uniquely specify the finite dimensional distributions of the process.

Those who are not satisfied with this intuition and insist upon a detailed proof are

referred to the chapter 1 of [9]. We find it appropriate to mention that the joint-

intensities of a point process can be thought of as the counterpart of the moments

(more precisely, of factorial moments) of a random variable. It is not hard to see that

E

((
X (D)

k

)
k!

)
=

∫
Dk

ρk(x1, . . . , xk)
∏
i≤k

dµ(xi).

The classical moment problem concerns the question of determining random variable

with first n-moments specified. The similar questions have been asked in the context

of point process by specifying the first few joint-intensities. This does not concern us
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at this moment, but the beauty of this subject rightfully demands its mention and

we refer the reader to [10] for the details.

We end this section by pointing out that for a point-process with fixed determin-

istic total number of points, say n, all the joint intensities ρk become identically 0

for k > n. Another thing which happens is that one can determine the lower order

joint-intensities from ρn. More precisely we have that

ρk(x1, . . . , xk) =
1

(n− k)!

∫
Sn−k

ρn(x1, . . . , xn)
∏
i>k

dµ(xi).

To see that it is something worth mentioning, consider the following very simple

example of two point processes on a finite set S = {1, 2, 3}. The first process, say

X1, is obtained by choosing each element from S independently with probability 1
2
.

Note that the highest order correlation function P(1, 2, 3 ∈ X1) = 1
8
, while ρ2(x, y) =

P(x, y ∈ X1) = 1
4

for any x 6= y. Now, consider another process X2 on the same

set S defined by the following law. Let 1 ∈ X2. And choose 2 with probability
1
4

while 3 with probability 1
2

independently. Once again P(1, 2, 3 ∈ X2) = 1
8
, but

P(1, 3 ∈ X2) = 1
2
,P(1, 2 ∈ X2) = 1

4
and P(2, 3 ∈ X2) = 1

8
. This simple example

illustrates that the lower order correlation functions are not always determined by

the top-order correlation functions.

1.2 Stochastic domination and coupling

In this subsection we will introduce the notion of stochastic domination and coupling.

Thanks to a theorem due to Strassen[16] these two notions are very intimately related

.

Let us start with some motivation. Consider a sequence of random variables Xi

and define Mn to be the maximum of {Xi : 1 ≤ i ≤ n}. It is clear that Mn ≤ Mn+1,

and this inequality can be interpreted in strongest possible sense. Meaning, if we

compare the two random variables Mn and Mn+1 for each ‘sample’, we will see that

Mn(ω) ≤Mn+1(ω). A similar example would be obtained if we consider Sn :=
∑

1≤i≤n
Yi

where Yi are all non-negative random variables. We observe that Sn ≤ Sn+1, and once

again the inequality holds true for each ω. Let us now look at another example which

is slightly more illuminating.

Example 7. Let X = Xλ and Y = Yµ be two Poisson random variable with rate

λ and µ, respectively. Suppose λ ≤ µ. Very naively, one might want to think that

X ≤ Y in some suitable sense. Here, we can not say that X(ω) ≤ Y (ω) for each ω.
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But, intuitively we know that Y is likely to be bigger than X. This intuition can be

translated into rigorous mathematics by noticing that for every real x,

P(X ≥ x) ≤ P(Y ≥ x).

Although one can compute the above two probabilities explicitly and show that the

above inequality is indeed true, here we give an alternate proof which also serves a

greater goal.

We first recall that sum of two independent Poisson random variables P1 and P2

with rate µ1, µ2 respectively, is again a Poisson random variable with rate µ1 + µ2.

Therefore, we define (on some probability space) a Poisson random variable X ′
d
= Xλ

and a Poisson random variable Z, which is independent of X ′ and has rate µ − λ.

By our previous remark Yµ =d X ′ + Z. We can immediately see that on this new

probability space X ′ ≤ X ′ + Z (almost surely), and therefore

P(X ≥ x) = P(X ′ ≥ x) ≤ P(X ′ + Z ≥ x) = P(Y ≥ x).

We pause to iterate that we constructed two random variables Y
d
= Y ′ := X ′ +Z

and X
d
= X ′, on some probability space such that X ′ ≤ Y ′ almost surely. This is

an instance of coupling, that is a realization of (X ′, Y ′) on same probability space

such that their marginals agree with the distribution of X and Y . With a little

thought, one may find it natural to say that Y stochastically dominates X if we can

construct a coupling as in the previous example. To restore one’s faith in the justice,

this turns out to be an equivalent way of defining the stochastic domination and is a

well-known result due to Strassen[16], which we have included as Theorem 11 for the

sake of completeness.

Definition 8 (Increasing set). Let (Ω,≤) be a partially ordered set (with the partial

order ≤). A subset A ⊆ Ω is said to be increasing if ω1 ∈ A whenever ω0 ≤ ω1 for

some ω0 ∈ A.

Definition 9 (Stochastic domination for probability measures). Let (Ω,F ,≤) be a

partially ordered measurable space(that is Ω is a partially ordered set equipped with

a sigma algebra). Let P1 and P2 be two probability measures on (Ω,F ,≤). We say

that P1 is stochastically dominated by P2 (with respect to partial order ≤), denoted

as P1 ≺ P2, if P1(A) ≤ P2(A) for every increasing subset A ∈ F .
It is important to note that the whether a subset A ∈ Ω is increasing or not de-

pends very much on the partial order on the set Ω, and as a consequence an statement

like P1 ≺ P2 is meaningful only when the partial order on the underlying space Ω is
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fixed. But whenever the partial order in question would be clear from the context,

we will just write P1 ≺ P2 without any mention of the partial order.

As we remarked in the beginning, the notion of Stochastic domination is intimately

related to the idea of coupling. Before we end this section, we record a theorem of

Strassen which connects coupling with the Stochastic domination. The traditional

wisdom regarding coupling is ‘to have the same source of randomness’ for two random

variables, which allows one to compare them.

Definition 10 (Coupling). Let X and Y be two random variables on (Ω1,F1,P1)

and (Ω2,F2,P2) respectively. A coupling of X and Y is a random vector (X ′, Y ′) on

a new probability space (Ω,F ,P) such that X ′ =d X and Y ′ =d Y.

Theorem 11 (Strassen, 1965). Let (Ω,≺) be a partially ordered finite set with two

probability measures, µ1 and µ2. The following are equivalent:

• There is a probability measure ν on {(x, y) ∈ Ω × Ω : x � y} whose coordinate

projections are µi.

• For each increasing subset A ⊆ Ω, we have µ1(A) ≤ µ2(A).

The first statement in the theorem is essentially the existence of a coupling i.e.

existence of a measure on the product space with the correct marginals, while the

second statement is of course saying that µ1 is stochastically smaller than µ2. Observe

that under the measure ν almost surely the first component is smaller than the second,

which is analogous to the construction we did in the case of Poisson random variables.

An elegant proof of the above theorem using ‘min-cut max-flow theorem’ can be

found in Chapter 10 (Theorem 10.4) [13]. In the remaining of the thesis we will not

be concerned with any explicit coupling.
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Chapter 2

Determinantal processes

In this chapter we introduce the notion of the determinantal point processes. We also

record some key properties of these processes which shall be useful later. In order to

facilitate the understanding of determinantal processes, we start with discrete case

and study the example of the Uniform spanning tree. We will also record some

interesting examples of determinantal processes in continuous setting.

2.1 Definition and properties

As we have already noted that a point process X is a random discrete subset of a

locally compact Polish space. We now turn towards a special class of point processes

which has made its appearance in many different areas of probability, namely the

determinantal processes. The systematic study of the determinantal processes began

with Macchi’s work (1975) on ‘fermionic processes’, although the use of determinantal

processes in random matrix theory was known since early 60s. One crucial feature of

‘fermionic’ particles is that they repel each other and determinantal processes capture

this interaction. Before we begin the discussion of determinantal processes we remind

the reader that throughout this chapter (S, µ) will be a locally compact Polish space.

Definition 12. A point process X on (S, µ) is said to be determinantal if it is simple

and there exist a locally integrable function K : S × S → C such that

ρk(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤k

for every k ≥ 1.

Determinantal processes satisfy many algebraic identities and that is probably one

reason why these processes are so ubiquitous.
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We recall that for a general point process the existence of correlation functions

is not guaranteed. For a determinantal process the existence of correlation functions

is a part of the definition. One may imagine that there would be other processes

with similar definitions in which the correlation functions are given by some other

algebraic quantities instead of determinant viz. permanent, immanant or pfaffian etc.

We wish to point out that such processes have been indeed defined and have been

studied. We will not pursue the subject here, but we refer the interested reader to

[15], [3], [8], [9] for the definitions and examples of such processes which has been of

interest.

Coming back to the determinantal processes, we notice that the kernel K can not

be completely arbitrary. For example, as the joint intensities are non-negative and

locally integrable it follows that det(K(xi, xj))1≤i,j≤k must be non-negative and locally

integrable w.r.t. µ⊗k. There are other caveats in the definition which one should be

careful about. For example, the first correlation function of a determinantal process

is given by ρ1(x) = K(x, x). But as a general measurable function is defined only upto

almost everywhere equivalence, the function K(x, x) might not even be well-defined

(if µ is non-atomic the diagonal has measure zero). Of course there are similar issues

with higher correlation functions as well. Moreover, the existence and uniqueness of

a determinantal process is not immediately obvious from the definition above.

It is not hard to see that one can modify the measure and Kernel of a deter-

minantal process together without changing the process. For example, consider a

determinantal process on (S, µ) with kernel K. Let f : S → C be a function such

that 1
f

is locally square integrable. Define a new measure dµf = 1
|f |2dµ and kernel

Kf (x, y) = f(x)K(x, y)f(y). Then, the same determinantal process can be treated

as a determinantal process on (S, µf ) with the kernel Kf . This shows that there is

at least a limited amount of freedom available to us in choosing the measure and

kernel pair. In fact, we will exploit this freedom later when we would compare two

determinantal processes.

In the upcoming sections we will see some examples of determinantal processes in

discrete as well as continuous case. In discrete case – that is when S is an at most

countable set with some random measure (for example counting measure) – the issue

of well-definedness of the correlation function does not arise. Similarly, in the general

case if the kernel K(x, y) is continuous, the problem is resolved. The examples which

we will be dealing with will be of this nature. Therefore, we will not worry about

this issue. Yet for the sake of completeness, we must add that the continuity of K is

indeed very restrictive and is not required for K(x, x) to be well-define.
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Recall that a kernel K is locally-square integrable on S2, if∫
D

|K(x, y)|2dµ(x)dµ(y) <∞,

for every compact set D ⊆ S2. Such a kernel K defines an integral operator K on

L2(S, µ). The restriction of the operator K on L2(D,µ), say KD, is then a Hilbert-

Schmidt operator, in particular, it is compact. If additionally we assume thatK(x, y) =

K(y, x), then the integral operator defined by K is also self-adjoint. From the spectral

theorem for compact self adjoint operators, we have that there are at most countably

many distinct eigenvalues of KD and all the eigenvalues (except possibly 0,) have fi-

nite multiplicities. Moreover, L2(S, µ) admits an orthonormal basis of eigenfunctions

{ϕi} of K and we have the following representation for the kernel K,

K(x, y)
L2

=
∞∑
i=1

λiϕi(x)ϕi(y).

However the above equality holds only in L2, and therefore K(x, x) is still not well-

defined. Therefore, we make an extra assumption and assume that the integral op-

erator K associated with the kernel K is trace-class i.e.
∞∑
i

|λi| < ∞. With the

assumption that K is trace-class, we can write K(x, y) =
∞∑
i=1

λiϕi(x)ϕi(y), where the

sum in the left hand side converges absolutely almost everywhere, that is, there exists

S1 ⊆ S such that µ(S \ S1) = 0 and the series K(x, y) =
∞∑
i=1

λiϕi(x)ϕi(y) converges

absolutely on S1 × S1. (Of course, in addition it still converges in L2.) This therefore

allows us to defined the joint intensities ρk on Sk a.e. with respect to µ⊗k. For the

detailed proofs of the above claim we refer to the Chapter 4 of [9].

Before we proceed further, we must point that generally the kernel K need not

be Hermitian, and there are known examples of determinantal processes with non-

Hermitian kernels which we shall not pursue here. Recall from the Chapter 1 that

specifying the joint intensities determines the law of a point-process X only if for every

compact set X (D) has exponentially decaying tail i.e. P(X (D) > k) ≤ CDe
−cDk.

For a determinantal process it is indeed the case and therefore the kernel K of a

determinantal process X specifies the law of X uniquely.

Lemma 13 (Lemma 4.2.6, [9]). Let X be a determinantal process with the (hermitian)

kernel K. Then for any compacts set D ⊆ S, there exists constants CD > 0, cd > 0

such that

P(X (D) > k) ≤ CDe
−cDk.
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Proof. First note that for any compact set D ⊆ S we must have

E

((
X (D)

k

)
k!

)
=

∫
Dk

det(K(xi, xj))1≤i,j≤k

k∏
i=1

dµ(xi)

≤
∫
Dk

k∏
i=1

K(xi, xi)
k∏
i=1

dµ(xi)

=

∫
D

K(x, x)dµ(x)

k

<∞.

where the inequality uses Hadamard’s inequality for the determinant of positive semi-

definite matrices (det(M) ≤
∏

i(M)i,i). The finiteness of the last integral follows from

the fact that D is compact (recall that the joint intensities are locally integrable).

Now for any s > 0, we have

E
(
(1 + s)X (D)

)
=
∑
k≥0

skE

((
X (D)

k

))
≤
∑
k≥0

skmk
D

k!
, where mD =

∫
D

K(x, x)dµ(x)

= e−smD .

Apply Chebyshev’s inequality to get

P(X (D) > k) ≤ (1 + s)−kE
(
(1 + s)X (D)

)
≤ (1 + s)−ke−smD

which proves the claim. �

In the light of this lemma and the discussion in the chapter 1, it follows that

the determinantal processes are uniquely determined by their (Hermitian) kernels.

We must also caution that not all kernels K, even when K is Hermitian, determine a

determinantal process. The following theorem gives a simple criterion for determining

which Hermitian kernels determine a determinantal process.

Theorem 14 (Macchi, Soshnikov). Let K be a Hermitian kernel on (S, µ) which de-

fines a locally-trace class operator K on L2(S, µ). Then K determines a determinantal

process if and only if 0 ≤ K ≤ I.

We omit the proof of the theorem but we refer the reader to [14] for the original

proof of Soshnikov. An alternate proof of the theorem can be found in the survey

article [8]. We also wish to point out that there are no analogous results known
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for the necessary and sufficient conditions for a kernel to determine a determine a

determinantal process when K is not Hermitian.

A particular case of the above theorem (although, it is used to prove the above

theorem in [9]) is obtained when the operator K is a finite rank projection. The

examples we would be working with will usually be of this nature, therefore we record

it as a lemma.

Lemma 15. Suppose {ϕi}ni=1 is an orthonormal set in L2(S, µ). Then there exists a

determinantal process with the kernel K(x, y) =
n∑
i=1

ϕi(x)ϕi(y).

We give a proof of this lemma which is taken from [9], because it contains some

elementary but useful ideas. An important property of the determinantal process

obtained from the finite rank projection kernel of rank say n, is that such a process

almost surely contains n points. That is this determinantal process has fixed, finite,

deterministic number of total points. The proof is not hard. It is clear that the matrix

K(xi, xj)1≤i,j≤m has rank at most n. Therefore, E
((X (S)

k

))
= 0 for every k ≥ n + 1,

which means |X (S)| ≤ n almost surely. But, the first intensity ρ1(x) = K(x, x),

which means

E (X(S)) =

∫
S

K(x, x)dµ(x)

=
n∑
i=1

∫
S

|ϕi(x)|2dµ(x)

= n.

It is clear from the above discussion that X(S) = n almost surely (X(S) is a random

variable bounded almost surely by n, but has expectation n). We recall from chapter

1, that for such a process the lower order intensity functions are determined by ρn.

This fact will be useful in the proof the lemma 15.

Proof of lemma 15. First observe that for any x1, . . . , xn, we have that (K(xi, xj))1≤i,j≤n =

AA∗ where A(i, k) = ϕk(xi), that is, K is positive semi-definite. It, therefore, follows

that det(K(xi, xj))1≤i,j≤k ≥ 0 for any k. A straightforward computation, using the

fact that {ϕi} is orthonormal, one can show that∫
Sn

det(K(xi, xj))1≤i,j≤n = n!.

It therefore, follows that 1
n!

det(k(xi, xj))1≤i,j≤n is a probability density on Sn. Treating

the random variable thus obtained as unlabeled points in S, we get the joint intensity
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ρn(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤n. As we remarked earlier, this determines the

lower order joint intesities via the formula

ρk(x1, . . . , xk) =
1

(n− k)!

∫
Sn−k

ρn(x1, . . . , xn)
∏
i>k

dµ(xi).

Following [9], we compute ρn−1 below, and leave the details to obtain lower order

intensity functions.

ρn−1(x1, . . . , xn−1) =

∫
S

ρn(x1, . . . , xn)dµ(xn)

=

∫
S

det(K(xi, xj))1≤i,j≤ndµ(xn)

which can be expanded into

∑
π,σ∈Sn

sgn(πσ)
n−1∏
i=1

ϕπ(k)(xk)ϕπ(k)(xk)

∫
S

ϕπ(n)(xn)ϕσ(n)(xn)dµ(xn).

Using the fact that ϕi were orthonormal, we se that the integral in the above expres-

sion is non-zero only when π(n) = σ(n), therefore it is equal to

n−1∑
j=1

∑
π,σ∈Sn:

π(n)=σ(n)=j

sgn(πσ)
n−1∏
i=1

ϕπ(k)(xk)ϕπ(k)(xk).

Observing that if π and σ both send n to j, we can treat them as a permutation of

{1, . . . , n− 1} in a natural way, one obtains that

n−1∑
j=1

∑
π,σ∈Sn:

π(n)=σ(n)=j

sgn(πσ)
n−1∏
i=1

ϕπ(k)(xk)ϕπ(k)(xk)

=
n−1∑
j=1

det(ϕk(xi))1≤i≤n−1,

k 6=j
det(ϕk(xi))1≤i≤n−1,

k 6=j
.

An application of Cauchy-Binet formula now yield the desired formula for the corre-

lation function. �

Remark 16. We wish to recall here that a point-process is a random measure. In

the above proof we are treating the law of X as a probability measure on Sn. In

the next chapter we will be comparing the determinantal processes with the kernels

K1(x, y) =
n∑
i=1

ϕi(x)ϕi(y) and K2(x, y) =
n+1∑
i=1

ϕi(x)ϕi(y) respectively. As we have seen
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in Chapter 1, that we can compare two measures on some partially ordered set, in

order to compare these processes it is useful to keep in mind that their laws are the

probability measures on all finite subsets of S, (or probability measures on M(S).)

It turns out that any determinantal process with a Hermitian, non-negative defi-

nite, trace-class kernel K can be seen as a mixture (convex combination of measures)

of the determinantal processes with projection kernel. And if the eigenvalues of the

integral operator associated with the kernel K are λk (recall that it follows from

Theorem (14) that λk ≤ 1), k ≥ 1 then the total number of points in the process

is distributed according to the sum of independent Bernoulli(λk) random variables.

Therefore, for most purposes one can restrict one’s attention to studying the deter-

minantal processes with finite rank projection kernels.

Another interesting example of determinantal process is obtained from bi-orthogonal

ensemble, which can be seen as a generalization of the determinantal processes ob-

tained from finite rank projections.

Definition 17 (Bi-orthogonal ensemble). Consider a state space E (locally compact

Polish space) with a reference (Radon) measure µ on it. An n-point bi-orthogonal

ensemble on E is a measure on En given by

Pn(dx1, . . . , dxn) := Cn det[ϕi(xj)]
n
i,j=1 det[ψi(xj)]

n
i,j=1

n∏
i=1

µ(dxi)

for suitable normalization constant Cn > 0, and function ϕi, ψi such that all the

integrals Gij :=
∫
ϕi(x)ψj(x)µ(dx) are finite.

A proof of the fact that a bi-orthogonal ensemble is a determinantal process can be

found in Lemma 4.2.50 of [1]. We will leave this subject here but we refer the reader to

[11], [9], [8] for a detailed discussion of determinantal processes and examples thereof.

We refer the reader to [9] for more probabilistic intuition behind the determinantal

processes and an algorithm to generate a determinantal process.

2.2 Continuous case

The examples of determinantal processes in continuous case are abound. The joint

law of eigenvalues of various matrix ensembles turn out to be determinantal with

projection kernels. We record some examples of determinantal processes in continuous

setting here for the sake of completeness but we refer the reader to [9], [14], [8] for

details.
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Example 18 (Zeroes of Gaussian analytic functions). Let f(z) :=
∞∑
n=0

anz
n where

an are i.i.d standard complex Gaussian random variables. It is not hard to see that

it almost surely defines an analytic functions on the unit disk. The zero set of this

function f was shown to be determinantal by Peres and Virag[9]. The kernel of this

process (with respect to Lebesgue measure on the disk) is given by the Bergman

kernel on unit disk i.e.

K(z, w) =
1

π(1− zw)2

Probably the most important and stimulating example of a continuous determi-

nantal process arises as the joint density of eigenvalues of some random matrix en-

semble. We will talk about few such ensembles in coming chapters. Here, we record

one such example which is known as Ginibre ensemble.

Example 19. Let A be an n×n matrix with i.i.d standard complex Gaussian entries.

The eigenvalues of A form a determinantal process on C with kernel

K(z, w) =
1

π
e−

1
2

(|z|2+|w|2)+zw.

There are other random matrix ensembles for which the eigenvalues form a deter-

minantal process. For an interested reader we refer to [6], [1] for many such examples.

2.3 Discrete case

In this section we will deal with a point process defined on a discrete measure space

(S, µ). One can always keep in mind a subset of N as a model equipped with some

reference measure. We rephrase the definition in this setting, in order to make things

more transparent.

Definition 20. Let S be an at most countable set. A simple point process X on S

is said to be determinantal with symmetric, positive definite kernel K : S × S → C
if for any k ≥ 1 and x1, . . . , xk ∈ S, we have

P(x1, . . . , xk ∈ X ) = det[(K(xi, xj))1≤i,j,≤k].

Let us recall our example (1). Observe that it is a determinantal process with the

kernel K(x, y) = pδx=y.

Conversely, let S = {1, 2} be a set with two elements. Let K be a symmetric

matrix K =

[
a b
b c

]
. Define a determinantal process X on E by declaring P(1 ∈
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X ) = a,P(2 ∈ X ) = c,P(1, 2 ∈ X ) = ac − b2. It is easy to verify using inclusion

exclusion principle that it defines a probability measure on all subsets of S provided,

of course, 1 ≥ a, c, ac− b2 ≥ 0. This last condition is fulfilled if we assume that K is

positive semi-definite and K ≤ I2, that is I2 −K is positive semi-definite.

We remind our readers that for in the above setting the P(x1, . . . , xk ∈ X ) is

nothing but the k-point correlation function pk of the process X . Therefore, the

above definition is a mere translation of the definition given in the previous sec-

tion. Observe that in discrete setting, it is very easy to compute the probabilities of

the form P(x1, . . . , xk ∈ X ). It would be nice to obtain a similar formula for, say,

P(x1, . . . , xk /∈ X ). Indeed, this can be written entirely in terms of the kernel of the

process. The following result gives a way to calculate the probabilities of the events

like P(x1, . . . , xk ∈ X, xk+1, . . . , xm /∈ X).

Proposition 21. Let X be a determinantal process on an at most countable set S

with the kernel K : S × S → C.

P(x1, . . . , xk ∈ X, xk+1, . . . , xm /∈ X) = det(K̃k,m(xi, xj))1≤i,j≤m,

where K̃k,m(xi, xj) =

{
K(xi, xj), i ≤ k

δi,j −K(xi, xj), i ≥ k + 1

Proof. The proof follows from the induction on m − k. When m − k = 0, it is just

the definition. Now observe that for m− k ≥ 1,

P(x1, . . . , xk ∈ X, xk+1, . . . xm /∈ X) =

P(x1, . . . , xk ∈ X, xk+2, . . . , xm /∈ X)−P(x1, . . . , xk+1 ∈ X, xk+2, . . . , xm /∈ X)

By induction, we have that

P(x1, . . . , xk+1 ∈ X, xk+2, . . . , xm /∈ X) = det
(
K̃k+1,m(xi, xj)1≤i,j≤m

)
. (1)

For the sake of notational simplicty, we will write the above matrix K̃k+1,m as K1.

And, similarly

P(x1, . . . , xk ∈ X, xk+2, . . . , xm /∈ X) = det

(
K̃k,m−1(xi, xj)1≤i,j≤m

i,j 6=k+1

)
. (2)

We now observe that det

(
K̃k,m−1(xi, xj)1≤i,j≤m

i,j 6=k+1

)
= det

(
L̃(xi, xj)1≤i,j≤m

)
where L is

an m × m matrix, whose kth row is (δi,k)
m
i=1 and all other rows are same as in K1.
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Now, observe that the matrix L and K1 have exactly the entries except in k-th row.

Using multilinearity of the determinant, therefore, we can write that

det
(
K̃(xi, xj)1≤i,j≤m

)
+ det

(
L̃(xi, xj)1≤i,j≤m

)
= det(K̃k,m(xi, xj))1≤i,j≤m

which proves the desired claim. �

Corollary 22. Let X be a determinantal process on an at most countable set S, with

the kernel K. Then

P(x1, . . . , xk /∈ X) = det(Ik −K(xi, xj))1≤i,j≤k.

We will now explore some examples of determinantal processes on discrete state

space. Probably the most celebrated and interesting example of determinantal process

in discrete setting is Uniform spanning tree on a finite graph. In the following section

we will study this example in more detail.

2.4 Uniform spanning tree

Let G = (V,E) be a finite, connected graph. Let SG be the set of spanning tress

of G. Observe that SG is non-empty finite set (The connectedness of the graph is

assumed precisely for this purpose). Uniform measure on SG gives a point process

on the set E of the edges of the graph G. A beautiful result due to Burton and

Pemantle [4] states that this process T is determinantal with some kernel M. The

Burton-Peamntale theorem gives a electric-network interpretation to the kernel and

M(e, f) can be given an electrical interpretation. Of course, there are other ways to

interpret this kernel, for example as the hitting time of a symmetric random walk.

This subject is vast and beautiful, and a wealth of material on this subject can be

found in [13].

Theorem 23 (Burton, Pemantle 1994). Let G = (V,E) be a finite connected graph.

Fix an arbitrary orientation of the edges of G. Let e1, e2..., ek be some collection of

edges in the graph G, and let T be a spanning tree of G chosen uniformly at random

from SG. Then,

Pr[e1, . . . , ek ∈ T ] = det(M(ei, ej)1≤i,j≤k),

where M(ei, ej) = amount of current flowing through the edge ej under potential

applied on the ei so that net current in the circuit is 1 unit.

19



We do not include the detailed proof of the above theorem here because it will

take us too afar. We refer the reader to Chapter 4 of [13] for a thorough discussion

of the result and a proof of the theorem using Wilson’s algorithm. The proof of the

above theorem exploits the connection between spanning trees, random walks and

electrical circuits which is interesting to say the least.

We record below the theorem of Kirchoff on number of spanning trees which is

interesting in its own right. But more than that it provides an alternate proof of the

Burton-Pemantle theorem.

Theorem 24 (Kirchoff, 1867). Let G = (V,E) be a finite graph. Equip the edges of

G with an arbitrary but fixed orientation. The vertex edge-incidence matrix AG of G

is a V × E matrix given by

AG(v, e) =


0, if e is not incidence on v

+1, if e starts at v
−1, if e ends at v

Let ÃG be the matrix obtained by deleting the last row of the matrix AG. Then N(G),

the number of spanning tress of G, is given by

N(G) = det
(
ÃGÃ

t
G

)
.

Proof. The proof is actually quite simple. Recall that by Cauchy-Binet identity we

have that
det
(
ÃGÃ

t
G

)
=

∑
S⊆E:

|S|=n−1

det(ÃG(S)) det(ÃG(S)t)

=
∑
S⊆E:

|S|=n−1

| det(ÃG(S))|2

where ÃG(S) is the submatrix of ÃG obtained by selecting only columns indexed by

elements in S (keeping them in the same order as in the original matrix).

We now have to observe that if the edges indexed by S contain a cycle in G, then

there exists εe ∈ {0,+1,−1} such that
∑
e∈S

εeCe = 0 where Ce is the column in matrix

ÃG indexed by e. It follows therefore that if the subgraph induced by S contains a

cycle then, det(ÃG(S)) = 0. Note that if it does not contain a cycle then it has to be

spanning tree. Therefore, suffices to prove that the det(ÃG(S)) = ±1, if S does not

induce any cycle.

This claim can be proved using induction. Let us call the edge e which was

connected was to the vertex which has been deleted in ÃG. In the column indexed
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by e, there is exactly one non-zero entry which is ±1. Expand the determinant along

that column to get det(ÃG(S)) = ± det(B). But observe that B is the edge-incidence

matrix of the graph obtained by shrinking both ends of e to one vertex. If S induced

a spanning tree on G, then S \ {e} induces a spanning tree on this reduced graph

G/e. Therefore, it follows inductively that det(ÃG(S) = ±1. (Of course, the base case

when |S| = 1 is trivial.)

�

Remark 25. Note that it is hidden in the proof that for a subset P ⊆ E such that

|P | = n− 1, the det(ÃG(P )ÃtG(P )) = 1 if the edge set P gives a spanning tree of G

and 0 otherwise. The probability measure on 2E given by Pr(P ) =
det(ÃG(P )ÃtG(P ))

det(ÃGÃ
t
G)

if

|P | = n−1 and 0 otherwise, is uniform on SG. It follows from our previous discussion

(on Bi-orthogonal ensemble) that the measure Pr is determinantal. Therefore, the

uniform measure on SG is determinantal.

We will now study the uniform spanning tree on Kn, complete graph on n-vertices,

in some detail. One can use Kirchoff’s theorem to see that there are nn−2 spanning

trees of Kn. We will not use this directly and therefore we do not bother ourselves

with this computation. We instead use Burton-Pemantle theorem to compute various

statistics. In order to apply the Burton-Pemantle theorem, we need to compute the

matrix M in the theorem (which is also called transfer-current matrix). For an

arbitrary graph computing the transfer current matrix may not be an easy task, but

for a complete graph it can be done.

We first note that if we fix e, f ∈ Kn and apply battery across e so that the net

current from one end of the edge e to the other end is 1 unit. Then, due to symmetry

of the network it is clear that if Ie current passes through the edge e then exactly Ie/2

current passes through each of remaining edges which emanate from the same vertex

as e and also if there are is an edge which does not meet e then current through that

edge must be zero. A simple algebra (and Kirchoff’s node law from Physics) therefore

tells us that

Ie + (n− 2)Ie/2 = 1 =⇒ Ie =
2

n
.

Therefore, the matrix M can be defined as M(e, e) = 2
n
, and M(e, f) = 1

n
if e 6= f

but e and f originate from the same vertex, (of course due to symmetry this would

imply that if M(e, f) = 1
n

if e 6= f but e and f end at the same vertex and the sign

of the current is reversed if one of them starts at a vertex where the other ends), and
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0 otherwise. We note it below for the record.

M(e, f) =


2
n
, e = f

1
n
, e = −→xy, f = −→xz or −→zy
−1
n

e = −→xy, f = −→zx or −→yz
0, otherwise

Example 26. Let us now compute the probability that the graph distance between

two vertices in T is k. Choose two vertices of Kn uniformly at random. For the sake

of simplicity (of notations) we will call the vertex v1 and v2. It is evident from the

symmetry of Kn that it does not matter which two vertex we choose. To motivate the

upcoming computations let us begin with the case k = 1. Note that dT (v1, v2) = 1 if

and only if the edge connecting the two vertices, say e12, is contained in T . Therefore,

Pr{dT (v1, v2) = 1} = Pr{e12 ∈ T } = 2
n
. Similarly, dT (v1, v2) = k if and only if there

are (k − 1) vertices w1, . . . , wk−1 such that the edges ev1w1 , ewiwi+1
, ewk−1v2 ∈ T for

all i = 1, 2 . . . , k − 2. Also, observe that once the vertices are chosen, choosing the

corresponding edges amounts to fixing a permutation of the choosen (k− 1) vertices,

and due to the uniqueness of paths between two vertices of a tree, it follows that each

permutation gives rise to a distinct event. With all these observations we are left

with simple algebra which gives us that

Pr{dT (v1, v2) = k} =

(
n− 2

k − 1

)
(k − 1)! Pr{ev1w1 , ewiwi+1

, ewk−1v2 ∈ T }. (3)

We will make a slight detour to compute Pr{ev1w1 , ewiwi+1
, ewk−1v2 ∈ T }. To this

end, we invoke the theorem 23 to obtain that

Pr{ev1w1 , ewiwi+1
, ewk−1v2 ∈ T } = det(M(e1, . . . , ek))

= det


2
n

−1
n

0 . . . 0
−1
n

2
n

1
n

. . . 0
...

...
...

...
...

0 . . . −1
n

2
n

−1
n

0 0 . . . −1
n

2
n



=
1

nk
det


2 −1 0 . . . 0
−1 2 −1 . . . 0
...

...
...

...
...

0 . . . −1 2 −1
0 0 . . . −1 2


=
k + 1

nk
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From (3) and the above computation it follows that

Pr{dT (v1, v2) = k} =
k + 1

n

∏
1≤i≤k−1

(
1− i+ 1

n

)
(4)

The above examples suggest us that we should scale the the edge of the spanning

tree by n−
1
2 as see the limit. Indeed observe that for k = x

√
n we have that

k∏
i=1

(
1− i

n

)
≈ e−x

2/2.

We will elucidate upon the idea here because, it would be important later. Note that

Pr{dT (v1, v2) = k} =
k + 1

n− 1

n− k
n

(n)k
nk

.

We recall that for 0 < t < 1, we have that e−t/(1−t) < 1− t < e−t. And therefore,

e−
k2

2(n−k) <
(n)k
nk

< e−
1
n(k2).

A tedious but straightforward calculus therefore yields that for n−
1
2
−ε < k < 1 +n

1
2

+ε

we get that

Pr{dT (v1, v2) = k} =
k

n
e−k

2/2n +O(n−1+ε).

Which with a little more involved calculus shows that

Pr{ 1√
n
dT (v1, v2) ≤ x} = 1− e−x2/2 + o(1) as n→∞.

In other words this shows that

1√
n
dT (v1, v2)

d→ R,

where R is the Rayleigh random variable, that is a random variable with density given

by xe−x
2/2 on R+.

Example 27. We can, as in the above example, choose k vertices from Kn uniformly

at random. We are interested in understanding how does the tree spanned by k

randomly chosen vertices look like in T ? So let us first fix a shape t such that t

has exactly k-leaves and 2k − 2 vertices and therefore 2k − 3 legs (say L1, . . . , L2k−3

in some arbitrary but fixed order). We ask for the probability that random chosen

vertices v1, . . . , vk span a tree with shape t and Li = mi for i = 1, . . . , 2k − 3.

We will do as we did in the previous example. First write a tree with k-leaves with

leaves labelled v1, . . . , vk. Now first choose k − 2 nodes or hubs from n − k vertices
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and put arrange them in some order, thereafter make the skeleton/shape t and put

mi− 1 dots on leg Li. Choose
2k−3∑
i=1

(mi− 1) = m− 2k+ 3 vertices from remaining and

arrange them on dots marked on the legs. This will fix the edges e1, . . . , em and we

need to compute the probability that T contains all these edges.

One can inductively keep reducing the length of a leg and finally reduce to a tree

with fewer legs, to get a recurrence relation for the determinant. It turns out that

the determinant in this case is m+1
nm

, where m =
2k−3∑
i=1

mi.

Combining all this one can get that

Pr{t;L1 = m1, . . . , L2k−3 = m2k−3} =
(n− k)!

(n−m− 1)!

m+ 1

nm
.

Note the similarity of this probability with what we obtained in the previous examples.

Indeed one can show that if we scale all the edge-lengths by n−
1
2 , this joint distribution

converges to the following density

f(t;x1, . . . , x2k−3) =

(
2k−3∑
i=1

xi

)
exp

−1

2

(
2k−3∑
i=1

xi

)2
 .

One can also analyze the degree of a vertex in uniform spanning tree on Kn. Due

to symmetry it does not matter which vertex do we choose. We will fix a vertex

and call it v. Note that the degree of a vertex in T can not be 0. Once again we

will motivate the upcoming computations by doing a simple case first. Let us try to

compute the probability that degree of the vertex v is 1 in T .

Example 28. Note that there are (n − 1) edges starting at the vertex v, and the

degree of v would be equal to 1 if and only if exactly one of these edges belong to T
and remaining (n−2) do not. Let us call these edges to be e1, . . . , en−1, and compute

the Pr{e1 ∈ T , e2, . . . , en−1 /∈ T }. Observe that

Pr{degree(v) = 1} = (n− 1) Pr{e1 ∈ T , e2, . . . , en−1 /∈ T }.

In order to compute the required probability, we first note that Pr{e1 ∈ T , e2, . . . , en−1 /∈
T } = Pr{e2, . . . , en−1 /∈ T }. This follows since we know that there has to be at least

edge which connects the vertex v in T . This will help us simplify some computations.
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We invoke the corollary to the theorem 21 to compute the Pr{e2, . . . , en−1 /∈ T }.

Pr{e1 ∈ T , e2, . . . , en−1 /∈ T } = Pr{e2, . . . , en−1 /∈ T }

= det


n−2
n

−1
n

. . . −1
n

−1
n

n−2
n

. . . −1
n

...
...

...
...

−1
n

−1
n

. . . n−2
n


=

1

nn−2
(n− 1)n−3

As we have already observed that

Pr{degree(v) = 1} = (n− 1) Pr{e1 ∈ T , e2, . . . , en−1 /∈ T },

it follows that

Pr{degree(v) = 1} = (n+ 1)
1

n

(
1− 1

n

)n−3

→ e−1 as n→∞.

Example 29. Observe that

Pr{degree(v) = 2} =

(
n− 1

2

)
Pr{e1, e2 ∈ T , e3, . . . , en−1 /∈ T }.

Also note that one can simplify the computations by noting that

Pr{e1, e2 ∈ T , e3, . . . , en−1 /∈ T } = Pr{e3, . . . , en−1 /∈ T } − Pr{e1 ∈ T , e2, . . . , en−1 /∈ T }

− Pr{e2 ∈ T , e1, e3, . . . , en−1 /∈ T }.

All the above probabilities are relatively easier to handle because we need to compute

the determinants of a very special type of matrix. As in the previous example, we

have

Pr{e3, . . . , en−1 /∈ T } =
1

nn−3
2(n− 1)(n−4)

Pr{e1 ∈ T , e2, . . . , en−1 /∈ T } =
1

nn−2
(n− 1)n−3

With this we have all the ingredients and we can therefore write that

Pr{e1, e2 ∈ T , e3, . . . , en−1 /∈ T } =
2

n

(
1− 1

n

)(n−4)

− 2

n

(
1− 1

n

)(n−3)

=
2

n2

(
1− 1

n

)(n−4)

Finally, we have

Pr{degree(v) = 2} =
(n− 1)(n− 2)

2

2

n2

(
1− 1

n

)(n−4)

→ e−1 as n→∞.
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Example 30. We will now calculate the probability that deg(v) = k. Note that

Pr(degree(v) = k) =

(
n− 1

k

)
Pr(e1, . . . , ek ∈ T , ek+1, . . . , en−1 /∈ T ).

Recall the theorem 21, which allows us to write the probability in the right hand side

in terms of the determinant. In this case,

M̃(i, j) =


2
n
, i = j, i ≤ k

1− 2
n
, i = j, i ≥ k + 1

1
n
, i 6= j, i ≤ k

−1
n
, i 6= j, i ≥ k + 1

With a bit of careful row transformations, one can reduce the above matrix into

upper-triangular form, and therefore obtain the determinant to be

det(M̃) =
k

nk

(
1− 1

n

)n−1−k

.

With this one can obtain that

Pr(degree(v) = k) =

(
n− 1

k

)
k

nk

(
1− 1

n

)n−1−k

→ e−1 1

(k − 1)!
.

It is clear that degree(v)→ 1 + Poi(1).

The convergence of degree(v) to 1 + Poi(1) can also be show alternatively by

computing the factorial moments for the degree(v) random variable. For this purpose

let us fix a vertex v and edges as in the previous example and denote by Ij the indicator

function of the edge ej in T . Note that

E
[
degree(v)(k)

]
:= E [degree(v)(degree(v − 1)) . . . (degree(v)− k + 1)]

=
∑

i1,...,ikdistinct

E

[ ∏
1≤j≤k

Iij

]

The key thing to note here is that E

[ ∏
1≤j≤k

Iij

]
= Pr{ei1 , . . . , eik ∈ T }. And, thanks

to theorem 23 computing this probability is very straightforward for the complete

graphs.

Example 31. In this example we continue the discussion in the previous paragraph

and calculate the E
[
degree(v)(k)

]
. We first recall that

Pr{ei1 , . . . , eik ∈ T } =
k + 1

nk
.
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Observe that this probability is independent of the precise k-tuple chosen to compute

the probability. And, therefore all we need to do is to multiply it by all possible

k-tuples of edges chosen from the total of (n − 1) edges incident at the vertex v. In

the light of above discussion therefore we obtain

E
[
degree(v)(k)

]
=

(
n− 1

k

)
k!
k + 1

nk

= (n− 1)(n− 2) . . . (n− k)
k + 1

nk

= (k + 1)
k∏
i=1

(
1− i

n

)
Observe that E

[
degree(v)(k)

]
→ (k+1) as n→∞. Observe that it is also the factorial

moment for (1+Poisson(1)) random variable. It follows that degree(v)→ 1 + Poi(1)

in distribution.

Recall that a vertex with degree 1 is called a leaf. In the above example we have

computed that Pr(degree(v) = 1) = (1 − 1
n
)n−2. With this we can try and estimate

the number of leaves in T .

Example 32. Let Iv denote the indicator function of the event that the vertex v is

a leaf. Clearly, E [no. of leaves in T ] =
∑
v∈Kn

E [Iv] = n(1 − 1
n
)n−2. Evidently, we get

that

E

[
no. of leaves

n

]
→ e−1.

That is a positive fraction of the vertices become leaves. In fact, we can do better by

observing that

V ar

(
1

n

∑
v∈Kn

Iv

)
=

1

n
V ar(Iv) +

n− 1

n
Cov(Iu, Iv).

Iv is a Bernoulli random variable therefore the V ar(Iv) = Pr(v is a leaf)(1−Pr(v is a leaf))→
(1− e−1)e−1. Also note that

Cov(Iv, Iu) =

(
1− 2

n

)n−2

−
(

1− 1

n

)2(n−2)

.

It therefore follows that V ar

(
1
n

∑
v∈Kn

Iv

)
→ 0 as n → ∞. Applying Markov’s in-

equality we get that
no. of leaves

n

P→ e−1.
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Chapter 3

Stochastic domination

As already remarked in the previous chapters, determinantal processes exhibit some

stochastic domination. In this chapter we shall explore some results on stochastic

domination in such processes and also see some applications.

3.1 Stochastic domination for finite rank projec-

tions

In order to make this chapter largely self contained, we will recall some basic no-

tions already introduced in previous chapter. Let (E,F , µ) be a measure space

and let K(x, y) =
∑n

k=1 ϕk(x)ϕ̄k(y) where {ϕ1, . . . , ϕn} is an orthonormal set in

L2(E, µ). Let (X1, . . . , Xn) is a random tuple in En having density f(x1, . . . , xn) =
1
n!

det(K(xi, xj))i,j≤n with respect to µ⊗n. The point process (meaning, a random

integer-valued measure) X := δX1 + . . . + δXn is a determinantal point process with

kernel K (w.r.t. the measure µ).

Our goal in this chapter is to compare two such processes whose kernels are given

by K1(x, y) :=
n∑
i=1

ϕi(x)ϕi(y) and K2(x, y) :=
n+1∑
i=1

ϕi(x)ϕi(y) respectively. Evidently,

the law of these processes, say P1 and P2 respectively, are probability measures on

M(E) the space of non-negative integer valued Radon measures on E. The space

M(E) is a partially ordered set and being a locally compact Polish space it is also

equipped with a natural Borel sigma-algebra. As we have already defined in the

first chapter, a measurable subset A of M(E) is said to be increasing if whenever

θ1 ∈ A and θ2 is another non-negative integer valued radon measure on (E,F) such

that θ1(A) ≤ θ2(A) for all A ∈ F , then θ2 ∈ A . If X = δX1 + . . . + δXn and

Y = δY1 + . . . + δYm are two point processes on E, we say that X is stochastically

dominated by Y if P{X ∈ A} ≤ P{Y ∈ A} for any increasing set A.
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Theorem 33. Let X1 and X2 be determinantal point processes on (X,µ) with fi-

nite kernels K1(x, y) =
∑n

k=1 ϕk(x)ϕ̄k(y) and K2(x, y) =
∑n+1

k=1 ϕk(x)ϕ̄k(y), where

ϕ1, . . . , ϕn+1 is an orthonormal set in L2(E, µ). Then, X1 is stochastically dominated

by X2.

This theorem is due to Russell Lyons (see Theorem 6.2 and Theorem 7.1 in [11])

in the discrete case. There have been extensions of it in various ways, for example, [7]

and [12], but the conditions there are restrictive. Our proof is essentially the same as

that of Lyons, but written in such a way that the validity in the general situation is

clear. The main difficulty in literally transcribing his proof is that δx is not an element

of L2(E, µ) when µ is not discrete. By moving away from the exterior algebra language

employed by Lyons, and writing everything in terms of determinants, this issue can

be avoided.

In order to make the exposition clearer, we will first prove Theorem 33 in the

discrete setting but the proof for general case is exactly the same with obvious mod-

ifications.

3.2 Stochastic domination: the discrete case

Discrete determinantal measures: Let E = {1, 2, . . .} and let ϕ1, . . . , ϕn+1 be

orthonormal in `2(E). The matrices

M =

 ϕ1(1) ϕ1(2) . . . . . .
...

... . . . . . .
ϕn+1(1) ϕn+1(2) . . . . . .

 and Q =

 ϕ1(1) ϕ1(2) . . . . . .
...

... . . . . . .
ϕn(1) ϕn(2) . . . . . .


satisfy MM∗ = In+1 and QQ∗ = In. For a subset A ⊆ E, by MA (or QA) we mean

the submatrix of M (or Q) got by choosing the columns of M indexed by elements

of A (keeping the order of rows and columns same as in the matrix M (or Q)). Let

E∧k denote the set of k-element subsets of E. The probability measures given by

P1(A) = | det(QA)|2 for A ∈ E∧n,

P2(B) = | det(MB)|2 for B ∈ E∧(n+1).

are determinantal with kernel K1(x, y) =
n∑
i=1

ϕ(x)ϕ̄i(y) and K2(x, y) =
n+1∑
i=1

ϕ(x)ϕ̄i(y)

respectively. The Cauchy-Binet formula shows that P1 and P2 are probability mea-

sures. Note that P1 and P2 can be extended as the probability measures on the power
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set of E, that is, on the set 2E by setting P1(A) = 0 for any A ∈ 2E with |A| 6= n

and similarly P2(B) = 0 if |B| 6= (n + 1). Let X ⊆ E be a set chosen according to

P1 and Y ⊆ E be chosen according to P2, and let X =
∑
x∈X

δx be the point process

associated with X and similarly let Y be the point process associated with Y. It is

clear that X and Y are the determinantal processes associated with the kernel K1

and K2 respectively.

The goal is to compare these two determinantal processes. It would be useful,

however, to think of these point processes in terms of random subsets instead of

random measures. And, we translate the Lyons’ theorem in terms of subsets of E

without any mention of X and Y . Before we do that, let us make a simple observation

which will motivate our upcoming notations. Let E be an increasing subset ofM(E).

Since we will be interested in the probability P(X ∈ E) and P(Y ∈ E), let us analyze

these carefully. As X is a simple point process if X = µ ∈ E then µ can be associated

to a unique subset A ⊆ E of cardinality n. Thus P(X ∈ E) = P1(E0) where E0 :=

{A ∈ E∧n : µA ∈ E}. In a similar way, we also get that P(Y ∈ E) = P2(E1)

where E1 := {A ∈ E∧(n+1) : µA ∈ E}. This shows us how the probabilities like

P(X ∈ E),P(Y ∈ E) can be recast in terms of P1 and P2. We now try to understand

what conditions on E0 and E1 translate to the condition that E is increasing. To this

end, let E0 be associated to E as above and let A ∈ E0. Then µA ≺ µB if and only if

A ⊆ B. Therefore if E is increasing and µA ∈ E then µB ∈ E for all A ⊆ B. We also

point out that this entails that if E is increasing and A ∈ E0 then A∪{x} ∈ E1 for all

x ∈ E \ A. With this discussion, we are now ready to translate the Lyons’ theorem.

Let us fix the following notations. By MA|x we will denote the matrix that has

the same columns as MA∪{x}, except that the column corresponding to x is placed at

the end. For x ∈ E and A ⊆ E we define r(A, x) = |{y ∈ A : y > x}|. If A ⊆ E∧n

and B ⊆ E∧(n+1), then we say that A ≤ B if A ∪ {x} ∈ B for any A ∈ A and any

x ∈ E \ A. Then Lyons’ theorem on stochastic domination can be stated in this

setting as follows.

Theorem 34. Suppose A ⊆ E∧n and B ⊆ E∧(n+1). If A ≤ B, then P1(A) ≤ P2(B).

The proof of the above theorem will require two results. Note that we write

P1(A) in terms of determinants of submatrices of Q, while P2(B) is written in terms

of determinant of submatrices of M. It is but natural to obtain a way to relate

the determinant of a submatrix of Q to that of a submatrix of M. The following

proposition serves the purpose.

30



Proposition 35. For any A ∈ E∧n, we have
∑
x 6∈A

(−1)r(A,x)ϕn+1(x) det(MA∪{x}) =

det(QA), where r(A, x) = |{k ∈ A : k > x}|.

Proof. Let A = {1, 2, . . . , n} without loss of generality. As (−1)r(A,x) det(MA∪{x}) =
det(MA|x), the summand on the left hand side is ϕn+1(x) det(MA|x). The sum can be
extended to all x ∈ E, since det(MA|x) = 0 for x ∈ A. Thus the sum on the left is
equal to

∑
x∈E

ϕn+1(x) det

 QA

ϕ1(x)
...

ϕn(x)
ϕn+1(1) . . . ϕn+1(n) ϕn+1(x)



= det

 QA

〈ϕ1, ϕn+1〉
...

〈ϕn, ϕn+1〉
ϕn+1(1) . . . ϕn+1(n) 〈ϕn+1, ϕn+1〉


by multilinearity of the determinant. As ϕj are orthonormal, the last column is
(0, . . . , 0, 1)t. Hence the determinant is equal to det(QA). �

Lemma 36. Let ϕ : E → C and ε : E×E∧n → {+1,−1} be any arbitrary functions.
Let A ⊆ E∧n. Let M be the matrix (with rows and columns indexed by the elements
of A) given by

M(A,C) =


∑
x∈A
|ϕ(x)|2, if A = C

ε(x,A)ε(y, C)ϕ(x)ϕ(y),
if |A∩C|=n−1,where

x ∈ A \ C, y ∈ C \ A
0, otherwise

Then, the matrix M is positive semidefinite.

Proof. Let us consider the matrix X (with rows indexed by A, and columns indexed
by E∧(n−1)) defined by

X(A, T ) =

{
ε(x,A)ϕ(x), if T ⊂ A and {x} = A \ T

0, otherwise

Observe that

XX∗(A,A) =
∑

T∈E∧n−1

X(A, T )X∗(T,A)

=
∑

T⊂A:|T |=n−1

|ϕ(x)|2

=
∑
x∈A

|ϕ(x)|2

=M(A,A).
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Clearly, when |A∩C| ≤ n− 2 then XX∗(A,C) is zero. A similar computation shows
that when |A ∩ C| = n− 1 then,

XX∗(A,C) =
∑

T∈E∧n−1

X(A, T )X∗(T,C)

= ε(x,A)ε(y, C)ϕ(x)ϕ(y), where x ∈ A \ C, y ∈ C \ A
=M(A,C).

This proves that the matrix M = XX∗ and hence positive semidefinite. �

Remark 37. Note that as a result of the above lemma, we get that for any function
F : A → C we have 〈X∗F, F 〉 ≥ 0 (Here the inner product is taken with in `2(A). As
A is at most countable there is a natural way to equip `2(A) with an inner product.
Let F,G : A → C be two functions then 〈F,G〉 :=

∑
A∈A

F (A)G(A).)

This is the way it would be used later. In the next section where we prove the
stochastic domination in continuous setting, we do not record it as a separate lemma
but it is used implicitly in one step.

Remark 38. Observe that in the proof of the lemma 36 we do not use any special
property of ϕ. It is true for any ϕ and any ε.

Remark 39. Proof of Theorem 34. We shall write ϕ for ϕn+1.

P1(A) =
∑
A∈A

| det(QA)|2 =
∑
A∈A

det(QA)det(QA)

=
∑
A∈A

∑
x/∈A

(−1)r(A,x)ϕ(x) det(MA∪{x})det(QA)

=
∑
B∈B

det(MB)
∑

x:B\{x}∈A

(−1)r(B\{x},x)ϕ(x)det(QB\{x})

By Cauchy-Schwarz inequality we get that

P1(A) ≤

(∑
B∈B

| det(MB)|2
) 1

2

∑
B∈B

∣∣∣∣∣∣
∑

x:B\{x}∈A

(−1)r(B\{x},x)ϕ(x)det(QB\{x})

∣∣∣∣∣∣
2

1
2

Now observe that for a fixed B ∈ B, we have the following∣∣∣∣∣∣
∑

x:B\{x}∈A

(−1)r(B\{x},x)ϕ(x)det(QB\{x})

∣∣∣∣∣∣
2

=
∑

x,y:B\{x},B\{y}∈A

(−1)r(B\{x},x)ϕ(x)det(QB\{x})(−1)r(B\{y},y)ϕ(y) det(QB\{y})

=
∑
A,C∈A:

A∪C⊆B

(−1)r(A,x)ϕ(x) det(QA)(−1)r(C,y)ϕ(y)det(QC)
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where x, y are the unique elements such that x ∈ B \A and y ∈ B \C. Therefore we
can write the above expression as∑

B∈B

∑
A,C∈A:A∪C⊆B

(−1)r(A,x)ϕ(x)det(QA)(−1)r(C,y)ϕ(y) det(QC)

=
∑

A,C∈A
det(QA)det(QC)

∑
x/∈A,y/∈C:A∪{x}=C∪{y}

(−1)r(A,x)+r(C,y)ϕ(x)ϕ(y)

Note that when A = C the inner sum becomes
∑
x/∈A
|ϕ(x)|2, when A 6= C the inner

sum is non-empty precisely when |A∩C| = n− 1. Therefore, we write the above sum
as

=
∑
A∈A
|det(QA)|2

∑
x/∈A

|ϕ(x)|2 +
∑

|A∩C|=n−1

(−1)r(A,x)+r(C,y) det(QA)det(QC)ϕ(x)ϕ(y)

=
∑
A∈A
|det(QA)|2−∑

A∈A
det(QA)

∑
x∈A
|ϕ(x)|2 −

∑
|A∩C|=n−1

(−1)r(A,x)+r(C,y) det(QA)det(QC)ϕ(x)ϕ(y)


=
∑
A∈A
|det(QA)|2−∑

A∈A
det(QA)

∑
x∈A
|ϕ(x)|2 +

∑
|A∩C|=n−1

(−1)r(A,y)+r(C,x) det(QA)det(QC)ϕ(x)ϕ(y)


In the last equality, we used the fact that (−1)r(A,x)+r(C,y) = −1(−1)r(A,y)+r(C,y). The
theorem follows if we can show that the quantity in the bracket above is positive.
To this end define a function F : A → C by f(A) = det(QA) and observe that the
quantity in the bracket is nothing but 〈MF, F 〉 where M is the matrix (with rows
and columns indexed by the elements of A) defined by

M(A,C) =


∑
x∈A
|ϕ(x)|2, if A = C

(−1)r(y,A)(−1)r(x,C)ϕ(x)ϕ(y),
if |A∩C|=n−1,where

x ∈ A \ C, y ∈ C \ A
0, otherwise

. It follows from lemma 36 thatM is positive definite and hence 〈Mf, f〉 is positive,
which completes the proof. �

It is natural at this stage to ask if we have a similar result for bi-orthogonal
ensemble. Recall that

Pn(dx1, . . . , dxn) := Cn det[ϕi(xj)]
n
i,j=1 det[ψi(xj)]

n
i,j=1

n∏
i=1

µ(dxi)

for suitable normalization constant Cn > 0, and function ϕi, ψi such that all the
integrals Gij :=

∫
ϕi(x)ψj(x)µ(dx) are finite, defines a determinantal probability

measure. One can naturally ask if Pn ≺ Pn+1 in this case. The answer to this
question is ‘NO’. A fairly simple counter-example can be constructed as follows.

33



Example 40. Consider the set E = a, b, c equipped with the uniform probability
measure µ. Now, let’s define the functions ϕi, ψi, i = 1, 2 on E as follows:

ϕ1(a) = ϕ1(b) = 1, ϕ1(c) = 0

ϕ2(a) = ϕ2(b) = 1, ϕ2(c) = 1

ψ1(a) = 1, ψ1(b) = 0, ψ1(c) = −1

ψ2(a) = −1, ψ2(b) = 1 = ψ2(c)

Observe that 〈ϕi, ψj〉 = δij which means the kernel Kn(x, y) =
∑n

i,j=1 ϕi(x)ψj(y).
We will compare the determinantal processes with kernel K1 and K2 (Let us call

the corresponding probability measures as P1,P2 respectively.)
For n = 1, we see that the kernel K1(x, y) = ϕ1(x)ψ1(y). Recall that the point

process X1 defined by the kernel K1 has exactly one point almost surely. We thus ob-
tain that P1(x) = K1(x, x) = ϕ1(x)ψ1(y) which gives us that P1({a}) = 1,P1({b}) =
0 = P1({c}).

For n = 2, similarly, the point process X2 has exactly two points almost surely.
Therefore, it suffices to compute the probability of each subset of E which has car-

dinality 2. Recall that P2({x, y}) = det

(
ϕ1(x) ϕ1(y)
ϕ2(x) ϕ2(y)

)
det

(
ψ1(x) ψ1(y)
ψ2(x) ψ2(y)

)
. Using

which let us calculate all the relevant probabilities.

P2({a, b}) = det

(
ϕ1(a) ϕ1(b)
ϕ2(a) ϕ2(b)

)
det

(
ψ1(a) ψ1(b)
ψ2(a) ψ2(b)

)
) = 0,

P2({a, c}) = det

(
ϕ1(a) ϕ1(c)
ϕ2(a) ϕ2(c)

)
det

(
ψ1(a) ψ1(c)
ψ2(a) ψ2(c)

)
= 0.

And,

P2({b, c}) = det

(
ϕ1(b) ϕ1(c)
ϕ2(b) ϕ2(c)

)
det

(
ψ1(b) ψ1(c)
ψ2(b) ψ2(c)

)
= 1.

If we start with A = {{a}} ⊂ E∧1 and let {{a, b}, {a, c}} = B ⊂ E∧2 then A ≺ B
but P1(A) = 1 6≤ 0 = P2(B).

3.3 Stochastic domination: General finite rank case

Now let (E,F , µ) be a measure space and let ϕ1, . . . , ϕn+1 be an orthonormal set. Let
X = (X1, . . . , Xn) be a random vector taking values in En and having density (w.r.t.
µ⊗n)

1

n!
| det(ϕi(xj))i,j≤n|2.

The determinantal process corresponding to this measure is defined to be the random
set X = {X1, . . . , Xn} (or as the random measure δX1 + . . .+ δXn which is sometimes
more convenient). Similarly, define Y = (Y1, . . . , Yn+1) to be a random vector taking
values in E∧n+1 and having density (w.r.t. µ⊗(n+1)) and let Y be the determinantal
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process corresponding to this measure. Since the density of X vanishes unless xis
are distinct, it is clear that X takes values in the collection of n-element subsets of
E. But it is clear that everything about X can also be formulated in terms of the
random vector X and that is what we do here. Henceforth we do not mention X or
Y .

Let A ⊆ En be a measurable subset (i.e., in F⊗n) that is symmetric (i.e., closed
w.r.t. permutation of co-ordinates). Similarly let B be a measurable symmetric subset
of En+1. Then we say that A ≤ B if (x, . . . , xn, t) ∈ B for any (x1, . . . , xn) ∈ A and
any t ∈ E.

Theorem 41. Let A and B be measurable, symmetric subsets of En and En+1, re-
spectively. Assume that A ≤ B. Then P{X ∈ A} ≤ P{Y ∈ B}.

As before, we shall need two claims, analogous to the discrete situation (except
that each set of n elements is replaced by n! tuples). Let us fix the following notation.
For x = (x1, x2, . . . , xn) ∈ En, define Kn(x) := (ϕi(xj))1≤i,j≤n. Also, for t ∈ E, x ∈ En

we will write (x|t;n + 1) = (x|t) := (x1, x2, . . . , xn, t) ∈ E(n+1) and if k ∈ [n] then
define the vector (x|t; k) to be the vector obtained by putting t at the k-th coordinate
in x, that is, (x|t; k) = (x1, . . . , xk−1, t, xk+1, . . . , xn). We begin with the following
claim:

Proposition 42. For any (x1, . . . , xn) ∈ En, we have∫
E

ϕ̄n+1(t)× det(Kn+1(x|t)) dµ(t) = det(Kn(x)).

Proof. By the multilinearity of the determinant, the integral becomes (inner products
in L2(µ))

det

 (ϕi(xj))i,j≤n

〈ϕ1, ϕn+1〉
...

〈ϕn, ϕn+1〉
ϕn+1(x1) . . . ϕn+1(xn) 〈ϕn+1, ϕn+1〉

 .
But then the last column is (0, . . . , 0, 1)t, hence we get det(ϕi(xj))i,j≤n. �

Remark 43. Note that the above proposition is entirely analogous to Proposition
35. We will now prove a lemma which analogous to the lemma 36 but here we directly
prove what we would use it for.

Let us fix the following notation for the next proof. For y = (y1, . . . , yn+1), let
ŷk = (y1, . . . , yk−1, yk+1, . . . , yn).

Lemma 44. Let A be measurable, symmetric subsets of En. Then

1

n!

∫
A
| det(Kn(x))|2dµ⊗n(x)

≥ 1

(n+ 1)!

∫
En+1

∣∣∣ ∑
k: ŷk∈A

(−1)kϕn+1(yk) det(Kn(ŷk))
∣∣∣2dµ⊗(n+1)(y)
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Proof. First observe that∣∣∣ ∑
k:ŷk∈A

(−1)kϕn+1(yk) det(Kn(ŷk))
∣∣∣2

=
n+1∑
k=1

| det(Kn(ŷk))|2|ϕ(yk)|2χA(ŷk)

+
n+1∑
j,k=1

(−1)j+kϕn+1(yk)ϕn+1(yj) det(Kn(ŷk))det(Kn(ŷj))χA(ŷk)χA(ŷj)

Now note that∫
En+1

det(Kn(ŷk))|2|ϕ(yk)|2χA(ŷk) =

∫
A

| det(Kn(x))|2dµ⊗n(x)

∫
E

|ϕ(t)|2dµ(t).

And therefore we get that

1

(n+ 1)!

∫
En+1

∣∣∣ ∑
k:ŷk∈A

ε(y, k)ϕn+1(yk) det(Kn(ŷk))
∣∣∣2dµ⊗(n+1)(y)

=
1

n!

∫
A

| det(Kn)(x)|2dµ⊗n(x)

− 1

(n+ 1)!

n+1∑
j,k=1

∫
En+1

(−1)j+k−1ϕn+1(yk)ϕn+1(yj) det(Kn(ŷk))det(Kn(ŷj))χA(ŷk)χA(ŷj)

Note that it suffices to show that∫
En+1

(−1)j+k−1ϕn+1(yk)ϕn+1(yj) det(Kn(ŷk))det(Kn(ŷj))χA(ŷk)χA(ŷj) ≥ 0.

Let us denote by Ã = {ŷk : y ∈ A} (Note that Ã is well defined i.e. independent
of k due to the symmetry of A.) Let A0 = {y1 : y ∈ A}. Now, note that a fixed k, j
and a vector y ∈ En+1 is such that ŷk ∈ A and ŷj ∈ A corresponds uniquely to a
triplet (x, t1, t2) where x ∈ Ã and t1, t2 ∈ A0 (We obtain x by dropping both yj and
yk from y and say t1 = yk while t2 = yj). Therefore, we rewrite the above integral as∫

Ã

∫
A0

∫
A0

det(Kn(x|t1))det(Kn(x|t2))ϕn+1(t1)ϕn+1(t2)dµ(t1)dµ(t2)dµ⊗(n−1)(x)

To show that the above integral is positive, we show that the above integral is
norm square of some function, and therefore non-negative. To this end, define an
operator T : L2(A0)→ L2(Ã) by

Tf(x) =

∫
A0

det(Kn)(x|t)dµ(t).
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Observe that

0 ≤ 〈Tf, Tf〉

=

∫
A1

∫
A0

∫
A0

det(Kn(x|t1))det(Kn(x|t2))ϕn+1(t1)ϕn+1(t2)dµ(t1)dµ(t2)dµ⊗(n−1)(x)

which completes the proof. �

Proof of Theorem 41. Let p1 = P{X ∈ A} and p2 = P{Y ∈ B}. Then,

p2 =
1

(n+ 1)!

∫
B

| det(Kn+1(y))|2dµ⊗n+1(y).

p1 ≥
1

(n+ 1)!

∫
B

∣∣∣ ∑
k: ŷk∈A

ε(y, k)ϕn+1(yk) det(Kn(ŷk))
∣∣∣2dµ⊗(n+1)(y)

where the second line follows from Claim 44. Now use Cauchy-Schwarz inequality to
write

√
p1
√
p2 ≥

1

(n+ 1)!

∫
B

det(Kn+1(y))
∑

k: ŷk∈A

ε(y, k)ϕn+1(yk) det(Kn(ŷk))dµ
⊗(n+1)(y).

Choose ε(y, k) so that ε(y, k) det(Kn+1(y)) = det(Kn)(ŷk|yk) (in simpler words, ε(y, k) =
(−1)n−k+1).

Now fix x ∈ A and t ∈ E. Since A ≤ B, for each k there is a unique y ∈ B such
that ŷk = x and yk = t. Then, each k contributes the same, and we get

√
p1
√
p2 ≥

1

n!

∫
A

det(Kn(x))

∫
E

ϕn+1(t)det(Kn+1)(x, t)dµ(t)dµ⊗n(x).

The inner integral is equal to detKn(x), by Claim 42. Thus we arrive at
√
p1
√
p2 ≥ p1,

which proves that p2 ≥ p1. �
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Chapter 4

Another result on Stochastic
domination

Before we go to our next result, we must point out that the content of the Lyons’
theorem (proved in the last chapter) is that ‘an orthogonal projection on bigger
space gives larger determinantal measure’. Lyons’ theorem allows us to compare
two determinantal measures (obtained from finite rank projection kernels) whose
kernels are expressed with respect to the same measure. Now suppose that we have
two determinantal probability measures coming from orthogonal projections of the
span{1, x, . . . , xn−1}, but with respect to two different reference measures. That is,
let H1 = span{1, x, . . . , xn−1} ⊆ L2(µ1) and H2 = span{1, x, . . . , xn−1} ⊆ L2(µ2). In
this case, is there a reasonable way to compare the determinantal processes coming
from orthogonal projections on H1 and H2? We answer a variant of this question in
the following section.

4.1 Another stochastic domination result

As a prelude, we begin with the following proposition.

Proposition 45. Let µ be a positive measure on R, and let f, g be two non-negative
integrable functions on R such that

∫
R
f =

∫
R
g = 1, and f

g
is increasing. Then for any

real t we have
t∫

−∞

fdµ ≤
t∫

−∞

gdµ.

It should be pointed out the above theorem is essentially a result about stochastic
domination of two probability measures. It is standard in measure theory to induce
positive measures µf from a positive functions f by defining dµf = f dµ. The integral
of the functions being 1 ensures that we obtain a probability measure and the content
of the above theorem can be written as µg ≺ µf if f

g
is increasing. We will prove the

following above proposition in slightly general setting, that is, when f, g are densities
given on some totally ordered measure space. The above result can then be obtained
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as a corollary. Note that if (E,≤) is a totally ordered set, we say that a function
f : E → R is increasing if f(x) ≤ f(y) whenever x ≤ y. Similarly, we say A ⊂ E is
increasing if y ∈ A whenever x ≤ y for some x ∈ A.

Proposition 46. Let (E, µ,≤) be a totally ordered probability space (that is (E,≤) is
a totally ordered set). Let h : E → R be a probability density with respect to µ which
is increasing. Then for any increasing subset A of E, we have

µ(A) ≤ µh(A) :=

∫
A

hdµ.

Proof. Consider the set S := {x ∈ E : h(x) ≥ 1} ⊂ E. Observe that S is an
increasing subset of E. It is clear that if A ⊂ S then µ(A) ≤ µh(A) since h ≥ 1 on S.
Similarly for any subset B ⊂ Sc we have that µh(B) ≤ µ(B). Suppose, for the sake
of contradiction, that A ⊂ E be an increasing set such that

µh(A) < µ(A). (1)

Note that Ac ⊂ Sc. Therefore, µh(Ac) ≤ µ(Ac). Adding this to equation (1) we get

1 = µh(A) + µh(Ac) < µ(A) + µ(Ac) = 1

which is a contradiction. Therefore, for any increasing set A in E we must have
µ(A) ≤ µh(A). �

Remark 47. One can obtain the above result directly from Harris inequality whose
proof usually goes by observing that (h1(x)−h1(y))(h2(x)−h2(y)) ≥ 0, for any increas-
ing functions h1, h2, and therefore so its integral (with respect to a dµ1(x)dµ2(y)). In
particular, taking h1 = 1A and h2 = f

g
and the measure to be gdµ we get an alternate

proof of the above result.

Note that the notion of increasing sets are available in partially ordered sets as
well. It would be nice to obtain a result in the same spirit on a partially ordered set.
But probably it is too good to be true. We produce below a counter-example which
shows that the above result does not hold for an arbitrary partially ordered set.

Consider the set X = {a, b, c} equipped with the partial order a ≤ b, a ≤ c. Let µ
be uniform measure on X, that is, µ({x}) = 1

3
for every x ∈ X. Now let f : X → R

be defined by f(a) = 1
3
, f(b) = 1

2
, f(c) = 13

6
. Clearly f is an increasing function on X

and is a probability density with respect to µ. The set {b} ⊂ X is an increasing set,
but 1

6
= µf ({b}) < µ({b}) = 1

3
.

A simple modification of the above example also shows that the above result does
not extend to a partially ordered lattice as well. Yet, not everything is lost. Our
next result shows that we can obtain a stochastic domination between µf and µg at
least under some conditions, which suffices for our purposes. Before we state our next
result, we recall that the partial order on X∧n = (or Xn) is given by component wise
ordering.
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Theorem 48. Let X = N or R+ and let µ be a Borel (finite) measure such that
dµ(x+y) = f(y)dµ(x) for some positive function f. Let X∧n := {x = (x1 < x2 < . . . <
xn)}, and let H : X∧n → R be an increasing function and consider the probability
measures P1 and P2 on X∧n given by

dP1(x) = ∆(x)2

n∏
i=1

dµ(xi)

and,

dP2(x) = ∆(x)2H(x)
n∏
i=1

dµ(xi),

where ∆(x) =
∏
i<j

(xi − xj). Let A ⊆ X∧n be an increasing set. Then P1(A) ≤ P2(A).

Remark 49. Note that in the statement of the theorem above the measure dµ and
function H are already suitably normalized. Also note that we can allow H : Xn → R
if H is symmetric. We are dealing with X∧n instead of Xn purely for the convenience,
and with obvious modification one can write the above result in the alternate setting.

Proof of Theorem 48. We will prove the claim by induction on n. For n = 1 it follows
from our previous result on Stochastic domination on totally ordered set. Assume
the claim to be true for n = m for some m ≥ 1, And let n = m+ 1.

We first introduce some notations. Note that for x ∈ X∧(m+1) associate a vector
(t; r) ∈ X × X∧m given by t = x1, ri := xi+1 − x1. We can then write ∆(x)2 =
∆(r)2

∏m
i=1 r

2
i . For future use we will also define dµ1(s) = s2dµ(s) in order to simplify

the notation in the proof.
Also for an increasing set A ⊂ X∧m+1 and t ∈ X define

At := {(d ∈ X∧m : (t, t+ d1, . . . , t+ dm) ∈ A},

and observe that At ⊆ As if t ≤ s.
Now, observe that

P1(A) :=

∫
A

∆(x)2

m+1∏
i=1

dµ(xi)

=

∫
X

f(t)mdµ(t)

∫
At

∆(r)2

m∏
i=

dµ1(ri)

=

∫
X

f(t)mZ1dµ(t)

∫
At

∆(r)2

Z1

m∏
i=1

dµ1(ri)

where Z1 :=
∫
X∧m

∆(r)2
∏m

i=1 dµ1(ri). We note that Z1f(t)mdµ(t) is a probability
measure on X, and Z−1

1 ∆(r)2
∏m

i=1 dµ1(ri) is a probability measure on X∧m.
Doing exactly the same for P2(A) we obtain that

P2(A) =

∫
X

f(t)mZ2(t)dµ(t)

∫
At

H(t; r)

Z2(t)
∆(r)2

m∏
i=1

dµ1(ri)
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where Z2(t) :=
∫
X∧m

H(t; r)∆(r)2
∏m

i=1 dµ1(ri). (We are making a slight abuse of no-

tation here we are using the same symbol H for the function H̃(t; r) := H(t, t +
r1, . . . , t + rm).) Observe that Z2(t) is increasing in t and f(t)mZ2(t)dµ(t) is a prob-
ability measure on X.

It follows therefore from our previous result (n = 1 case) that the probability
measure dm2(t) := f(t)mZ2(t)dµ(t) stochastically dominates the probability measure
dm1(t) := f(t)mdµ(t). Therefore, we know that for any increasing function F (t) we
have that ∫

X

F (t)dm1(t) ≤
∫
X

F (t)dm2(t). (2)

As At is increasing in t, we have F (t) :=
∫
At
Z−1

1 ∆(r)2
∏m

i=1 dµ1(ri) is increasing in

t, it follows from (4) therefore that∫
X

dm1(t)

∫
At

Z−1
1 ∆(r)2

m∏
i=1

dµ1(ri) ≤
∫
X

dm2(t)

∫
At

Z−1
1 ∆(r)2

m∏
i=1

dµ1(ri). (3)

We now observe that for a fixed t, H(t;r)
Z2(t)

is increasing in r on X∧m. Therefore, it

follows from induction hypothesis that for any increasing set B ⊆ X∧m we have that∫
B

∆(r)2

m∏
i=1

dµ1(ri) ≤
∫
B

∆(r)2H(t; r)

Z2(t)

m∏
i=1

dµ1(ri).

(Note that the due to suitable normalization we have probability densities on both
sides, which is crucial in order to apply induction.) In particular for B = At, we get
that

F (t) =

∫
At

∆(r)2

m∏
i=1

dµ1(ri) ≤ G(t) =:

∫
At

∆(r)2H(t; r)

Z2(t)

m∏
i=1

dµ1(ri). (4)

It follows from (4) and the fact that dm2(t) is a positive measure that

∫
X

dm2(t)

∫
At

Z−1
1 ∆(r)2

m∏
i=1

dµ1(ri) ≤
∫
X

dm2(t)

∫
At

Z2(t)−1H(t; r)∆(r)2

m∏
i=1

dµ1(ri)

(5)
The proof follows from (3) and (5). �
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Chapter 5

Some applications of stochastic
domination

In this chapter we present some applications of the results proved in the last two
chapters. The joint density of eigenvalues of many random matrix ensembles are
known to be determinantal. Also, there are beautiful connections between many
random matrix ensembles and last passage percolation. We will define a directed
last passage percolation and mention a few results which connect the last passage
time in a directed last passage percolation with largest eigenvalues of some random
matrix ensembles. After elucidating this connection we answer a question of R. Basu
and S. Ganguly about the largest eigenvalues of Wishart ensemble, that is, we prove
that λ∗(Wn−k−1,n+k+1) ≺ λ∗(Wn−k,n−k) for 0 ≤ k ≤ n − 2. We prove an analogous
result about the largest eigenvalues of Meixner ensemble, which in turn gives the
stochastic domination between last passage time in directed last passage percolation
with exponential weights.

5.1 Random matrix ensemble and Last passage per-

colation

We will introduce the directed last passage percolation (DLPP) on N2. Consider a
family of non-negative random variables {w(i, j) : (i, j) ∈ N2}, called weights or
passage times. And let Π(m,n) be the set of all up-right paths π in N2 from (1, 1) to
(m,n). Define the random variable

G(m,n) := max
π∈Π(m,n)

∑
(i,j)∈π

w(i, j).

This random variable G(m,n) is called last passage time of (m,n). The idea is that
passing through a vertex (i, j) takes some random amount of time which is given by
the random variable w(i, j). The reason for calling it a ‘last passage percolation’ is
that G(m,n) is essentially the time taken to reach the point (m,n) via the slowest
path. The study of G(m,n) naturally leads to the connections with Young tabluex,
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polynuclear growth model, tandem queues and totally asymmetric simple exclusion
process (see [17]). We will not get into these details here. We are concerned only
with the relation of G(m,n) with various random matrix ensembles. We will be
particularly concerned with DLPP with i.i.d. exponential weight and i.i.d. geometric
weight. The last passage time in these two cases ‘correspond’ to the largest eigenvalues
of Wishart ensemble and Miexner ensemble respectively. We define below the Wishart
and Miexner ensemble and state the results which connect the last passage time to
the largest eigenvalues of these ensemble.

Definition 50 (Wishart ensemble). If Am,n is a m × n matrix whose entries are
independent standard complex Gaussian entries (i.e., the real and imaginary parts
are i.i.d. N(0, 1/2)), then the matrix Wm,n = AA∗ is called the complex Wishart
matrix.

Equivalently, the Wishart matrix Wm,n also corresponds to the following measure
on the space of Hermitian matrices Hm:

Pm,n(A)dA = Z−1(detA)n−m exp(−Tr(A))1Y≥0dY.

Where Y ≥ 0 means that Y is positive semidefinite matrix. Let λ∗(Wm,n) denote the
largest eigenvalue of Wm,n. We recall the well-known result (see section 3, equation
(3.7) of [17]) that the eigenvalues of Wm,n for m ≤ n have joint density given by

1

Zm,n

∏
1≤j<k≤m

|λj − λk|2
m∏
k=1

λn−mk e−λk .

We record here the following result which establishes the connection between DLPP
and Wishart matrix.

Proposition 51 ([17], Proposition 4.4). For any n ≥ m ≥ 1, t ≥ 0, the distribution
for G(m,n) with i.i.d. exponential weights with mean 1 is

P(G(m,n) ≤ t) = Z−1
m,n

∫
[0,t]m

∏
1≤j<k≤m

|λj − λk|2
m∏
k=1

λn−mk e−λkdλk. (1)

It is obvious that G(m,n) ≤ G(m,n + 1) or G(m,n) ≤ G(m + 1, n) from the
description of the G(m,n). But it is not obvious to compare the random variables
G(n, n) and G(n − 1, n + 1). There is no natural way to couple these two random
variables on N2. The authors in [2] (see section 5) if there exists a coupling between
G(n, n) and G(n−1, n+1) such that G(n−1, n+1) ≤ G(n, n). Observe that the right
hand side in the (1) gives the distribution of the largest eigenvalue of Wishart matrix
(which is known to be determinantal). Therefore, this question can be translated in
terms of the largest eigenvalues of Wn,n and Wn−1,n+1. Let λ∗(Wp,q) denote the largest
eigenvalue of Wp,q. The above question can be reformulated as:

Conjecture [R. Basu and S. Ganguly]: λ∗(Wn−k−1,n+k+1) ≺ λ∗(Wn−k,n−k) for 0 ≤
k ≤ n− 2.
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Motivated by this question, we can ask the same question about the last passage
time in DLPP with i.i.d geometric weights. When the weights are i.i.d. geometric with
parameter q, the distribution of last passage time G(m,n) is given by the following
proposition.

Proposition 52 ([17], Proposition 4.1). For any n ≥ m ≥ 1, the distribution for
G(m,n) with i.i.d. geometric weights with parameter q is

P(G(m,n) ≤ t) = Z−1
∑
h∈Nm:

max{hi≤t+m−1}

∏
1≤i<j≤m

(hi − hj)2

m∏
i=1

(
hi + n−m

hi

)
qhi (2)

And, thankfully the measure Pm,n on Nm, called Meixner ensmeble, given by

Z−1
∑
h∈Nm:

max{hi≤t+m−1}

∏
1≤i<j≤m

(hi − hj)2

m∏
i=1

(
hi + n−m

hi

)
qhi ,

is also determinantal. We exploit this fact and use the results proved in the last
chapter along with the Lyons’ result on stochastic domination to show that G(n −
1, n + 1) ≺ G(n, n). Straseen’s theorem therefore gives the coupling of G(n, n) and
G(n− 1, n+ 1) such that G(n− 1, n+ 1) ≤ G(n, n).

5.2 Application of stochastic domination in ran-

dom matrix ensemble

In this section we will give three applications of the Stochastic domination results
proved in the previous chapter.

Stochastic domination for eigenvalues of Wishart matrix

It is clear from the discussion in the previous section that this corresponds to proving
the stochastic domination between the last passage time G(n− k− 1, n+ k + 1) and
G(n− k, n− k) of directed last passage percolation with i.i.d. exponential weights.

Observe that if m1 ≤ m2 and n1 ≤ n2 then λ∗(Wm1,n1) ≺ λ∗(Wm2,n2). Indeed,
if the two matrices are coupled in the natural way so that Wm1,n1 is a sub-matrix
of Wm2,n2 , then we in fact have λ∗(Wm1,n1) ≤ λ∗(Wm2,n2). However, this method of
proof does not give the comparison between largest eigenvalues of Wn,n and Wn−1,n+1.
Instead we prove the conjecture using the determinantal structure of the eigenvalue
density of W and the theorem of Lyons on stochastic domination of determinantal
point processes proved in the previous chapter.

Proof of the conjecture about maximum eigenvalue of Wishart matrices
Recall that the eigenvalues of Wm,n for m ≤ n have joint density given by

Z−1
m,n

∫
[0,t]m

∏
1≤j<k≤m

|λj − λk|2
m∏
k=1

λn−mk e−λkdλk.
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To be more precise, this is the density with respect to Lebesgue measure on Rm
+ of

the vector of eigenvalues of Wm,n put in uniform random order.
Apply Gram-Schmidt procedure to xn−1, xn−2, . . . , x0 in that order in L2(R+, e

−xdx)
to get ϕn−1, . . . , ϕ0. Note that these are not Laguerre polynomials. In fact, ϕn−1(x) =

1√
(2n−2)!

xn−1. More generally, ϕk is a linear combination of xk, . . . , xn−1. Let ck denote

the coefficient of xk in ϕk. Then,

∏
1≤j<k≤n−`

(λj − λk)
n−∏̀
k=1

λ2`
k = det

 λ`1 λ`+1
1 . . . λn−1

1
...

...
...

...
λ`n−` λ`+1

n−` . . . λn−1
n−`


=

1
n−1∏
j=`

cj

det

 ϕ`(λ1) ϕ`+1(λ1) . . . ϕn−1(λ1)
...

...
...

...
ϕ`(λn−`) ϕ`+1(λn−`) . . . ϕn−1(λn−`)

 .
Therefore, for 0 ≤ ` ≤ n − 1, the density of eigenvalues of Wn−`,n+` (w.r.t. the
measure (e−xdx)⊗n−` on Rn−`

+ ) is proportional to

det


 ϕ`(λ1) ϕ`+1(λ1) . . . ϕn−1(λ1)

...
...

...
...

ϕ`(λp) ϕ`+1(λp) . . . ϕn−1(λn−`)


 ϕ`(λ1) ϕ`(λ2) . . . ϕ`(λn−`)

...
...

...
...

ϕn−1(λ1) ϕn−1(λ2) . . . ϕn−1(λn−`)




= det [(K`(λi, λj))i,j≤n−`]

with K`(x, y) = ϕ`(x)ϕ`(y) + . . . + ϕn−1(x)ϕn−1(y). Using the orthonormality of
ϕjs, a simple calculation gives the normalization constant to be 1/(n − `)!. Thus,
the eigenvalues of Wn−`,n+` form a determinantal process on (R+, e

−xdx) with kernel
K`. Now, let ` ≤ n − 2 and apply Theorem 33 to the eigenvalues of Wn−`,n+` and
Wn−`−1,n+`+1 to see that the latter is stochastically dominated by the former.

Now fix t > 0 and consider the set A of all measures θ on R+ such that θ([t,∞)) >
0. This is an increasing set of measures. If X is the counting measure of eigenvalues
of Wn−`,n+` and Y is the counting measure of eigenvalues of Wn−`−1,n+`+1, then it
follows by the definition of stochastic domination that P{X ∈ A} ≥ P{Y ∈ A}. But
P{X ∈ A} is the same as P{λ∗(Wn−`,n+`) ≥ t} and similarly for Y . Thus, the desired
stochastic domination of largest eigenvalues follows.

Stochastic domination for eigenvalues of Jacobi ensemble

Jacobi ensemble is a family of p.d.fs given by

C−1
n,a,b,β

n∏
j=1

(1− xj)aβ/2(1 + xj)
bβ/2

∏
1≤i<j≤n

|xi − xj|β, xj ∈ [−1, 1], (3)

where Cn,a,b,β is the suitable normalizing constant. This family of joint-densities does
arise naturally as the joint-density of eigenvalues of some random matrices at least
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when β = 1, 2, 4. For details we refer the reader to Chapter 3 of [6]. We are only
interested in the case β = 2. In this case, the above density arises as the joint density
of eigenvalues as follows.

Proposition 53 (proposition 3.6.1.,[6]). The eigenvalues of n× n matrix

Jn1,n2,n =
AA∗

AA∗ +BB∗

where A,B are matrices of size n × n1 and n × n2 respectively with i.i.d. standard
complex Gaussian entries has joint density given by

C−1
n,n1,n2

n∏
j=1

(xj)
n1−n(1− xj)n2−n

∏
1≤i<j≤n

|xi − xj|2, xj ∈ [0, 1].

Proposition 54 (Stochastic domination for β = 2 Jacobi ensemble).

λ∗(Jn1+1,n2−1,n−1) ≺ λ∗(Jn1,n2,n).

Proof. The proof is verbatim same as in the case of Wishart ensemble, but we give the
proof for completeness. Recall from the previous proposition that the joint density
of the eigenvalues of Jn1,n2,m is proportional to

n∏
j=1

(xj)
n1−n(1− xj)n2−n

∏
1≤i<j≤n

|xi − xj|β, xj ∈ [0, 1].

Let ϕn−1, . . . , ϕ0 be orthonormal vectors in L2([0, 1], xn1−nxn−2−ndx) obtained by
Gram-Schmidt procedure applied to xn−1, xn−2, . . . , x0 in that order. Let ck denote
the coefficient of xk in ϕk. Then,

∏
1≤j<k≤n

(λj − λk) = det

 λ0
1 λ1

1 . . . λn−1
n

...
...

...
...

λ0
n λ1

n . . . λn−1
n


=

1
n−1∏
j=1

cj

det

 ϕ0(λ1) ϕ1(λ1) . . . ϕn−1(λ1)
...

...
...

...
ϕ0(λn−1) ϕ1(λn−1) . . . ϕn−1(λn−1)


Therefore, w.r.t. the measure (xn1−nxn2−ndx)⊗n on [0, 1], the density of eigenvalues

of Jn1,n2,m is proportional to det(Kn(λi, λj))1≤i,j≤n where Kn(x, y) =
n−1∑
j=0

ϕj(x)ϕj(y).

Therefore, the eigenvalues of Jn1,n2,n form a determinantal process with the kernel
Kn(x, y) w.r.t. the measure (xn1−n(1−x)n2−ndx). Exactly similar computation shows
that the eigenvalues of Jn1+1,n2−1,n−1 form a determinantal process with the kernel∑n−1

j=1 ϕj(x)ϕj(y) with respect to the measure (xn1−n(1−x)n2−n). Invoking the theorem
33 gives and repeating exactly the same argument as in the last paragraph of the
previous section, we obtain the desired result. �
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Of course a similar strategy also gives us that λ∗(Jn1−1,n2+1,n−1) � λ∗(Jn1,n2,n). We
wish to point out here is that the general scheme here is to first show that eigenvalues
of some ensemble is determinantal (which in both of the above cases is fairly well
known). Then we go on to compute the kernels of these determinantal processes.
The key step is to observe that it is possible to subsume some part of the measure
into the kernel so that both kernels are expressed w.r.t. a common reference measure.
After that its just a matter of checking the condition in the Lyons theorem, and invoke
the Lyons theorem. In the next section we deal with Meixner ensemble and the reason
why Lyons theorem is not directly applicable in that case is precisely that we are not
able to represent the two kernels with respect to a common reference measure.

Stochastic domination for eigenvalues of Meixner

ensemble

Recall that Meixner ensemble M(m,n),m ≥ n is given by the following probability
measure on Nm (for 0 < q < 1,)

Z−1
m,n

∏
1≤i<j≤m

(hi − hj)2

m∏
i=1

(
hi + n−m

hi

)
qhi .

The goal here is to compare the law of rightmost particles of M(n, n) and M(n−
1, n+ 1). The joint density of the particles of M(n, n) is give by

Z−1
n,n

n∏
i=1

(hi − hj)2

n∏
i=1

qhi .

Arguing exactly as in the case of Wishart matrix, it can be shown that this is de-

terminantal with the kernel Kn(x, y) =
n−1∑
i=0

ϕi(x)ϕi(y) where ϕn−1, . . . , ϕ0 are the

vectors obtained by orthonormalizing xn−1, . . . , x, 1 w.r.t. the probability measure
with probability mass function proportional to µ(x) = qx. Let us proceed as we did
earlier and write the joint density of particles of M(n+ 1, n− 1) which is given by

Z−1
n−1,n+1

n−1∏
i=1

(hi − hj)2

n−1∏
i=1

(hi + 2)(hi + 1)qhi .

Observe that we still have a determinantal process with kernelK ′(x, y) =
n−2∑
i=0

ψi(x)ψi(y)

were ψi are obtained by orthonormalizing xn−2, . . . , x, 1 but with respect to the proba-
bility measure on N with probability mass function proportional to (x+2)(x+1)qx. In
the earlier examples, we could get the kernel K ′ by by orthonormalizing xn−2, . . . , x, 1
w.r.t measure with p.m.f proportional to x2(x)dµ(x). In that case it was possible to
subsume this polynomial term x2 into the determinant term, and thus express this
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kernel w.r.t. the original measure µ(x) so that K ′(x, y) =
n−1∑
i=1

ϕi(x)ϕi(y), and there-

fore theorem 33 could be used to compare the two processes. But in this case, theorem
33 is not directly applicable. Nonetheless, it is true that λ∗(Mn+1,n−1) � λ∗(Mn,n),
where λ∗(Mm,n) is the rightmost particle of Mm,n. This is the content of the next
proposition.

Proposition 55. λ∗(Mn+1,n−1) � λ∗(Mn,n).

The proof of the above proposition follows from the two claims which we will prove
below.

Claim 56. Let P1 be the joint law of n particles on N given by

Z−1
n,n

n∏
i=1

(hi − hj)2

n∏
i=1

qhi .

Let P2 be the joint law of n− 1 particles on N given by

Z−1

n−1∏
i=1

(hi − hj)2

n−1∏
i=1

h2
i q
hi .

Let X1 and X2 be the point processes obtained by the considering the unlabeled particles
from N chosen according to P1 and P2 respectively. Then, X2 � X1.

The proof in this case is verbatim same as in the case of Wishart matrix and
follows from the theorem 33.

Claim 57. Let P2 be the joint law of n− 1 particles on N given by

Z−1

n−1∏
i=1

(hi − hj)2

n−1∏
i=1

h2
i q
hi .

Let P3 be the joint law of n− 1 particles on N given by

Z−1
n+1,n−1

n−1∏
i=1

(hi − hj)2

n−1∏
i=1

(hi + 2)(hi + 1)qhi .

Let X2 and X3 be the point processes obtained by the considering the unlabeled particles
from N chosen according to P2 and P3 respectively. Then, X3 � X2.

Proof. Observe that x2

(x+2)(x+1)
is an increasing function on N. And, therefore the

claim follows from the Theorem 48. �

Proof of Proposition 55. Observe that P3 is the joint distribution of eigenvalue of
M(n+ 1, n− 1) and P1 is the joint distribution of eigenvalues of M(n, n). It follows
from the last two claims that X3 � X1 where X3(or X1) is the counting measure of the
eigenvalues of Mn−1,n+1( or Mn,n). After this repeating exactly the same argument as
in the Wishart’s case give us the desired result. �
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