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FORWARD BROWNIAN MOTION
KRZYSZTOF BURDZY AND MICHAEL SCHEUTZOW

ABSTRACT. We consider processes which have the distribution of stahBrownian motion (in
the forward direction of time) starting from random pointstbe trajectory which accumulate
at —oo. We show that these processes do not have to have the distilofi standard Brownian
motion in the backward direction of time, no matter whichdam time we take as the origin. We
study the maximum and minimum rates of growth for these m®eein the backward direction.
We also address the question of which extra assumptions orekef these processes a two-
sided Brownian motion.

1. INTRODUCTION

This article is devoted téorward Brownian motionsi.e., processes defined on the whole
real line which appear to be Brownian motions when observaa fandom points in space-
time in the forward time direction. More precisely, we witlysthat{ X,, ¢t € R} is aforward
Brownian motion(FBM) if there exists a sequende,,,n < 0} of random times such that
lim,, S, = —oo, a.s., and for every, the proces§ Xg,.; — Xs,, t > 0} is standard
Brownian motion orj0, co).

A simple example of FBM is two-sided Brownian motion, i.&@gfproces$ X,, t € R} such
that{X;, t > 0} and{X_¢, ¢t > 0} are independent standard Brownian motions.

We will address several families of questions. It is natdoastart with the very general
question of whether there are any forward Brownian motidrad &re significantly different
from two-sided Brownian motion? The question is somewhgueabut we believe that the
answer is quite clear. We will exhibit a number of FBM’s thet gery different from two-sided
Brownian motion by any measure.

We will say that{X;, t € R} is backward Brownian motioif {X_;, t € R} is FBM. If a
process is both a forward Brownian motion and a backward Bramvmotion, is it necessarily
two-sided Brownian motion (or a very similar process)? Theweer is no — we will present
an example to this effect.

It is easy to see that some FBM’s can be constructed by caratatg pieces of independent
standard Brownian motions. We will show that the family ofN\#B constructed in this way is
very rich. One could hope that every FBM may be represenisdndly — that would provide
a convenient technical tool. Somewhat disappointinghg tihrns out to be false. This leaves
open the question of characterizing all FBM’s. This probismague but we can indicate what
we mean by invoking well known “characterizations” of soramilies of stochastic processes.
Lévy processes are characterized by the Lévy-Khinchgoegnt; Gaussian processes are char-
acterized by the mean and covariance functions; one-dimegigdiffusions are characterized
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by the scale function and speed measure. So far, we haveurad #osimilar characterization
for FBM's.

We will start our rigorous study of FBM’s by presenting saleesults on their path behav-
ior. We will show that FBM trajectories can be extremely eifint from those of two-sided
Brownian motion.

The paper has two disparate sources of inspiration. On taieal side, FBM’s arise natu-
rally in the study of skew-Brownian motion (we will be moreesific below). On the philosoph-
ical and scientific side, one may ask what can be said abowichasttic process representing
a natural phenomenon which can be observed effectively ionbne direction of time. If it
appears to be Brownian motion, does it necessarily imply tthetrajectories of this process
have to be Brownian-like in the opposite direction of timd¥Tnotivation for this question is
provided by processes that occur on a scale that is borddeasible for effective observations,
such as the evolution of species.

Our paper is related to a number of models and problems tipegtaagd in literature. “Ex-
tended chains” were discussed lin [Kemeny et al., 1976, Ch@p(see especially Definition
10-5). A duality problem for Lévy processes was studiedént@n and Savov [2011]; our Ex-
ampld 2.8 is a special case of that model. Forward Browniaiomg also related to Brownian
interlacements that were presented in Sznitrman [2012].

The rest of the paper is organized as follows. Sedtion 2 ptedsasic definitions and ex-
amples. The minimum and maximum rates of growth of FBM trajees in the backward
direction are studied in Sectiohk 3 dAd 4. We analyze thetignexf which extra assumptions
make a decomposable FBM a 2-sided Brownian motion in SelidiWe show that a process
that is simultaneously a forward Brownian motion and a barkMBrownian motion is not nec-
essarily a 2-sided Brownian motion in Sectign 6. Finally,lisesome open problems in Section

2.

2. DEFINITIONS AND BASIC EXAMPLES

The sets of real numbers, non-negative natural numbei)yspositive natural numbers and
integers will be denote®, Ny, N andZ, respectively.

Unless stated otherwise, the terstandard Brownian motioand Brownian motiornwill be
treated as synonyms and we will assume that these proceadest § at time O.

2.1. Definitions.

Definition 2.1. We will say that{X;, ¢ € R} is aforward Brownian motio(FBM) if there
exists a sequendgs,,, —n € Ny} of random times such théin,, , .. S, = —o0, a.s., and for
everyn, the proces$ X, .+ — Xg,, t > 0} is standard Brownian motion g, co). We will say
that{ X, t € R} is backward Brownian motio(BBM) if {X_;, ¢t € R} is FBM. Further, we
call {X;, t € R} two-sided Brownian motio(RBM) if there exists a random timg& such that
{Xs4t — Xg, t > 0} and{Xs_; — Xg, t > 0} are independent standard Brownian motions. If
we can takeS = 0 in the last definition then the distribution &f will be denoted 2BM(0).

Note that the formal definition of two-sided Brownian motigimen above is less restrictive
than the informal definition given in the introduction.

If X is 2BM then it is FBM. To see this, let, = S + n, —n € Ny, in Definition[2.].
Similarly, if X is 2BM then it is BBM.
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We will describe a general method of constructing forwardv8rian motions.

Definition 2.2. For eachk € Z, let {BF,t > 0} be a Brownian motion with respect to some
normal filtration{FF,¢ > 0} and letT}, be a stopping time with respect #°. Assume that
(Ty, {Bf,t € [0,T}]}), k € Z areindependentand, a8.< T < oo, fork € Z,> 7", Ty, = 00
andE,;:l_oo T, = oo. Let Sy = 0, and note that the conditiorts | — S, = T}, k € Z, define
uniquely Sy for all £ € Z. Let X be the unique continuous process such tkat= 0 and
Xs, 1+ — Xs, = BFfort € [0,T},), k € Z. If a processX’ is such that for some random time
U, the proces{ X; := X;,,, — X{;,t € R} can be represented as above, then we will call
X’ decomposablelf (T}, {BF,t € [0,Tx]}), k € Z, are i.i.d. thenX’ will be calledstrongly
decomposable

A decomposable process is the concatenation of a countabiber of independent (but not
necessarily identically distributed) pieces of Brownigajdctories. It follows from the strong
Markov property thaf X5 ., — Xg,,t > 0} is standard Brownian motion for every € Z.
Hence, a decomposable process is FBM.

Remark 2.3. Recall the conditiodim,,_,_., S, = —oo that appears in Definition_2.1. The
following list contains this condition and its alternatv@ll conditions are supposed to hold
a.s.).

() lim,, o S, = —o0.
(i) lim,,_ S, = —occ ands,, < S, forall —n € N.
(i) lim,, o S, = —oo and S, is a stopping time relative to the filtration generated by
{Xs,+t — Xg,, t >0}, forall —n € N.
(iv) liminf,_,_ .S, = —o0.

Clearly a process satisfying (iii) satisfies (ii), and (8)stronger than (i). On the other hand, (iv)
is weaker than (i). It is easy to see that (iii) is equivalertite process( being decomposable.

It is natural to ask if all conditions are in fact equivaleRtopositior 6.2 (ii) shows that not
all FBM’s are decomposable, so (iii) is not equivalent to (i)

The equivalence of (i) and (ii) would be proved if we could whtbat if {X;, ¢ € R} is a
process and and7" are random times such that bdtN s, — Xg,¢ > 0} and{ Xy, — X7, >
0} are Brownian motions, thefWX (s r)++ — Xsar, t > 0} is Brownian motion. This is not
true—not even if we assume that is two sided Brownian motion. As an example, gt
be two sided Brownian motion wittk, = 0, S = 0 andy = {w : X;(w) > 0}. Let
N =sup{n € N: X ,,, — X, > 0forallk € {1,...,n}} with the conventiosup ) = 0.
DefineT" to be 1 onQ), and —N otherwise. It is easy to check that balfy,; — X¢ and
Xr4t — Xp are Brownian motions buX sa7)++ — Xgar is not (nor isX g7+ — Xgvr).

Remark 2.4. It is not true that for every FBNK there exists a random timésuch that X ,—
Xr,t > 0} and{Xr_; — Xr,t > 0} are independent andX,,, — X7,¢t > 0} is standard
Brownian motion. A counterexample is given in ProposifioP @). See Example 2.10 for a
weaker, but much easier to prove, claim.

Sometimes it will be convenient to work with the discretesien of FBM, i.e., forward
random walk defined as follows.

Definition 2.5. We will say that an integer valued proceSs,, n € Z} is forward random
walk (FRW) if there exists a sequengé,,, —n € Ny} of integer valued random times such



4 KRZYSZTOF BURDZY AND MICHAEL SCHEUTZOW

thatlim,,, - S, = —o0, a.s., and for every, the proces§Zs, . — Zs,, k € Ny} is simple
symmetric random walk. We will say th&t/,,, n € Z} is backward random walkBRW) if
{Z_,,n € Z} is FRW. We cal{Z,,, n € Z} two-sided random walkkRW) if there exists a
random timeS such that{ Zs., — Zs, k € No} and{Zs_, — Zs, k € Ny} are independent
simple symmetric random walks. If we can take= 0 in the last definition then the distribution
of Z will be denoted 2RW/(0).

Decomposable and strongly decomposable FRW are defined ayamalogous to that in
Definition[2.2.

Remark 2.6. We will now discuss the relationship between forward Brawnmotion and
forward random walk.

(i) Suppose thaf 7., k € Z} is an integer valued process with the property that , — 7| =
1 forall k € Z, a.s. We do not assume that the distributior¥as that of random walk but our
construction will be easiest to understand if one keeps imdnai particular example, namely,
that of 2RW(0).

Let {U;,t € [0, 7]} be one dimensional Brownian motion starting at O, condétbto stay
positive and stopped at the hitting time of 1. In other woldds Doob’s h-process ino, 1],
starting from 0 and conditioned to converge to 1. Yet anotveey to think aboutU is that it is
3-dimensional Bessel process stopped at the hitting tinle dhe proces§U.,, — U, _,t €
[0, 7]} has the same distribution &8;,t € [0, 7] }. See Williams|[1974] for a justification of
these claims.

Suppose thafB;,t > 0} is standard Brownian motion starting from 0 andigt= inf{¢t >
0:|By = 1} andop = sup{t < 75 : B; = 0}. Excursion theory easily shows that the
processe$B;,t € [0,05]} and{B,,_,t € [0, 0]} have the same distribution.

Let {U},t € [0,7%]}, k € Z, be i.i.d. copies of U;,t € [0, 7]} and let{ BF,t € [0,0%]},

k € 7Z, be i.i.d. copies of B;,t € [0,05]} (also independent df*’'s). We will write U} =
U*(t) for typesetting reasons, and similarly for other processes M, = 0 and define);
forj € Z by M., — M; = o} + 7{,. Fort € R, a.s., there exists a uniqyec Z such that
M; <t < Mj,,. For sucht andy, let

X, =Z; + Bi(t — M) fort < M; + o7,
Xi=Zj+ (Zjy1 — Z;)UI(t — M; — o3) otherwise

It is routine to check that if, for a random integer valueddif) {Zs., — Zs, k € Ny} is
simple symmetric random walk thgnXs,, — Xg, ¢ > 0} is Brownian motion. Hence, i¥/
is FRW thenX is FBM. Moreover, time reversibility of the processes usethie construction
explained above implies that if, for a random integer valtiee S, {Zs_, — Zs, k € Ng} is
simple symmetric random walk théiX (S +o0% —t) — X (S+0%), t > 0} is Brownian motion.
It follows that if Z is BRW thenX is BBM.

(i) We will present a relationship between 2BM and 2RW thagglin the opposite direction,
i.e., we will define 2RW starting with 2BM.

Suppose thak is 2BM andS is such tha{ X¢,; — Xg, t > 0} and{Xs_; — Xg, t > 0}
are independent standard Brownian motions.

LetU, := S and fork > 1, letUy :=inf{t > Uy, : | X; — Xy,_,| =1}. Fork € Z, k < 0,
we |etUk = sup{t < Uk—H : |Xt — XUk+1| = 1} LetZ, = XUk — Xy for k € Z.
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It follows from the strong Markov property of 2BM that is 2RW(0).
2.2. Basic examples.We start with elementary examples of FBM’s.

Example 2.7. (i) Suppose thaX is FBM and recall the random time&s, in Definition[2.].
Suppose that for eveny € Ny, there exists a (non-random) real numbgsuch thats,, = s,
a.s. ThenX is 2BM. To see this, note that since thgs are deterministic, the finite dimensional
distributions of{ X; — X, ¢ € R} are Gaussian with mean equal to 0 and the same covariance
function as for Brownian motion.

(ii) A slightly more general example than that in part (i) letfollowing. We will use the
notation of Definitiori 2.2. Suppose that there exists a serpief (non-random) real numbers
t, > 0 such thaty;° t, = co andY .\t = oo, andTy = t, for all k. If X is a
decomposable FBM corresponding to thés thenX is 2BM.

The following example is the starting point of our project,a sense. We will construct an
FBM which is not two-sided Brownian motion. We will also iattuce an idea that will be
the basis of a number of our arguments. The example is a $pasia of duality relationship
studied in Bertoin and Savov [2011].

Example 2.8. Recall the notation from Definition 2.2. Suppose thats strongly decompos-
able, Xy = Sy = 0 andT}, = inf{t > 0 : BF = —1} for all k. Note thatX, > —k for all

t < Sy, ke€Z,a.s. It follows thatim,_,_., X; = oo, a.s. HenceX; is not backward Brownian
motion and, therefore, it is not two-sided Brownian motion.

We will show that{X _,,¢ > 0} is 3-dimensional Bessel process. By the strong Markov
property, fork < 0, the proces§ Xg, .+ — Xg,,t € [0, —Si]} is Brownian motion stopped at
the first hitting time oft. By [Williams, 1974, Thm. 3.4], the time reversed proc¢ss ,, ¢ €
[0, —Sk]} is 3-dimensional Bessel process stopped at the last exét fiom —k. Sincek is
arbitrary andS,, — —oo, a.s., we conclude thgtX_,,¢t € [0,00)} is 3-dimensional Bessel
process.

The following example provided the original motivation fibis project. In a sense, it is a
generalization of Example 2.8.

Example 2.9. Given a standard Brownian motighand—1 < g < 1, the equation
(2.1) Zy= B+ BLY, t>0,

has a unique strong solution (see Harrison and Shepp |[188[Hy [2006]). HereL? is the
symmetric local time o/ at(0. The proces« is called skew Brownian motion.

LetT = inf{t > 0 : LZ = 1} and let{(B*,T})},cz be an i.i.d. family with elements
distributed ag B, 7). We now define an FBMX as a strongly decomposable process based on
{(B*, T}.) }kez, as in Definitior 2.P.

We can write as in(2]1),

ZF=DBF+BLF, t>0.

Let ;X = L¥+ kB fort € [Sk, Skt1], k € Z. The analysis of the excursion processZéfabove
0 shows that the procesd; := X _; + 28L~%, ¢t > 0} is Brownian motion. The distribution

of L7 is the same as that efiaxo<<; B; (See_Harrison and Shepp [1981]) B&7 = /2t /.



6 KRZYSZTOF BURDZY AND MICHAEL SCHEUTZOW

Hence, fort > 0,

(2.2) EX_, = EY; — E(28LY,) = 28/2t/7.

This shows that for different values of the parameiethe distributions of FBM'sX are dif-
ferent. Moreover,[(2]1) and (2.2) show th&tis two sided Brownian motion if and only if
g =0.

For 3 = 1, X, is the same as in Example 2.8 because, in this case reflected Brownian
motion andLZ = ming<,<; B, (see Harrison and Shepp [1981]).

If we let S, = inf{t : L;¥ = u} for u € R then for integen, this definition ofS, agrees
with the definition ofS;, given in Definition Z.2. It is easy to see th&t < S, for u < v and
{Xs,++ — Xg,, t > 0} is Brownian motion for every: € R. In other words, the process
is Brownian motion as viewed from a family of random poiffs,, X, ) in space time; the
cardinality of this family is the same as thatlf We do not believe that such a family can be
constructed for every FBM. For example, we doubt that it Gandnstructed for FBM presented
in Sectiori 6.

Since Example 218 is the “extreme” case of Exariplé 2.9, onemoeader whether properties
of trajectories ofX; in Exampl€ 2.8, when — —oo, display “extreme” possible behavior for
trajectories of any FBM. In other words, are path propemie3-dimensional Bessel process
extreme among path properties of all FBM’s? The answer istnegin every conceivable
sense—see Section$ B-4.

Example 2.10.We will show that ifZ is a strongly decomposable FRW dfids a random time
such thaf Zr.,,, n € Ny} is a simple symmetric random walk then this does not imply tine
increments ofZ to the right and to the left of” are independent. L&t be simple symmetric
random walk starting fronty, = 0 and letS = inf{n € {2,3, ...} : Y, - Y,_.1 =Y, 1 — Y, »}.
Let Z be strongly decomposable FRW constructed as a concatemditiodependent copies of
(Y,S). Itis easy to see that if = —1 then{Z;,,, n € Ny} is a simple symmetric random
walk and that the increments af before and after tim& are not independent. Specifically,
Zr — Zr_1 andZy — Zp, are fully correlated. We note parenthetically that ,_,,, n € Ny}

is not a simple symmetric random walk in this exampleXlis the FBM constructed fror¥
as in Remark 216 and@ = —1 then{Xr,, — Xr,t > 0} and{Xr_, — Xr,t > 0} are not
independent because if the first process hits 1 before dpittinthen the opposite is true of the
second process. This is a much weaker claim than that in Reé2dr

3. MAXIMUM ASYMPTOTIC RANGE

The main result of this section, Theoréml|3.3, states thdtuitheip of FBM in the backward
direction can be arbitrarily large. By symmetry, tlwa inf can be arbitrarily small. Moreover,
both assertions can be true simultaneously. As a warm up resept two simple results that
have short proofs.

Proposition 3.1. Let X be a decomposable FBM with associated sequéhcé € Z, in the

notation of Definition 2J2. Then we have

X

(3.1) lim sup Sn <la.s.
n—s—oo 1/2|S,|loglog|S,|

By symmetry, an analogous inequality holdslfarinf.
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Proof. Define
X=X, 18, 1+t — Xs, — Xs, if Spo1 < -t <5, —n € Ny,

and observe thafX,, ¢t > 0} is standard Brownian motion because, for each € N, we
shifted the graph ok betweens,,_; andS, by (—=S,_1 — S, — X5, — X5, ,). SinceX _g, =
—Xg, forall —n € Ny, (3.1) follows from the usual law of the iterated logarithon Brownian
motion. O

Proposition 3.2. Let X be FBM. Then we have

X
lim inf t < 1a.s.

t=—oco | /2|t|loglog |t| —

Proof. Note the it will suffice to prove the claim fak; — X, in place ofX,. Let.S,, be as in
Definition[2.1. Fix an arbitrarily smaHl > 0 and let

Pn = P(Xs, — Xo > (1 +¢)1/2|S,| loglog | S,]).

By the LIL and the fact thab,, — —oo it follows thatp,, — 0. Passing to a subsequence, if
necessary, for which the sum pf’s is finite, we see that, by the Borel-Cantelli Lemma, we
have almost surely,

Xg, — Xo < (1+¢)v/2[S,|loglog |S,|
for infinitely manyn, so the proposition follows. U

Theorem 3.3. For each increasing functioffi : [0, 00) — [0, co) there exists a strongly decom-
posable FBMX for which, a.s.,

limsup (X; — f(—=t)) >0 and ltig_inf (Xe+ f(—t)) <0.

t——o0

Proof. We will assume without loss of generality that

(3.2) f(x) >24/2xlog" log™ , x>0,

wherelog™ = := max{logz, 1}.

Our construction ofX will be based on a random variable whose distribution will be
specified in several steps. Suppose thand a Brownian motiorB are defined on the same
probability space and are independent. Let

T := 1nf{t Z 1: Bt — Bt—l = Y}

Let (Y, B*, 1), k € Z, be independent copies ¢f, B, T') and define the,'s and X as in
Definition[2.2.

We will later specify a sequende: }rcn, Of Non-negative real numbers strictly increasing to
oo. We define the distribution df by

P(Y =ny) =P(Y = —n,) =2"""1=p,, keN,

P(Y =0)=1-2> pp=p.
k=1
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Let K (m) be the largest negative integefor which |Y;| = n,, and define the events

Ch = {K(m) > max K(j)}.

j>m
Letg, = ) ,.,, p;- Itis elementary to see th&(C.,) = pm/(Pm + ¢m) SO

2l
dm < q_m _ Zj>m2 7 < 2- 2—(m+1)2—1 _ 2—2m
Pm+ Gm ~ Pm 2-m*-1 = mmi-l '

(3.3) P(C) =

Hence,Y *_ P(C¢,) < oo and, by the Borel-Cantelli Lemma, almost surely, all buttéilyi
many of theC',, occur. This means that there exists almost surely some nangdpsuch that
K(m+1) < K(m) for all m > mj.

We will show that, for suitably chosefm, } rcn,, €ach of the inequalities

(3.4) Yop > 2f(=S k1 +1) and Y, < =2f(=S_p41+1)

holds for infinitely manyk € N almost surely. Once we have shown this, then the theorem
follows from Propositio 311 and (3.2). By symmetry, it scdfs to show the first of the two

inequalities in[(3.4).

For a given functiory, we will define the numbers,, inductively, starting withm, = 0. Note
that the law ofSk,)+1 conditioned onC’,, does not depend on the choice {of;. }>.,. For
m € N, letn,, be so large that,, > n,,_; and

Define
A 1= {nm > 2 (=S + 1)}
Then,
P(A,,) > P(A,, | C,)P(C) > (1 —27™)P(C))
and, therefore, in view of (3.3),

oo

3" B(AL) < (1~ B(Co) + 27B(C)) = D (BICE) + 2 "B(C) < v,

m=1 m=1 m=1

which implies, by the Borel-Cantelli Lemma, that all but fety many of the eventd,, occur.
Next, let

Then
(3.5) A,NV, C {YK(m) > 2f(—SK(m)+1 + 1)}

Since thel/,’'s are i.i.d. andP(V,,,) = 1/2, almost surely infinitely many of thg,,'s occur and,
therefore, infinitely many of the,,, N'V/,,’s occur. Together with (315) this implies (8.4) and the
theorem is proved. O
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4. MINIMUM ASYMPTOTIC RANGE

In the previous section, we showed that fih@ sup of an FBM, ast — —oo, can be
“arbitrarily large.” In this section we will show that thiém inf of an FBM in the back-
ward direction cannot be arbitrarily large. We will congidegions in space-time of the form
R = {(t,z) : t < 0,c1\/]t] < = < ¢c21/[t[} into which paths of an FBM may fit, at least
asymptotically. Roughly speaking, there exist FBM’s whpaéhs stay insid® ast — —oo
if and only if ¢; and ¢, are not too close to each other. Here, being “close” is a ¢immdi
more complicated than a bound en— ¢;. Examples of “critical pairs” ofcy, c2) are(1, o),
(—1,1) and (0,2.12) (the last number is approximate). On the technical sids, gbction is
closely related to the problem of slow points for Browniantimio studied in_Davis| [1983],
Greenwood and Perkins [1983], Perkins [1983]. We will mpostie Perkins/[1983].

Remark 4.1. In this remark, we collect some results from [Perkins, 1$8371]. Let

C={(c1,62) : —00 <1 < g < 00},
1 [ d? d
““25(@‘%)7

andm(dz) = 2e**/2dxz. For each(c,c,) € C , there is a complete orthonormal system in
L?([cy, c2], m) of eigenfunctions of the Sturm-Liouville problem

Ay =\, U(c;) =0,i=1,2, if |c;] < oo,

whose corresponding eigenvalues are simple and nonymasitiet —\q(c;, o) denote the
largest eigenvalue. The corresponding eigenfunction, c;, ) can be assumed to be strictly
positive on(c;, ¢3).

The function)\, is continuous orC and strictly positive orC \ {—oco,o0}. The function
Xo( -, ¢2) is strictly increasing offi—oo, ¢o) andg(cq, - ) is strictly decreasing ofr;, oc].

Remark 4.2. For our results, just like for many results in Davis [1983jeénwood and Perkins
[1983], Perkins/[1983], the critical value af is 1, so it is of interest to know for which values
of ¢; andcy, we havely(c;, o) = 1. Some examples of such pairs @rexo, —1), (—1,1) and
(1,00) (seel[Perkins, 1983, Prop. 1]). It is natural to ask whagatisfies\(0, ¢;,) = 1. The
approximate value of suaj is 2.12411. We found this value as follows. Observe that

Y(x) = 2exp(2?/2)z + V2 erfi(z/V2) — V2ra? erfi(z/V/2)

satisfies the equatian /2) (¢ (x) —z¢'(z)) = —(z) andy(0) = 0. Hereerfi(z) = —i erf(ix)
anderf(z) = (2/v/7) [ e~ dt. The functiony is strictly positive on an interval0, ¢,) and
vanishes at the endpoints of this interval. We determinatifh~ 2.12411 by solvingy(z) = 0
numerically.

We note that, appears to be the same @8) on page 376 in Perkins [1983]. We offer
an informal explanation for the coincidence. The const@b} corresponds to 3-dimensional
Bessel process staying under a parabola. This problem caqurealently represented as that
about 1-dimensional Brownian motion staying between 0 &edseme parabola, because 1-
dimensional Brownian motion conditioned not to hit O is 8dnsional Bessel process.
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Theorem 4.3.(i) If M\g(c1,¢c2) > 1 and X is FBM, then

P ({limsupXt/\/ [t| > e} U {ltimiant/\/m < cl}) = 1.
t——o0 ——00

(i) If Ao(c1,c2) < 1, then there exists a decomposable FBMsuch that

(4.1) P ({limsupXt/\/m < e} N {liminf X,/ /]t > cl}) —1.
t——o0 —00
(iii) If c; <0 < cpandy(cy, ) < 1, then there exists a decomposable FBMsuch that
(4.2) P(‘{Cl\/HSXt §C2\/HVtSO}) =1.

Proof. (i) Fix —oco < ¢; < ¢3 < oo such that\y(cq, c2) > 1 and letB denote standard Brownian
motion. Fora > 0 andn € Ny, let

F(n,a) :={B(s) € [aVs — a,cav/s +a]V0 < s < n},
r(n,a,c,c) :=P(F(n,a)).
We will show that if\¢(c1, c2) > 1, then for anyu > 0,

[e.9]

(4.3) Zr(n,a,cl,@) < 00.

n=1

By the continuity of\q( -, - ) (see Remark 4l1), we can choase 0 such that\;(c; — 9, c2 +
d) > 1. Let A > 0 be such that + cy\/s < (ca + §)+/s and—a + ¢11/s > (¢1 — §)+/s hold for
all s > A. Then, using Brownian scaling, we obtain

r(n,a,c1,c2) <P{B(s) € [(c1 — 6)V/s, (ca + 0)/s]VA < s
=P{B(u) € [(c1 — 0)Vu, (c2 + 0)Vu] V1 < u

—Xo(c1—0,c2+9)

~ Ky (e —5,02—1—5)(%) ,

whereK,(c; —d,c2+6) € (0, 00) and the asymptotic equivalence follows fram [Perkins, 1983
Lem. 10(b)]. Since the right hand side is summable the pro@.8) is complete.
Fora,b > 0, let

Tobere, ' =1inf{t > aVb: B(s) € [B(t) + vVt —s, B(t) + cov/t — s]V0 < s <t —b}.
We will show that,
(4.4) 11)1_1301 P(Topep e < 00) =0.
For0 < b; < by, the (random) sets
A(by,by) == {t €[0,1]: B(s) € [B(t) + c1V's — t, B(t) + cov/s — t] Vs € [t + by, t + by]}
are compact and for evety > 0, ﬂble(%) A(by,b2) = 0, a.s., byl[Perkins, 1983, Thm. 2(a)].

Therefore, there exists a randdmn= by(b2) > 0 such that\ (b, b2) = 0 forall 0 < by < by.
Hence, if we writeg(by, by, c1, o) = P(A(by, by) # () then

(4.5) lim q(by, by, c1, ca) = lim P(A(by, b2) # 0) =
b1 —0 b1—0
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For eachn € N, n > 2, the processeéB, := B,.1- — Bu11,t € [0,2]} and{B/ :=
B,_1-t+ — B,_1,t € [0,n — 1]} are independent Brownian motions. Note thattfar [0, 1) we
have

{Tperez € Inyn+ 1)} C{A(D, 1, B) # 0} N F(n — 1, (Jer| + |e2) V2, B"),

whereA(b, 1, B') andF(n—1, (|c1| +|ca|)v/2, B") denoteA (b, 1) and F(n— 1, (|e1| + |ea])v/2)
defined relative to the processBsand B”, resp., in place oB. We obtain,

P(Toperer < 00) = > P(Toperes € 0,1+ 1))
n=2

o0

<Y rn=1 (el +le) V2, e ) alb, L cr, )

n=2
[

=q(b,1,¢1,¢2) Zr(n — 1, (Jea] + |e2) V2, €1, 2).
n=2
The last sum is finite (and independenthpby (4.3). We conclude that (4.4) holds in view of
@.35).

Assume that
(4.6) P ({limsup X/t < e} 0 {ltimiant/\/ [t| > cl}) =:q> 0.
t——o00 ——00

To prove part (i) of the theorem, it will suffice to show thaistssumption leads to a contra-
diction.

Recall that we have chosérn> 0 such that\q(c; — 0, ¢ + §) > 1. Assuming[(4.6), we can
find someM € (—o0, 0) such that

N

@n P (fm XV < a0 0l Xy VT2 0 - 0)) 2

ConsiderM < M, whose value will be specified later. Sin&eis FBM, there exists a random
time S such that’(S < M) > 1 — 1 and{Xg,, — Xg, t > 0} is Brownian motion. Then,

(4.8) P({supXt/\/HSCQchS}ﬁ{inf Xt/\/mzcl—(S})
t<M t<M
<P(S > M)+ P(T 37 _r1er—s.e015 < )

< P(T—M,—M,cl—&cg-‘ré < OO) + Z
q
= P(T—OJM,—OCM761—67CQ+6 < OO) + 1’
for anya > 0, where the last equality follows from Brownian scaling. By4), we can make
a > 0so small thatP(Ts, _onr.e,—s.e046 < 00) < q/8. Then we choosé/ so that—aM = 2.
The left hand side of (418) is therefore less tl3gi8, which contradictd (417). This proves part
(i) in case)g(c1,c2) > 1and—oo < ¢; < ¢ < 0.



12 KRZYSZTOF BURDZY AND MICHAEL SCHEUTZOW

If XAo(c1,02) = 1and—oo < ¢ < ¢y < o0, theno(c; + ¢,¢2 —e) > 1 for everye €
(0, 3(c2 — ¢1)), by Remark4ll. We have already shown that, for every0,

P <{limsupXt/\/ [t| > co—e}U {lzmiant/\/ It < e+ 5}) =1.
t——o0 — =
This implies that

P <{limsupXt/\/m > cop U {ltimiant/\/m < cl}) =1,
t——o00 ——00
and completes the proof of part (i) in caseo < ¢; < ¢3 < oo. The case;y = o is treated by
applying the previous result to a sequengg — oo (and similarly forc; = —o0).
(i), (iii) According to [Perkins| 1983, Thm. 2(a)],
4.9)

P(3t >0, A>0: B(t+h) — B(t) € [c,Vh, caV/h] Yh € [0, A]) = { 0 if Ao(er, 00) > 1,

1 if)\o(cl,CQ) < 1.

First suppose that; < 0 < ¢y and\o(cy, o) < 1. By RemarK4.1 it suffices to prove (4.1)
and [4.2) in case; > —oo ande, < oo. These assumptions, (4.9), invariance of Brownian
motion under time reversal, support theorem, and standagtorgents imply that

P(3t € [1,2] : B(t —s) — B(t) € [c1/s, cav/s] Vs € [0,1]) > 0.
Another easy application of the support theorem and Browséaling allows to strengthen the
above claim to the following. Ifq(c1, c2) < 1 ando € (0, c2) then there existg; > 0 such that
for everya € (0, 00),
) )
(4.10) P(3t € [a/2,a] : B(t) — B(0) € [—5\/5, —1\/%]
andB(t — s) — B(t) € [c1V/s, c2v/s] Vs € [0,])
) )
=P(3t € [1.2): B(t) - B(0) € [-5Vi,.— V1]
andB(t — s) — B(t) € [a1v/s, c2v/s] Vs € [0,1])
=p; > 0.
Let u,, = exp(exp(exp(n))) for n € N. Note that for large: (depending o),

(4.11) (0/4)\/ (Uns1 — un) /2 > (6/8)\/Unt1 > uy > 31/2u, loglog uy,.

The processe§Y"(t) := B(u, +t) — B(uy),t € [0,u,+1 — u,]} are independent Brownian
motions. The events

E, = {3t € [(tng1 — wn)/2,ups1 — uy] 1 Y™(t) — Y™(0) € [—g\/%, —Z\/ﬂ

andY"(t — s) — Y"(t) € [c1v/s, c2v/s] Vs € [0, 4] }

are independent and each one of them has probabilithy (4.10). Hence, infinitely many
eventsrk,, occur, a.s. By the law of the iterated logarithm, a.s., fosatficiently largen,

(4.12) sup |B(s)| < 24/2uy, loglog u,.

0<s<up



FORWARD BROWNIAN MOTION 13

If (3.11), (4.12) and;, hold then the following event occurs,
{3t € [(unt1 + 1) /2, uns1] : B(t) — B(0) € [-0V/2,0]
andB(t — s) — B(t) € [a1v/s, c2v/s] Vs € [0,1]}.
Since infinitely many events,, occur, a.s., we conclude thatNf(c;, ¢;) < 1,5 > 0 anda < oo
then,
(4.13) P(3t > a: B(t) — B(0) € [-6V/1, 0]
andB(t — s) — B(t) € [c1v/s, c2\/s] Vs € [0,1]) = 1.

We recall the definition of decomposable FBKIfrom Definition[2.2. Given B*, T},), k €
Z, let Sy = 0, and use the conditionS,,; — S, = T} to defineS for k € Z. Let X be the
unigue continuous process such that= 0 and X, ., — X, = By fort € [0,7}), k € Z.

Suppose thaf Bk, t > 0}, k € Z, are independent Brownian motions. gt= 1 for k € N,,.
To defineT), for negativek, observe that for giveroco < ¢; < ¢y < oo satisfyinge; < 0 < ¢
and \(c1, c2) < 1 we can find some > 0 such thate, — ¢ > 0 and\y(c¢q,c0 —€) < 1 by
RemarK4.1l. For-k € N, let

€ 1 1
(k) i= & — e+ (K) ._g(m— |/<;_1|>'

For—k € N, we define
= inf{t > 1: B*(t) — B*¥(0) € [-6(k)V/1, (]
(4.14) andB*(t — s) — B*(t) € [c1v/5, ca(k)V/s] Vs € [0,]},

and note thaf}, < oo a.s., by[(4.1B3).
By construction, we have fork € Ny ands € [Si_1, Sk:

—k
XSSZ(S \/ S—2+1_S—z+c2 \/ Sk_s

< <Z§ i) + co(k ))\/—_8202\/—_57

and X, > c;/—s forall s < 0, so [4.2) and hencé (4.1) follow in casge < 0 < ¢, and
)\0(01,02) < 1.

Now assume thaty(ci, ¢2) = 1 (and stille; < 0 < ¢;). Then, by Remark 4l Dy (¢, co+¢) <
1 for everye > 0. Consider the FBMX constructed in the previous paragraph but with c,)
replaced by(c;, c; +1) ande = 1. Letcy(k) := ¢ + \kl andi(k) := ‘}cl ‘k ;- Then, we have
for fixed —m € Ny andk < m ands € [Sk_1, Sk

_Z (5(—7;)\/ S—i+1 - S_Z' + 02(/{3 - 1)\/ Sk — S

i=—m+1

(Z 5(—1) + co(k ))x/Sm—s:@(m—l) S — S,

i=—m-+1
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and hence

X
lim sup < co(m —1),
S——00 S
for every—m € Ny. Sincecy(m) converges te, asm — —oo and sinceX > c¢;+/—s for all
s < 0, the proof of (ii) and (iii) is complete in the case < 0 < c¢».

Next we consider the case wheg(c;,c) < 1 but it is not true that; < 0 < c,. By
symmetry, we may and will assume thiak ¢; < ¢, < oo and (again by Remartk 4.2) we can
and will assume that, < oo. In this case the reasoning in the previous case will not work
because the regiofi(s, z) : c1v/s < = < c2v/s, s > 0} is not convex. Consequently, our
argument is more complicated in the present case.

By Remark$ 4]1 and 4.2, < 1 andc¢, > 2.

Suppose that, ¢,a > 0. Let ] be any number such that < ¢ < 1, ¢/ — ¢, < §/4 and
Xo(d], c2) < 1. We will prove that for every € (a, 00),

(4.15) P(3t > b: B(0) — B(t) € [V, (1 + )V
andB(t — s) — B(t) € [c1V/s, caV/s] Vs € [a, 1]
and B(t — s) — B(t) € [c{V/s, cav/s A (¢]\/s + @) Vs € [0,a]} = 1.

In the proof we will need several strictly positive consgamamely, ¢,, ¢ andé. We suppose
that they satisfy the following constraints:

(4.16) d<d<1<2<d,<ey, d—7 <d/dand)o(d),cy) <1,
(4.17) 2+ ¢+ cVa+é—ca<o,

(4.18) (¢] —e1)va > 2e,

(4.19) (] —)Va > e+ cv2a+é — ¢V 2a.

It is easy to see that these constraints can all be fulfillediged thaty is sufficiently small
which we can and will assume without loss of generality. Care first choose; andc), satis-
fying (4.16). Then one can choosgez, ¢ > 0 such that condition$ (4.1 7)-(4119) hold.

Let x := §/2. The following claim can be proved in the same way[as (4.10)er& exists
p1 > 0 such that for every € (0, ),

(4.20)
P(3t € [u/2,u] : Bt — s) — B(t) € [dyv/5, hu(s)] Vs € [0,1])

=P(3t €[1,2]: B(t — s) — B(t) € [}/s, (ch/s) A (Vs + k)] Vs € [0,]) = p1,
whereh, (s) := (ch/5) A (¢i+/5 + ky/u/2). Letu > 4a and define
U=inf{f € [%—2a,u—2a] cdr eR
such thatB(0 + 2a — s) — x € [}V/s, hu(8)] Vs € [2a,0 + 2al}.
Note thatlJ is a stopping time foB (with the convention thaif () = oo) and that
(4.21) P(U < o0) >
for all u > 4a by (4.20).
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On the sef{U < oo} defineX* as the largest number such thatB(U + 2a — s) — x €
(i3, hy(s)] for all s € [2a,U + 2a] and letX* := oo on {U = oo}. Observe thafX* is
JFy-measurable.

Onthe sef{U < oo} letV(t) .= B(U +t) — B(U) fort > 0. SinceB(U) — X* is bounded
from above and below by a deterministic constant (which deesdepend on) there exists
p2 > 0 (not depending om) such that for alk. > 4a, on{U < o},

V35— /3
VavZ-1)

4.22) P ( V(s) — (B(U) — X* — ¢,v/a)

<eVsel0,a] | fU> > Do.

Further, there exists somg > 0 (which does not depend ar) such that for alk: > 4a we
have

(4.23)
P(3r € 2a,2a+ €] : V(T — s) = V(1) € [¢] Vs, cav/s A (][5 + )] Vs € [0,7 —a] | Futa)
>p3  on{U < oco}.

Let GG; be the intersection of the sél/ < oo} and the two sets inside the conditional proba-
bilities in (4.22) and[(4.23). By the strong Markov propewtg haveP(G,) > pipops for all
u > 4a. Define

Gyo=1{3te [g, w+E: B0) — B(t) € [V, (1 + 6V

andB(t — s) — B(t) € [e1V/s, ca/s] Vs € [a, 1]
and B(t — s) — B(t) € [c[V/s, cav/s A (¢]V/s + ¢)] Vs € [0,4d]}.
Once we know that (for a givem > 4a) we haveGG; C G, then we obtaiP(Gy) > p1paps.

To see that?;, C G, let 7 be as in[(4.23) ant:= U + 7. Then the last property af, clearly
holds and the second one holds at leastfer[a, 7 — a]. Now lets € [t — a, 7|. Then

B(t—s)—B({t)=B(t—s)—B(t—7+a)+ B(t—7+a)— B(t)
=[V(r—s)=V(a)]+ [B(t— 7+ a)— B(t)]

5 — 2aq —
< |26+ (B(U) - X* — ¢,\/a) Sﬁ:\%il)\/& [T —a+ ]
§25+%(M—ﬁ)+cqm+¢
< Vs — T+ 2a
< /5.

The second to last inequality holds fer= 7 by (4.17). Since the derivative with respect to
s of the left hand side is greater than that of the right hand,dilde inequality holds for all
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s € [T — a, 7|. Further,
B(t—s)—B(t)=B(t—s)—B(t—7+a)+ B(t—7+a) — B(t)
=[V(r—=s)=V(a)]+ [B(t =7 +a) — B(t)]

* / m_\/a "
> | —2e+ (B(U) — X* — ¢}V/a) Jaa ) + ]V — d]

> 2+ (Vs —T+2a—+a)+ VT —a> /s

The last inequality holds for = 7 — a by (4.18). Since the derivative of the left hand side with
respect tes is greater than that of the right hand side §or 7 — «, the last inequality holds for
all s € [t — a, 7]. Next, we consider the casec [r, t]. We claim that

B(t—s)— B(t) > X* +cvV2a—1+s— B(t)
> B(U +a) —cdva—e+dV2a—T1+s— B(t)
>dVr—a—da—ec+dV2a—1+s
> 14/

The first inequality follows from the definition akK*. The second inequality follows from
the condition in[(4.22) applied with = a. The third inequality follows from[(4.23) applied
with s = 7 — a. The last inequality holds fos = 7 by (4.19). It holds fors > 7 because
the derivative of the left hand side is greater than that efrtght hand side fos > 7. The
following inequalities hold for similar reasons,

B(t —s) = B(t) < X* + hy(2a — 7+ s) = B(1)
< B(U +a) —dva+e+h,(2a—7+s)— B(t)
<SHVT—a+é—dvateth(2a—T+s)
<Vaté+o—dVa+e+ds
< /5.
The last inequality holds by (4.17) singe> 7 > 2a. Finally, for s = ¢, we obtain in the same
way
B(t—s)— B(t) < VT —a+ ¢ —cVa+e+hy(2a—7+1)
<INT—a+¢—datetd2a—T1 b+ RV u/2
S EVaFE+o—dvate+ Vit nvt
< (e1 + VT

The last inequality can be derived from _(4.17) and the follmfacts: ¢, — ¢; < ¢/2 and
K=10/2.

We have verified that all conditions in the definition@$ hold. Thereforey; C G5 and the
proof thatP(Gs) > p1peps (for all u > 4a) is complete.

The rest of the proof 0f(4.15) is analogous to the argumeswsty that [4.10) implies(4.13)
in the case; < 0 < ¢, and we therefore omit it.
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We will construct a decomposable FBN], using the notation as in Definition 2.2. L&ty
be strictly positive numbers such that< ¢ < 1/4. Suppose thafBF,t > 0}, k € Z, are
independent Brownian motions and tgt> 1, k£ < 0 be numbers which we will specify later.
Recall all the conditions that we imposed @nc,, ¢/, etc. in this part of the proof. Léf, = 1
for k € Ny and for—k& € N define

(4.24) Ty, := inf{t > agy1 : B¥(0) — B*(t) € [e1Vt, (1 + 0)V1]
(4.25) andB*(t — s) — B*(t) € [¢{V/s, cav/s A (Vs + ¢)] Vs € [0, apii]
(4.26) andB*(t — s) — B*(t) € [e1v/s, chv/s] Vs € agsa, 1]},

and note thafl}, < oo a.s., by[(4.15). By construction, the associated FBNatisfiesX, >
|s| forall s < 0.

It remains to show that if the,, are suitably defined then we also haivesup,_, . X;/\/]t] <
¢, almost surely.

We will definea;, for £ < 0 inductively starting withuy = 1. Suppose that the;'s have been
defined for all; > k for somek < 0. This determines), and X;, t > S,. LetV, > 0 and
—oo < Ry < —1be such thaP(| X, | > Vi or S, < Ry) < 2*. Then we fixa;, € (— Ry, 00)
such that for alt, € [Ry, 0] andt < t; — a,

(4.27) Vi+ /It —t] < e/t and Vi + (1 + OVt — ti] < (¢ + d)V/)t].

Since) ", ., 2" < oo, we see that, a.s., there exists a (randbmy. —1 such tha{ X, | < V4
andSj € [Ry, —1] forall k < k,. If X5, <V, andS; > R, for some—Fk € N, then it follows
from (4.27) and[(4.26) that fare [Si_1, Sy — ax], we have

(4.28) Xi < Xs, + GV Sk —t < Vi + /S —t < /1.
Further, if Xs, <V, andS,; > Ry for some—k € N, then it follows from [[4.2]7) and{4.24) that
(4.29)

Xs, | < Xg, + (14 0)\/ Sk — Sk—1 < Vi + (a1 4+ 0)/ Sk — Sk—1 < (¢] + &)/ |Sk-1]

and, fort € [Sk_1 — ax_1, Sk_1], using (4.29),[(4.25);] < 1, c» > 2, the elementary inequality
3/a+vb<2va+bfora,b>0andg < 1/4 < +/|Sk_1]/4 we have

Xy < Xg, , +(c \/Sk 1= A (N Sk—1 —t+ )
+¢+ IV]Se—t| + ¢/ Skt — t < ea/t].

Thus we have shown thaf;, < 02\/7 holds for allt € (—oo, Sk, _1]. This completes the
proof of part (ii) in the case(c;, o) < 1.

It remains to prove part (ii) in the case< ¢; < ¢; < oo whenA(cy,c) = 1. In this
case we proceed as above except that we replaicethe definition of7}, by ¢; ;, such that;
approaches; from below ast — —oo. This requires to let alsg/ andc, (but notc,) depend
on k. We leave the details to the reader.

This completes the proof of the theorem. O

In a particular case, we can construct an FBM which alwagsdi®mve a parabolic boundary,
and which is evestronglydecomposable.
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Proposition 4.4. For eache > 0, there exists a strongly decomposable FBMsuch that
%ngXt/\/M >1—¢, as.
<
Proof. Fix an arbitrarily smalk > 0. Let B be standard Brownian motion and
T:=inf{t >1:B(s) > B(t)+ (1 —e)Vt—sforall s € [0,¢]}.

Since \y(1,00) = 1, it follows from (4.13) thatP(T" < oo) = 1. Let X be the strongly
decomposable FBM based on i.i.d. seque(Bg, T}.), with elements distributed a3, T')
above andX, = 0. ForS,,_; <t <S5, —n € Ny, a.s.,

Xt Z Xsn (1—5)\/ Sn—t
Z XSnJrl (1 - 5) Sn+1 - Sn + (1 - 5) \V4 Sn —t

Vv

(1—6)(2 St — S+ 5—) (1—e)v/—t.

k=n

5. A SUFFICIENT CONDITION FORFBM TO BE 2BM

Two sided Brownian motion (2BM) is the most generic examg@l&BM but it is far from
being a unique example of FBM, as the previous sections shasvnatural to ask what extra
assumptions on an FBM make it necessarily 2BM. We will presesufficient condition for
this to be true. We will also show that some other “similarhdaions fail to force an FBM to
be 2BM.

Recall the notation used in Definition 2.2.

Theorem 5.1.If X is strongly decomposable afiti}, < oo thenX is 2BM.

Proof. Assume thatX is strongly decomposable aritf, < oo for the 7}’s introduced in
Definition[2.2. We will assume without loss of generalitytthg = S, = 0.

According to [Kallenberd, 2002, Lemma 11.7] (see also Taeot 1.4 in Kallenberg [2002]
or Sections 4.1-4.2 and 8.1-8.2 in Thorisson [2000]), tleeists a random variable such that
the distribution of{ S}, n € Z} := {S,, — ©,n € Z} is stationary. Moreover, we can and will
choosed so that it may depend ofS,, },.cz but does not depend dnX, },cr in any other way.
It will suffice to show that the distribution dfX;",t € R} := {X;10 — Xo,t € R} is 2BM(0).

Suppose that > 0, let U, be a uniform random variable dn, 2a|, independent ofX, and
let {S% n € Z} = {S, — Us,n € Z}. Then it follows from [Kallenberg, 2002, Thm. 11.8 (i)]
that the distributions of S¢, n € Z} converge to the distribution dfS’,n € Z} in the total
variation norm, as — oco. Let X7 = X, ¢y, — Xy, fort € R.

The conditional distribution ok given{S,,,n € Z} can be described as follows. Suppose
thats = {s,,,n € Z} is a deterministic sequence of real numbers suchshat s,,,, for all n
lim,_, o 5, = —00 andlim,,_,. 5, = co. LetQ be the distribution of a paiiT}, B*) used in
the construction of the strongly decomposable procégsaote that) does not depend of).
Let @, be the distributiord) conditioned by{ 7}, = ¢} and letQ, be the distribution of the second

element in the pair (stochastic process) un@grstopped at. Let{ﬁ", n € Z} be independent
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processes, such that the distributionfis @Sn+1_sn for all n. Let X be the unique continuous
process such that,,,, — X, = B} forallt € [0, s,41 — s,) and alln € Z. LetD(s) denote
the distribution ofX. Then the distribution oX is D({S,,, n € Z}). Similarly, the distributions
of X* andX*areD, := D({S},n € Z}) andD,, := D({S%, n € Z}), resp. In other words, the
conditional distributions oK * and X * given{S;:,n € Z} and{S%,n € Z}, resp., are identical.
Since the distribution of S, n € Z} converges to the distribution ¢f5*, n € Z} in the total
variation normD, converge tdD, in the total variation norm, as — oo.

It follows from the definition of a decomposable FBM tHa;, t > 0} is standard Brownian
motion. Hence, for every fixed € [a, 2a], the distribution of{ X;.; — X, —a <t < a} is
that of 2BM(0) with time restricted to the intervgta, a]. SinceU, is independent o, the
distribution of { X}, —a < t < a} is also that of 2BM(0) restricted tp-a, a]. This in turn
implies that for any fixed > 0 and alla > b, the distribution off X7, —b < ¢ < b} is that of
2BM(0) restricted td—b, b]. In other words, for any fixed > 0 and alla > b, the distribution
D, restricted td—b, b] is that of 2BM(0). SinceéD, converges td, in the total variation norm,
asa — oo, we conclude that for any fixed> 0, the distributiorD,. restricted td—b, b] is that
of 2BM(0). The constani > 0 is arbitrarily large so the distributioP, is that of 2BM(0) on
the whole real line. O

We will show that the result in Theordm 5.1 is optimal, in asserfirst, we will show that the
conclusion of Theorem 5.1 does not necessarily hold if tseraptionE7, < oo is replaced
by the conditionET* < oo for somea € (0,1). Next, we will show that if},’s are not i.i.d.
then the conditiosup, E7;, < oo does not guarantee that the corresponding FBM is 2BM.
Moreover, even ikup, ET* < oo for somea < oo, the FBM is not necessarily 2BM.

Theorem 5.2. For any o € (0, 1), there exists a strongly decomposable FBMsatisfying
ETy < oo which is not a BBM.

Proof. Fix anya € (0,1) and finde; < 1 such that\y(c¢;, 00) = (1 4+ «)/2. Let
Ty = inf{t > 0: BF < —1+c;Vt}.
It follows from [Perkins| 1983, Lem. 10(b)] that
P(Ty > t) = P{B* > —1 + c;v/u V0 < u < t} < Kt o) = gy=(1ta)/2,

whereK > 0. This implies thal£7}* < co.

Suppose that there is a random variabkeuch tha X¢_, — Xs,t > 0} is Brownian motion.
We will show that this assumption leads to a contradiction.

Recall thatX, = 0. Forn > 1 andt > 0, let

X' (s = X5 XM= X K=
It is easy to see that for any random variabland continuous process, the sequence of
processe$th’”,t > 0} converges to Brownian motion in the Skorokhod topology i anly
if {X"",t > 0} converges to Brownian motion. We have assumed {fat , — Xg,¢ > 0}
is Brownian motion sd X;>",¢ > 0} is Brownian motion for every.. Hence, to complete the
proof, it will suffice to show thaf X;"", ¢ > 0} does not converge to Brownian motion.

Xt
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RecallS}’s from Definition[2.2 and lef} = —S_;. Fort € [S)/n, Sp,,/n], k > 0, let

+.n _ 0,n 0,n 0,n
Xt - X—t+52/n+82+1/n + X52+1/n + ng/n'

The process{*" is obtained from the process’" by rotating every piece of the trajectory
betweenS) /n andS}_, /n by 180 degrees and matching the endpoints of the rotatedyitith
the original locations of the endpoints. It is easy to seettiedistribution of{ X", ¢ > 0} is
the same as that ¢fX, ¢+ > 0}. Hence,{ X,"",t > 0} is Brownian motion. It will be enough
to show that{ X", t > 0} and{X;™",t > 0} do not converge to the same limit, in distribution.

Assume to the contrary th&X;"", ¢ > 0} and{X;™",t > 0} converge to the same limit, in
distribution. The limit must be Brownian motion. Since eaelguence is tight, the sequence of
pairs{ (X", X;"™),t > 0} is also tight. Therefore, it contains a convergent subsecpieBy
abuse of notation, we will assume that the whole sequenocesaoges in distribution. Let the
weak limit be called{ (X", X;">),t > 0}.

Note that sinceBF > —1 for t € [0, T;], we haveX,"™ — X" < 7 fort > 0, as. This
implies thatX;">® — X < 0fort > 0, a.s.

It follows from [Perkins| 1983, Lem. 10] that

P(T), > t) ~ Kqt~olen®) — fg = (Fe)/2.

whereK; > 0. Sincea € (0, 1), standards results for sums of heavy tailed random vasable
(see, e.qg., [Darling, 1952, Thm. 5.1] or [Koralov and Si2807, Sect. 10.5, p. 150]) show that
the size ofnax; <x<, T} is comparable t&,, with positive probability. More precisely, for some
p1 > 0andp € (0,1/2), for everyn > 1, with probability greater thap,, there existg: such
that the following event holds} = {0 < S} /n < Sp/n+ 8 < Sj.,/n < 1}. If A holds then

XS i+ B/2) — XSV In+ B/2) > er1/B/2 — e1/ B2 — %

This and the assumption that the limix& > and X*+> are continuous processes imply that
with probability greater thap,, there exists € [0, 1] such that

X?’oo _Xt-l-,oo 2 C1\/ 5/2—61\/3/2

This and the fact thak;">™ — X»> < 0 for ¢t > 0, a.s., imply that the processg& ;" t > 0}
and{X,”",t > 0} do not converge to the same process with continuous patdsstiibution.
U

Theorem 5.3.For anya € (0, 00), there exists a decomposable FBMsatisfyingsup, ET <
oo which is not a BBM.

Proof. Assume thap, € (0,1), k; € N, andc; > 0 for eachj € N (we will specify the values
of these parameters later in the proof). Fof N let j(i) be the unique integer satisfying
SV kp+1 < i <37k, Foreachi € N toss a coin which comes up heads with
probabilityp; ;) (independently of everything else) and defing := inf{t > 1: B;"— B,”', =
cj) } if coin s comes up heads arid.; = 0 otherwise. Further, for € Ny, we definel; = 1.
Forc > 0 and a Brownian motiorB, let A\(¢) := E(inf{t > 1 : B, — B;_; = c})*. ltis
easy to see thanf{t > 1: B, — B,_; = ¢} is stochastically majorized by a constant plus an
exponential random variable sdc) is finite for everyc < oo anda € (0, 00).



FORWARD BROWNIAN MOTION 21

We now define the numbegs, k;, c; recursively starting with; = 1. Given the numbers
Clyeeey Cony P1y -y Pm—1, @NAkyq, ..., k1, we definep,, := 1/A(c,,). This implies thatt7¢ = 1
forallm € Z. Letk,, := [1/pn]|. Thisimplies thad . k;p; = oo and therefore guarantees
that infinitely many of thé"_;, i € N, are at least 1. Let,, be a positive number such that

IP( Z T_i+12um> <9 m,

i=1
Then, choose,,; so large that for a Brownian motiaB we have
P@nf{t > 1: B, — Bi_1 = a1} < U +m) < 1/2.

This completes the definition @f’s, k;'s andc;’s.

Let X be the decomposable FBM associated to the sequépicd;). Assume thatX is a
BBM. We will show that this assumption leads to a contradittiSuppose thef is a random
variable such thafY (¢) := X (S —t) — X(5),t > 0} is a Brownian motion. We have

P(inf{t > 1:Y(t) = Y(t — 1) = cpos1} > tp + 1)

kl"‘---“l‘k'm k1+---+k7n
gIP’(Szm)+IP’<S§— > T_Z) +IP>< > T_i+12um>.

i=1 i=1
Note that each probability on the right hand side converg@sasm — oo. On the other hand,
P(inf{t >1: B, — B;_1 = ¢py1} > Uy +m)
=1—-Plinf{t>1: By — B_1 = i1} < U+ m) > 1/2,
for eachm, soY and B cannot have the same law and the proof of the theorem is ctenple

6. A PROCESS THAT IS ANFBM AND BBM BUT NOT A 2BM

“Most” local path properties of every FBM are the same asdhufsstandard Brownian mo-
tion. For example, FBM paths are continuous, non-diffeedaié and satisfy the local law of
the iterated logarithm at almost all (with respect to Lelesmeasure) times. We said “most”
properties because there are some clear exceptions, fompéxaX; > 0 for ¢t € [—¢,0), for
everye > 0, if X is constructed as in Example 2.8. Needless to say, standavehian motion
does not have this property. However, this exception isriglen artifact of the construction
given in Examplé 218 and does not characterize a “typicalald®ehavior of the paths of in
that example.

The definition of FBM implies that the global path propertads=BM, such as the global
law of the iterated logarithm, are identical to those of d&d Brownian motion in the forward
time direction. If we now assume that a process is both FBMBBMI, then this process has
the same global path properties as standard Brownian miotitve forward and backward time
directions. Hence, such a process has the same (or verasifoital and global path properties
as 2BM. It is tempting to conjecture that this process is a 2Bddause it is hard to guess in
what way this process might be different from 2BM. Neverissl it turns out that there exists
a process that is FBM and BBM but not 2BM. The reason why thigoissible is, roughly
speaking, that the increments of this process are heavitglabed on scales that are “invisible”
if we observe the process from the viewpoints set at someorariones.
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The presentation of our construction will be discrete inunat See Definition 215 for the
definitions of FRW, BRW and 2RW.

Theorem 6.1. There exists a process which is FBM and BBM but not 2BM.

Proof. We will first construct a procesgVy, k € Z}, taking values in{—1, 1}, which is the
increment sequence of a process which is FRW and BRW but ne¥\a Zhe construction will
be inductive. At the:-th step, we will define the values &f, for & € [a,,, b,|, wherea,, andb,,
are random integers satisfyiag,; < a, < 0 < b, < b,, foralln € N, a.s.

We will call a sequence of random variablasn tossed they are i.i.d., taking values 1 and
—1 with equal probabilities.

Forn =1, we takea; = —1, b, = 1 and we letV},, —1 < k& < 1, be coin tosses.

Suppose that,,, b,| and{V, k € [a,, b,]} have been defined.

Letc, € N be a constant so large that

(6.1) P(|an| V b, > c,) < 1/n’.

Letd, € N be so large thatdc, + 1)?27% < 1/n>.

Let {Vi,k € [b, + 1,b, + d,|} be coin tosses independent Of;, k € [a,,b,]} and let
Vie = Vi—ap+d, +b,41 fOr k € [a, — d,, a, — 1]. If we seta), = a,, — d,, andbl, = b, + d,, then
we see thafVy, k € [a),, V,]} has been defined.

Let {U}",k < a,} and{U;", k > V], } be two sequences of coin tosses independent from
each other and jointly independent{dfy, k& € [a/,V)]}. Leta, 1 be the largest integer of the

n’-n

forma,.1 = j(b;, — aj, + 1) + a;, for some; < 0, with the property that/;’;, . ., =V for
allk € [a),,b,]. Since{U]'", k < al,} are coin tosses, it is easy to see that such an intgger

exists. By analogy, we defirig . ; as the smallest integer of the foim,, = j(b/, —al, +1)+a),
for somej > 0, such thaU,’jjan_% =V, forallk € [a],,b]].

We letV}, = U™ for k € [apy1,a, — 1] andV, = U™ for k € [V, + 1,b,41]. We have
thus defineda,, 1, b,,41] and{Vj, k € [a,+1,bn11]}. This completes the inductive step and the
definition of {V},, k € Z}.

Let Z, = 0andZ,,, — Z, =V, for k € Z. We will argue thatZ is FRW and BRW but not
2RW.

Fix anym € N and a deterministic sequenses {—1,1}™. Let Qs be the distribution of
the sequence of: coin tosses conditioned not to be equastd he probability that a sequence
of m coin tosses is not equal s p,,, :== 1 — 27™. Let o; anda, be independent geometric
random variables with parametey,, that isP(c; = k) = p* (1 — p,,) fori = 1,2 andk € Ny.
of each other and ofy, anda,. If a; > 0, let R_1ymqn = Y1 for j = 1,...,a; and
n=1,...,m. Let{R,,n=am+1,..., (a1 + 1)m} =s. If ay > 0, let Rio, 4 jymin = ¥,
forj=1,...,ac0andn =1,...,m. Let{R,,n = (a1 +as+1)m+1,..., (s +as+2)m} = s.
Let {R,,n > (aq + ay + 2)m + 1} be a sequence of coin tosses independerdtidf, n =
1,...,(0q +as+2)m}. Itis elementary to see théf?,,, » > 1} is a sequence of coin tosses.

Since the distribution of R,,,» > 1} does not depend om or s, we see that ifn € N and
s € {—1,1}™ are chosen in an arbitrary random way, the distributiof®f,» > 1} is still
that of a sequence of coin tosses.

LetS_,, = any1 + b, —a, + 1 forn € N. We will argue that{ V., k > S_,,} is a sequence
of coin tosses. If we takev = O/, — a/, + 1 ands = {Vj, k € [a/, ]} then it follows from

n’-n
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our constructions of Vi, k € Z} and{R,,n > 1} that the distribution of V},, k > S_,} is
the same as that dfR,,,» > 1} and hence it is the distribution of a sequence of coin tosses.
SinceS_,, — —oo, we conclude that is FRW. The proces& is BRW by the symmetry of our
construction.

We will now assume that is 2RW and we will show that this leads to a contradiction. £et
be suchtha{Zs.—Zs, k € No} and{Zs_,.—Zs, k € Ny} are independent simple symmetric
random walks. W, = Zsk1 — Zsyx for k € Z then{W,, k € Z} is a sequence of coin
tosses. For an arbitrarily large, we can findn > m so large thaP(|S| > ¢,,) < 1/m?. Recall
thatP(|a,| V b, > ¢,) < 1/n?. Hence,

(6.2) P({|S| > e} U{lan] Vb > cn}) < 1/m? +1/n% < 2/m?.

If «* andb* are fixed integers such that < b* then the probability thaltV, = Wi_ o 1a, 1611
for k € [a* — d,,a* — 1] is 27%. The probability that there exist integers b* € [—2c,, 2¢,]
such thate* < b* andWj, = Wi_gsia, 4441 fOr k € [a* — d,,,a* — 1] is bounded above by
(4¢, +1)2279 < 1/n? < 1/m?. The serie$, 3/m? is summable so the last estimafe, (6.2)
and the Borel-Cantelli Lemma imply that there exist infilyitmany n such that|S| < ¢,,
la,| Vb, < ¢, and there are na*, b* € [—2¢,, 2¢,] such that* < b* andW, = Wy_o 4, b 41
for k € [a* — d,,a* — 1]. This contradicts the fact that for eveny> 1, Vi, = Vi_o,1d, 16,41
for k € [a, — d,,, a, — 1].

Let X be defined in terms of as in Remark 216 (i). We have indicated in that remark that
the fact thatZ is FRW and BRW implies thak” is FBM and BBM. It remains to show thaf
is not 2BM.

Lete, > 0 be so small that for standard Brownian motiBrand anyr € R,

(6.3) P(3t €[l —en 1 +e,):|B— x| <26,) < 1/n%

We can finds,, € (0, ¢,,) so small that

(6.4) P(3s,t € [1 — 8p, 1+ 8] : | By — By| > ¢,) < 1/n

This and [(6.8B) imply that if3 and B’ are independent Brownian motions then
(6.5) P(3s,t € [1 — sp,1+8,] : | By — B| < ¢&,) <2/n?

Note that in the first part of our proof, we can takgarbitrarily large relative t@,,. Hence,
we can and will assume without loss of generality that

d
6.6 " >1-s5,/4.
(6.6) d, +c¢, — sn/
We maked,, larger, relative ta,, if necessary, so that
(6.7) 4d; e, < ,)2.

The random variabled/;., — M; defined in Remark 216 (i) are i.i.d. They represent the
time Brownian motion starting from 0 takes to hit 1-et. It is well known that these random
variables have mean 1 and exponential tails. This] (6.16) @nd the law of large numbers
imply that

6.8) P (‘Mili‘d - 1‘ > sn/2) <2/n? P (‘Mbdi*d - 1‘ > sn/2) < 2/n?

n n
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Suppose that a random tinteis such thatf X, — X, t > 0} and{Xs_;, — Xg, t > 0}
are independent standard Brownian motions. We can nigg&earger, if necessary, so that the
productsd, s,, are so large that for € N we can findn, > k V n,_; so large that

P (|S/dn,| > $n,/4) < 1/K*.

This and[(6.8) yield
M,, —q, —S
(6.9) P (‘d— — 1‘ > snk/Q) < 2/np? +1/k* < 3/K2,
Nk
My, +d,, —S
P (‘kd—k — 1‘ > snk/Q) < 3/k>.
ng
Let
Man —dn, — S Mn ng. S
Gy = {)+ - 1) > $n, /2, % - 1‘ > snk/Q}.
Nk Nk

It follows from (6.9), summability ofy", ., 3/k* and Borel-Cantelli Lemma that only a finite
number of events;,, occur.
For anyk > 1, the processes

{BY = d (X (S + tdy,) — X(S)), t > 0},

(BM = d;V2(X(S —td,,) — X(5)), t >0}

are independent Brownian motions. Let
Fo={3s,t €1 —sn,1+s,]:|BY - BH <¢, }.

By (6.8), P(F,) < 2/n; < 2/k*. Since)_, 2/k* < oo, only a finite number of events;
occur.

It follows from (6.1) that only a finite number of evenfts:,,| v b, > ¢,} occur. Assuming
that|a,| vV b, < ¢y,

| Za
It follows that, for sufficiently large,
|X(Man_dn) - X(Mbn_dn)| S 26”7
and, therefore, for all sufficiently large
(6.10)  [BW((Ma,, ~a,, —8)/dw,) = BH((M,, +a,, —5)/dn,)| < dpl/?2e0, < 0, /2,

where the last inequality holds By (6.7). Recall that onlyn#dinumber of event&',. occur. If
G}, does not hold then, because [of (6.18) holds with

t = (Mank _dnk - S)/dnk7 s = (Mbnk"l‘dnk - S)/dnk
This contradicts the fact that only a finite number of eventsold. O

— Zy—d,| < 2¢y.

n_dn

n

Proposition 6.2. (i) There exists an FBMX such that there is no random tin¥é such that
{ X143 — Xp,t > 0} and{ Xy, — Xp,t > 0} are independent anfl X, — X7, ¢t > 0} is
standard Brownian motion.

(ii) There is an FBMX that is not decomposable.
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Proof. (i) First, we will show that for the FRWZ constructed in Theorein 6.1, there is no
stopping timeS such thaf{ Z¢ , — Zs, k € No} and{Zs_, — Zs, k € Ny} are independent and
{Zsyr — Zs, k € Ny} is simple symmetric random walk. We will apply the same argotras

in the part of the proof of Theorem 6.1 showing ttais not 2RW. We replace the paragraph in
that proof containing(612) with the following.

Let S be such tha{Zq.r — Zs,k € Ny} and{Zs_, — Zs,k € Ny} are independent and
{Zsix—Zs, k € Ny} is simple symmetric random walk. Wy, = Zg 11— Zs for k € Zthen
{Wy, k € Z} is a sequence of coin tosses. ket= 1 and recall thati, 1 < ar, < 0 < b, < byyq
for all k € N. Form € N, we can findn,, > m so large thaP(|S| > ¢,,_,) < 1/m?* and
Crm1 < lap,,| A by, . Recall thatP(|ax| V b, > ¢,) < 1/k. Hence,

(6.11)
P({[S] > cnpy F U{Cnpy < lan, | Abn,, <lan,, |V bn, > ¢, }) < 1/”3;1 + 1/m2 < 2/m2.

If «* andb* are fixed integers such that < 0 < b* then the probability that the events
{Wi, = Wi_a 44, +v+41} hold fork € [a* — d,,,,a* — 1] is 27%=. The probability that
there exist integers*, b* € [—2c,,,, 2¢,,,] such thate* < b* andW;, = Wj_q-1q, 441 fOr
k € [a* —d,,,,a* — 1] is bounded above byic,,, + 1)?27%m < 1/n,,?> < 1/m?. The series
>, 3/m* is summable so the last estimafe, (6.11) and the Borel-Qidreenma imply that
there exist infinitely many.,,, such thatS| < ¢, , |an,,| V by, < ¢, andthere are ne*, b* €
[—2¢y,,, 2¢y,,] SUch tha* < 0 < b* andW,, = Wi_g+1a, 441 fOr k € [a* — d,,,,,a* — 1].
This contradicts the fact that for eveny> 1, Vi, = Vi_q,, 14, 40,41 fOr k € [a,, — d,, a,, — 1].

This completes the proof that for the FR¥\constructed in Theoreim 6.1, there is no stopping
time S such thaf Zs.,, — Zs, k € No} and{Zs_, — Zs, k € Ny} are independent ans. ;. —
Zs, k € Ny} is simple symmetric random walk.

Suppose that there exists a random tifreuch tha X, ,— X7, ¢t > 0} and{X;_,— X, t >
0} are independent adX ., — Xr,t > 0} is standard Brownian motion. Then we can proceed
as in the proof of Theorem 6.1, staring with the paragraphasoimg (6.3). Note that fof(614),
we only need to know that the proceBds a.s. continuous (we do not have to assume that it is
Brownian motion). The rest of the argument applies and theisomplete the proof of part (i)
the proposition.

(i) Suppose that the FBMNX considered in part (i) is decomposable. Then, in the natadfo
Definition[2.2, there is a random varialifesuch tha{ X, ., — X/, ¢ > 0} and{ Xy _,— Xy, t >
0} are independent andX; ., — Xy,t > 0} is standard Brownian motion. This contradicts
part (i) so we conclude that FBM is not decomposable. O

7. OPEN PROBLEMS

The following list is rather eclectic but we hope that thederawill find at least some of the
problems intriguing.

Problem 7.1. Assume thatX is a decomposable FBM which is also a BBM (we may or may
not assume that the BBM is decomposable). Do these assuratiply thatX is 2BM?

Problem 7.2. Assume thafX is an FBM and BBM and there exists a random timeuch that
the processe¥ ., — X, t > 0andX,_, — X7, t > 0 are independent. Do these assumptions
imply that X is 2BM?



26 KRZYSZTOF BURDZY AND MICHAEL SCHEUTZOW

Problem 7.3. Assume thatX is an FBM and there exist random timésand7" such that the
processeXr.; — Xp,t > 0and Xy_, — X7, t > 0 are independent and such that_, —
Xg, t > 0is Brownian motion. Do these assumptions imply thais 2BM?

Note that an affirmative answer to Probleml 7.1 implies theestonProbleni 7.2 and, simi-
larly, an affirmative answer to Problém 7.2 implies the saoné>fobleni 7.83.

Problem 7.4. Consider a decomposable FBM and assume that is is constructed from Brow-
nian pieces of length 1, most of the time, but occasionallgrérand more rarely as we move to
the left) we insert “Bessel” pieces, i.e., we use the stopfimesT}, := inf{t > 0 : BF = —1}.
Under which conditions (concerning the frequency of thesBepieces) is the resulting FBM a
BBM (or 2-sided BM)?

Problem 7.5. Is it true that for any processX;, ¢t > 0} whose law is equivalent to BM, we can
find some random piece which we can put in fronfotuch that the new process is Brownian
motion?

Remark 7.6. Consider a strongly decomposable FB¥Mwith ET}, = oo. In this caseX may

or may not be a 2BM. If, for exampld}, is a positive random variable which is independent
of B, and has an infinite expected value, th€ns clearly 2BM (even without shifting). Now

let us assume th& 7, = oco and that the procedsS,,, n € Z} is identifiablein the sense that
there exists a measurable function that méps., — Br,t € R} onto{S, — T',n € Z} for

an arbitrary random timé'. If X was 2BM, then this process would have to be stationary seen
from the random time which turn&” into 2BM(0). But for a renewal process with infinite
expected interarrival law there does not exist any shifiolwhvill make it stationary.

Problem 7.7. Does there exist a decomposable FBMsatisfyingsup,, |7%| < oo, a.s., which
is not a BBM?

Problem 7.8. Can one generalize Theoréml4.3 from parabolas to other djppaeeshapes?

Problem 7.9. Analyze “forward Lévy processes”. In particular, find asgles of all theorems
in this article for forward Lévy processes.
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