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FORWARD BROWNIAN MOTION

KRZYSZTOF BURDZY AND MICHAEL SCHEUTZOW

ABSTRACT. We consider processes which have the distribution of standard Brownian motion (in
the forward direction of time) starting from random points on the trajectory which accumulate
at−∞. We show that these processes do not have to have the distribution of standard Brownian
motion in the backward direction of time, no matter which random time we take as the origin. We
study the maximum and minimum rates of growth for these processes in the backward direction.
We also address the question of which extra assumptions makeone of these processes a two-
sided Brownian motion.

1. INTRODUCTION

This article is devoted toforward Brownian motions, i.e., processes defined on the whole
real line which appear to be Brownian motions when observed from random points in space-
time in the forward time direction. More precisely, we will say that{Xt, t ∈ R} is a forward
Brownian motion(FBM) if there exists a sequence{Sn, n ≤ 0} of random times such that
limn→−∞ Sn = −∞, a.s., and for everyn, the process{XSn+t − XSn

, t ≥ 0} is standard
Brownian motion on[0,∞).

A simple example of FBM is two-sided Brownian motion, i.e., the process{Xt, t ∈ R} such
that{Xt, t ≥ 0} and{X−t, t ≥ 0} are independent standard Brownian motions.

We will address several families of questions. It is naturalto start with the very general
question of whether there are any forward Brownian motions that are significantly different
from two-sided Brownian motion? The question is somewhat vague but we believe that the
answer is quite clear. We will exhibit a number of FBM’s that are very different from two-sided
Brownian motion by any measure.

We will say that{Xt, t ∈ R} is backward Brownian motionif {X−t, t ∈ R} is FBM. If a
process is both a forward Brownian motion and a backward Brownian motion, is it necessarily
two-sided Brownian motion (or a very similar process)? The answer is no — we will present
an example to this effect.

It is easy to see that some FBM’s can be constructed by concatenating pieces of independent
standard Brownian motions. We will show that the family of FBM’s constructed in this way is
very rich. One could hope that every FBM may be represented this way — that would provide
a convenient technical tool. Somewhat disappointingly, this turns out to be false. This leaves
open the question of characterizing all FBM’s. This problemis vague but we can indicate what
we mean by invoking well known “characterizations” of some families of stochastic processes.
Lévy processes are characterized by the Lévy-Khinchin exponent; Gaussian processes are char-
acterized by the mean and covariance functions; one-dimensional diffusions are characterized
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by the scale function and speed measure. So far, we have not found a similar characterization
for FBM’s.

We will start our rigorous study of FBM’s by presenting several results on their path behav-
ior. We will show that FBM trajectories can be extremely different from those of two-sided
Brownian motion.

The paper has two disparate sources of inspiration. On the technical side, FBM’s arise natu-
rally in the study of skew-Brownian motion (we will be more specific below). On the philosoph-
ical and scientific side, one may ask what can be said about a stochastic process representing
a natural phenomenon which can be observed effectively onlyin one direction of time. If it
appears to be Brownian motion, does it necessarily imply that the trajectories of this process
have to be Brownian-like in the opposite direction of time? The motivation for this question is
provided by processes that occur on a scale that is borderline feasible for effective observations,
such as the evolution of species.

Our paper is related to a number of models and problems that appeared in literature. “Ex-
tended chains” were discussed in [Kemeny et al., 1976, Chap.10] (see especially Definition
10-5). A duality problem for Lévy processes was studied in Bertoin and Savov [2011]; our Ex-
ample 2.8 is a special case of that model. Forward Brownian motion is also related to Brownian
interlacements that were presented in Sznitman [2012].

The rest of the paper is organized as follows. Section 2 presents basic definitions and ex-
amples. The minimum and maximum rates of growth of FBM trajectories in the backward
direction are studied in Sections 3 and 4. We analyze the question of which extra assumptions
make a decomposable FBM a 2-sided Brownian motion in Section5. We show that a process
that is simultaneously a forward Brownian motion and a backward Brownian motion is not nec-
essarily a 2-sided Brownian motion in Section 6. Finally, welist some open problems in Section
7.

2. DEFINITIONS AND BASIC EXAMPLES

The sets of real numbers, non-negative natural numbers, strictly positive natural numbers and
integers will be denotedR,N0,N andZ, respectively.

Unless stated otherwise, the termsstandard Brownian motionandBrownian motionwill be
treated as synonyms and we will assume that these processes start at 0 at time 0.

2.1. Definitions.

Definition 2.1. We will say that{Xt, t ∈ R} is a forward Brownian motion(FBM) if there
exists a sequence{Sn, −n ∈ N0} of random times such thatlimn→−∞ Sn = −∞, a.s., and for
everyn, the process{XSn+t−XSn

, t ≥ 0} is standard Brownian motion on[0,∞). We will say
that{Xt, t ∈ R} is backward Brownian motion(BBM) if {X−t, t ∈ R} is FBM. Further, we
call {Xt, t ∈ R} two-sided Brownian motion(2BM) if there exists a random timeS such that
{XS+t −XS, t ≥ 0} and{XS−t −XS, t ≥ 0} are independent standard Brownian motions. If
we can takeS ≡ 0 in the last definition then the distribution ofX will be denoted 2BM(0).

Note that the formal definition of two-sided Brownian motiongiven above is less restrictive
than the informal definition given in the introduction.

If X is 2BM then it is FBM. To see this, letSn = S + n, −n ∈ N0, in Definition 2.1.
Similarly, if X is 2BM then it is BBM.
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We will describe a general method of constructing forward Brownian motions.

Definition 2.2. For eachk ∈ Z, let {Bk
t , t ≥ 0} be a Brownian motion with respect to some

normal filtration{Fk
t , t ≥ 0} and letTk be a stopping time with respect toFk. Assume that

(Tk, {Bk
t , t ∈ [0, Tk]}), k ∈ Z are independent and, a.s.,0 ≤ Tk <∞, for k ∈ Z,

∑∞
k=1 Tk = ∞

and
∑−1

k=−∞ Tk = ∞. LetS0 = 0, and note that the conditionsSk+1 − Sk = Tk, k ∈ Z, define
uniquelySk for all k ∈ Z. Let X be the unique continuous process such thatX0 = 0 and
XSk+t − XSk

= Bk
t for t ∈ [0, Tk), k ∈ Z. If a processX ′ is such that for some random time

U , the process{Xt := X ′
U+t − X ′

U , t ∈ R} can be represented as above, then we will call
X ′ decomposable. If (Tk, {Bk

t , t ∈ [0, Tk]}), k ∈ Z, are i.i.d. thenX ′ will be calledstrongly
decomposable.

A decomposable process is the concatenation of a countable number of independent (but not
necessarily identically distributed) pieces of Brownian trajectories. It follows from the strong
Markov property that{XSn+t − XSn

, t ≥ 0} is standard Brownian motion for everyn ∈ Z.
Hence, a decomposable process is FBM.

Remark 2.3. Recall the conditionlimn→−∞ Sn = −∞ that appears in Definition 2.1. The
following list contains this condition and its alternatives (all conditions are supposed to hold
a.s.).

(i) limn→−∞ Sn = −∞.
(ii) limn→−∞ Sn = −∞ andSn ≤ Sn+1 for all −n ∈ N.

(iii) limn→−∞ Sn = −∞ andSn+1 is a stopping time relative to the filtration generated by
{XSn+t −XSn

, t ≥ 0}, for all −n ∈ N.
(iv) lim infn→−∞ Sn = −∞.

Clearly a process satisfying (iii) satisfies (ii), and (ii) is stronger than (i). On the other hand, (iv)
is weaker than (i). It is easy to see that (iii) is equivalent to the processX being decomposable.

It is natural to ask if all conditions are in fact equivalent.Proposition 6.2 (ii) shows that not
all FBM’s are decomposable, so (iii) is not equivalent to (i).

The equivalence of (i) and (ii) would be proved if we could show that if {Xt, t ∈ R} is a
process andS andT are random times such that both{XS+t−XS, t ≥ 0} and{XT+t−XT , t ≥
0} are Brownian motions, then{X(S∧T )+t − XS∧T , t ≥ 0} is Brownian motion. This is not
true—not even if we assume thatX is two sided Brownian motion. As an example, letX
be two sided Brownian motion withX0 = 0, S ≡ 0 andΩ0 := {ω : X1(ω) > 0}. Let
N = sup{n ∈ N : X−k+1 − X−k > 0 for all k ∈ {1, ..., n}} with the conventionsup ∅ = 0.
DefineT to be 1 onΩ0 and−N otherwise. It is easy to check that bothXS+t − XS and
XT+t −XT are Brownian motions butX(S∧T )+t −XS∧T is not (nor isX(S∨T )+t −XS∨T ).

Remark 2.4. It is not true that for every FBMX there exists a random timeT such that{XT+t−
XT , t ≥ 0} and{XT−t − XT , t ≥ 0} are independent and{XT+t − XT , t ≥ 0} is standard
Brownian motion. A counterexample is given in Proposition 6.2 (i). See Example 2.10 for a
weaker, but much easier to prove, claim.

Sometimes it will be convenient to work with the discrete version of FBM, i.e., forward
random walk defined as follows.

Definition 2.5. We will say that an integer valued process{Zn, n ∈ Z} is forward random
walk (FRW) if there exists a sequence{Sn, −n ∈ N0} of integer valued random times such
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that limn→−∞ Sn = −∞, a.s., and for everyn, the process{ZSn+k − ZSn
, k ∈ N0} is simple

symmetric random walk. We will say that{Zn, n ∈ Z} is backward random walk(BRW) if
{Z−n, n ∈ Z} is FRW. We call{Zn, n ∈ Z} two-sided random walk(2RW) if there exists a
random timeS such that{ZS+k − ZS, k ∈ N0} and{ZS−k − ZS, k ∈ N0} are independent
simple symmetric random walks. If we can takeS ≡ 0 in the last definition then the distribution
of Z will be denoted 2RW(0).

Decomposable and strongly decomposable FRW are defined in a way analogous to that in
Definition 2.2.

Remark 2.6. We will now discuss the relationship between forward Brownian motion and
forward random walk.

(i) Suppose that{Zk, k ∈ Z} is an integer valued process with the property that|Zk+1−Zk| =
1 for all k ∈ Z, a.s. We do not assume that the distribution ofZ is that of random walk but our
construction will be easiest to understand if one keeps in mind a particular example, namely,
that of 2RW(0).

Let {Ut, t ∈ [0, τU ]} be one dimensional Brownian motion starting at 0, conditioned to stay
positive and stopped at the hitting time of 1. In other words,U is Doob’sh-process in[0, 1],
starting from 0 and conditioned to converge to 1. Yet anotherway to think aboutU is that it is
3-dimensional Bessel process stopped at the hitting time of1. The process{UτU − UτU−t, t ∈
[0, τU ]} has the same distribution as{Ut, t ∈ [0, τU ]}. See Williams [1974] for a justification of
these claims.

Suppose that{Bt, t ≥ 0} is standard Brownian motion starting from 0 and letτB = inf{t ≥
0 : |Bt| = 1} andσB = sup{t ≤ τB : Bt = 0}. Excursion theory easily shows that the
processes{Bt, t ∈ [0, σB]} and{BσB−t, t ∈ [0, σB]} have the same distribution.

Let {Uk
t , t ∈ [0, τkU ]}, k ∈ Z, be i.i.d. copies of{Ut, t ∈ [0, τU ]} and let{Bk

t , t ∈ [0, σk
B]},

k ∈ Z, be i.i.d. copies of{Bt, t ∈ [0, σB]} (also independent ofUk’s). We will write Uk
t =

Uk(t) for typesetting reasons, and similarly for other processes. Let M0 = 0 and defineMj

for j ∈ Z by Mj+1 −Mj = σj
B + τ jU . For t ∈ R, a.s., there exists a uniquej ∈ Z such that

Mj ≤ t < Mj+1. For sucht andj, let
{
Xt = Zj +Bj(t−Mj) for t < Mj + σj

B,

Xt = Zj + (Zj+1 − Zj)U
j(t−Mj − σj

B) otherwise.

It is routine to check that if, for a random integer valued timeS, {ZS+k − ZS, k ∈ N0} is
simple symmetric random walk then{XS+t − XS, t ≥ 0} is Brownian motion. Hence, ifZ
is FRW thenX is FBM. Moreover, time reversibility of the processes used in the construction
explained above implies that if, for a random integer valuedtimeS, {ZS−k − ZS, k ∈ N0} is
simple symmetric random walk then{X(S+σS

B−t)−X(S+σS
B), t ≥ 0} is Brownian motion.

It follows that ifZ is BRW thenX is BBM.

(ii) We will present a relationship between 2BM and 2RW that goes in the opposite direction,
i.e., we will define 2RW starting with 2BM.

Suppose thatX is 2BM andS is such that{XS+t − XS, t ≥ 0} and{XS−t − XS, t ≥ 0}
are independent standard Brownian motions.

LetU0 := S and fork ≥ 1, letUk := inf{t ≥ Uk−1 : |Xt −XUk−1
| = 1}. Fork ∈ Z, k < 0,

we letUk := sup{t ≤ Uk+1 : |Xt −XUk+1
| = 1}. LetZk = XUk

−XS for k ∈ Z.
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It follows from the strong Markov property of 2BM thatZ is 2RW(0).

2.2. Basic examples.We start with elementary examples of FBM’s.

Example 2.7. (i) Suppose thatX is FBM and recall the random timesSn in Definition 2.1.
Suppose that for everyn ∈ N0, there exists a (non-random) real numbersn such thatSn = sn,
a.s. ThenX is 2BM. To see this, note that since theSn’s are deterministic, the finite dimensional
distributions of{Xt −X0, t ∈ R} are Gaussian with mean equal to 0 and the same covariance
function as for Brownian motion.

(ii) A slightly more general example than that in part (i) is the following. We will use the
notation of Definition 2.2. Suppose that there exists a sequence of (non-random) real numbers
tk > 0 such that

∑∞
k=1 tk = ∞ and

∑−1
k=−∞ tk = ∞, andTk ≡ tk for all k. If X is a

decomposable FBM corresponding to theTk’s thenX is 2BM.

The following example is the starting point of our project, in a sense. We will construct an
FBM which is not two-sided Brownian motion. We will also introduce an idea that will be
the basis of a number of our arguments. The example is a special case of duality relationship
studied in Bertoin and Savov [2011].

Example 2.8. Recall the notation from Definition 2.2. Suppose thatX is strongly decompos-
able,X0 = S0 = 0 andTk = inf{t ≥ 0 : Bk

t = −1} for all k. Note thatXt ≥ −k for all
t ≤ Sk, k ∈ Z, a.s. It follows thatlimt→−∞Xt = ∞, a.s. Hence,Xt is not backward Brownian
motion and, therefore, it is not two-sided Brownian motion.

We will show that{X−t, t ≥ 0} is 3-dimensional Bessel process. By the strong Markov
property, fork < 0, the process{XSk+t − XSk

, t ∈ [0,−Sk]} is Brownian motion stopped at
the first hitting time ofk. By [Williams, 1974, Thm. 3.4], the time reversed process{X−t, t ∈
[0,−Sk]} is 3-dimensional Bessel process stopped at the last exit time from−k. Sincek is
arbitrary andSk → −∞, a.s., we conclude that{X−t, t ∈ [0,∞)} is 3-dimensional Bessel
process.

The following example provided the original motivation forthis project. In a sense, it is a
generalization of Example 2.8.

Example 2.9.Given a standard Brownian motionB and−1 ≤ β ≤ 1, the equation

Zt = Bt + βLZ
t , t ≥ 0,(2.1)

has a unique strong solution (see Harrison and Shepp [1981],Lejay [2006]). HereLZ is the
symmetric local time ofZ at0. The processZ is called skew Brownian motion.

Let T = inf{t ≥ 0 : LZ
t = 1} and let{(Bk, Tk)}k∈Z be an i.i.d. family with elements

distributed as(B, T ). We now define an FBMX as a strongly decomposable process based on
{(Bk, Tk)}k∈Z, as in Definition 2.2.

We can write as in (2.1),

Zk
t = Bk

t + βLk
t , t ≥ 0.

LetLX
t = Lk

t +kβ for t ∈ [Sk, Sk+1], k ∈ Z. The analysis of the excursion process ofZk above
0 shows that the process{Yt := X−t + 2βLX

−t, t ≥ 0} is Brownian motion. The distribution
of LZ

t is the same as that ofmax0≤≤tBt (see Harrison and Shepp [1981]) soELZ
t =

√
2t/π.
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Hence, fort ≥ 0,

EX−t = EYt − E(2βLX
−t) = 2β

√
2t/π.(2.2)

This shows that for different values of the parameterβ, the distributions of FBM’sX are dif-
ferent. Moreover, (2.1) and (2.2) show thatX is two sided Brownian motion if and only if
β = 0.

For β = 1, Xt is the same as in Example 2.8 because, in this case,Z is reflected Brownian
motion andLZ

t = min0≤s≤tBs (see Harrison and Shepp [1981]).
If we let Su = inf{t : LX

t = u} for u ∈ R then for integeru, this definition ofSu agrees
with the definition ofSk given in Definition 2.2. It is easy to see thatSu < Sv for u < v and
{XSu+t − XSu

, t ≥ 0} is Brownian motion for everyu ∈ R. In other words, the processX
is Brownian motion as viewed from a family of random points(Su, XSu

) in space time; the
cardinality of this family is the same as that ofR. We do not believe that such a family can be
constructed for every FBM. For example, we doubt that it can be constructed for FBM presented
in Section 6.

Since Example 2.8 is the “extreme” case of Example 2.9, one may wonder whether properties
of trajectories ofXt in Example 2.8, whent → −∞, display “extreme” possible behavior for
trajectories of any FBM. In other words, are path propertiesof 3-dimensional Bessel process
extreme among path properties of all FBM’s? The answer is negative in every conceivable
sense—see Sections 3-4.

Example 2.10.We will show that ifZ is a strongly decomposable FRW andT is a random time
such that{ZT+n, n ∈ N0} is a simple symmetric random walk then this does not imply that the
increments ofZ to the right and to the left ofT are independent. LetY be simple symmetric
random walk starting fromY0 = 0 and letS = inf{n ∈ {2, 3, ...} : Yn−Yn−1 = Yn−1−Yn−2}.
LetZ be strongly decomposable FRW constructed as a concatenation of independent copies of
(Y, S). It is easy to see that ifT ≡ −1 then{ZT+n, n ∈ N0} is a simple symmetric random
walk and that the increments ofZ before and after timeT are not independent. Specifically,
ZT −ZT−1 andZT −ZT+1 are fully correlated. We note parenthetically that{X−1−n, n ∈ N0}
is not a simple symmetric random walk in this example. IfX is the FBM constructed fromZ
as in Remark 2.6 andT ≡ −1 then{XT+t − XT , t ≥ 0} and{XT−t − XT , t ≥ 0} are not
independent because if the first process hits 1 before hitting−1 then the opposite is true of the
second process. This is a much weaker claim than that in Remark 2.4.

3. MAXIMUM ASYMPTOTIC RANGE

The main result of this section, Theorem 3.3, states that thelim sup of FBM in the backward
direction can be arbitrarily large. By symmetry, thelim inf can be arbitrarily small. Moreover,
both assertions can be true simultaneously. As a warm up, we present two simple results that
have short proofs.

Proposition 3.1. LetX be a decomposable FBM with associated sequenceSk, k ∈ Z, in the
notation of Definition 2.2. Then we have

(3.1) lim sup
n→−∞

XSn√
2|Sn| log log |Sn|

≤ 1 a.s.

By symmetry, an analogous inequality holds forlim inf.
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Proof. Define

X t := XSn+Sn−1+t −XSn
−XSn−1

if Sn−1 ≤ −t ≤ Sn, −n ∈ N0,

and observe that{X t, t ≥ 0} is standard Brownian motion because, for each−n ∈ N0, we
shifted the graph ofX betweenSn−1 andSn by (−Sn−1 − Sn,−XSn

−XSn−1
). SinceX−Sn

=
−XSn

for all −n ∈ N0, (3.1) follows from the usual law of the iterated logarithm for Brownian
motion. �

Proposition 3.2. LetX be FBM. Then we have

lim inf
t→−∞

Xt√
2|t| log log |t|

≤ 1 a.s.

Proof. Note the it will suffice to prove the claim forXt − X0 in place ofXt. Let Sn be as in
Definition 2.1. Fix an arbitrarily smallε > 0 and let

pn := P(XSn
−X0 ≥ (1 + ε)

√
2|Sn| log log |Sn|).

By the LIL and the fact thatSn → −∞ it follows thatpn → 0. Passing to a subsequence, if
necessary, for which the sum ofpn’s is finite, we see that, by the Borel-Cantelli Lemma, we
have almost surely,

XSn
−X0 < (1 + ε)

√
2|Sn| log log |Sn|

for infinitely manyn, so the proposition follows. �

Theorem 3.3.For each increasing functionf : [0,∞) → [0,∞) there exists a strongly decom-
posable FBMX for which, a.s.,

lim sup
t→−∞

(Xt − f(−t)) ≥ 0 and lim inf
t→−∞

(Xt + f(−t)) ≤ 0.

Proof. We will assume without loss of generality that

(3.2) f(x) ≥ 2

√
2x log+ log+ x, x ≥ 0,

wherelog+ x := max{log x, 1}.
Our construction ofX will be based on a random variableY whose distribution will be

specified in several steps. Suppose thatY and a Brownian motionB are defined on the same
probability space and are independent. Let

T := inf{t ≥ 1 : Bt − Bt−1 = Y }.
Let (Yk, Bk, Tk), k ∈ Z, be independent copies of(Y, B, T ) and define theSk’s andX as in
Definition 2.2.

We will later specify a sequence{nk}k∈N0
of non-negative real numbers strictly increasing to

∞. We define the distribution ofY by

P(Y = nk) = P(Y = −nk) = 2−k2−1 =: pk, k ∈ N,

P(Y = 0) = 1− 2

∞∑

k=1

pk =: p0.
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LetK(m) be the largest negative integerk for which |Yk| = nm and define the events

Cm := {K(m) > max
j>m

K(j)}.

Let qm =
∑

j>m pj. It is elementary to see thatP(Cm) = pm/(pm + qm) so

P(Cc
m) =

qm
pm + qm

≤ qm
pm

=

∑
j>m 2−j2−1

2−m2−1
≤ 2 · 2−(m+1)2−1

2−m2−1
= 2−2m.(3.3)

Hence,
∑∞

m=1 P(C
c
m) < ∞ and, by the Borel-Cantelli Lemma, almost surely, all but finitely

many of theCm occur. This means that there exists almost surely some random m0 such that
K(m+ 1) < K(m) for all m ≥ m0.

We will show that, for suitably chosen{nk}k∈N0
, each of the inequalities

(3.4) Y−k ≥ 2f(−S−k+1 + 1) and Y−k ≤ −2f(−S−k+1 + 1)

holds for infinitely manyk ∈ N almost surely. Once we have shown this, then the theorem
follows from Proposition 3.1 and (3.2). By symmetry, it suffices to show the first of the two
inequalities in (3.4).

For a given functionf , we will define the numbersnk inductively, starting withn0 = 0. Note
that the law ofSK(m)+1 conditioned onCm does not depend on the choice of{nk}k≥m. For
m ∈ N, letnm be so large thatnm > nm−1 and

P(nm ≥ 2f(−SK(m)+1 + 1) | Cm) ≥ 1− 2−m.

Define

Am := {nm ≥ 2f(−SK(m)+1 + 1)}.
Then,

P(Am) ≥ P(Am | Cm)P(Cm) ≥ (1− 2−m)P(Cm)

and, therefore, in view of (3.3),

∞∑

m=1

P(Ac
m) ≤

∞∑

m=1

(1− P(Cm) + 2−m
P(Cm)) =

∞∑

m=1

(P(Cc
m) + 2−m

P(Cm)) <∞,

which implies, by the Borel-Cantelli Lemma, that all but finitely many of the eventsAm occur.
Next, let

Vm := {YK(m) ≥ 0} = {YK(m) = nm}.
Then

(3.5) Am ∩ Vm ⊆ {YK(m) ≥ 2f(−SK(m)+1 + 1)}.

Since theVm’s are i.i.d. andP(Vm) = 1/2, almost surely infinitely many of theVm’s occur and,
therefore, infinitely many of theAm∩Vm’s occur. Together with (3.5) this implies (3.4) and the
theorem is proved. �
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4. MINIMUM ASYMPTOTIC RANGE

In the previous section, we showed that thelim sup of an FBM, ast → −∞, can be
“arbitrarily large.” In this section we will show that thelim inf of an FBM in the back-
ward direction cannot be arbitrarily large. We will consider regions in space-time of the form
R := {(t, x) : t < 0, c1

√
|t| < x < c2

√
|t|} into which paths of an FBM may fit, at least

asymptotically. Roughly speaking, there exist FBM’s whosepaths stay insideR ast → −∞
if and only if c1 and c2 are not too close to each other. Here, being “close” is a condition
more complicated than a bound onc2 − c1. Examples of “critical pairs” of(c1, c2) are(1,∞),
(−1, 1) and (0, 2.12) (the last number is approximate). On the technical side, this section is
closely related to the problem of slow points for Brownian motion studied in Davis [1983],
Greenwood and Perkins [1983], Perkins [1983]. We will mostly cite Perkins [1983].

Remark 4.1. In this remark, we collect some results from [Perkins, 1983,p. 371]. Let

C = {(c1, c2) : −∞ ≤ c1 < c2 ≤ ∞},

A =
1

2

(
d2

dx2
− x

d

dx

)
,

andm(dx) = 2e−x2/2dx. For each(c1, c2) ∈ C , there is a complete orthonormal system in
L2([c1, c2], m) of eigenfunctions of the Sturm-Liouville problem

Aψ = λψ, ψ(ci) = 0, i = 1, 2, if |ci| <∞,

whose corresponding eigenvalues are simple and non-positive. Let −λ0(c1, c2) denote the
largest eigenvalue. The corresponding eigenfunctionψ(c1, c2, x) can be assumed to be strictly
positive on(c1, c2).

The functionλ0 is continuous onC and strictly positive onC \ {−∞,∞}. The function
λ0( · , c2) is strictly increasing on[−∞, c2) andλ0(c1, · ) is strictly decreasing on(c1,∞].

Remark 4.2. For our results, just like for many results in Davis [1983], Greenwood and Perkins
[1983], Perkins [1983], the critical value ofλ0 is 1, so it is of interest to know for which values
of c1 andc2 we haveλ0(c1, c2) = 1. Some examples of such pairs are(−∞,−1), (−1, 1) and
(1,∞) (see [Perkins, 1983, Prop. 1]). It is natural to ask whatc′2 satisfiesλ0(0, c′2) = 1. The
approximate value of suchc′2 is 2.12411. We found this value as follows. Observe that

ψ(x) = 2 exp(x2/2)x+
√
2π erfi(x/

√
2)−

√
2πx2 erfi(x/

√
2)

satisfies the equation(1/2)(ψ′′(x)−xψ′(x)) = −ψ(x) andψ(0) = 0. Hereerfi(x) = −i erf(ix)
anderf(x) = (2/

√
π)
∫ x

0
e−t2dt. The functionψ is strictly positive on an interval(0, c′2) and

vanishes at the endpoints of this interval. We determined thatc′2 ≈ 2.12411 by solvingψ(x) = 0
numerically.

We note thatc′2 appears to be the same asc(3) on page 376 in Perkins [1983]. We offer
an informal explanation for the coincidence. The constantc(3) corresponds to 3-dimensional
Bessel process staying under a parabola. This problem can beequivalently represented as that
about 1-dimensional Brownian motion staying between 0 and the same parabola, because 1-
dimensional Brownian motion conditioned not to hit 0 is 3-dimensional Bessel process.
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Theorem 4.3. (i) If λ0(c1, c2) ≥ 1 andX is FBM, then

P

(
{lim sup

t→−∞
Xt/

√
|t| ≥ c2} ∪ {lim inf

t→−∞
Xt/

√
|t| ≤ c1}

)
= 1.

(ii) If λ0(c1, c2) ≤ 1, then there exists a decomposable FBMX such that

P

(
{lim sup

t→−∞
Xt/

√
|t| ≤ c2} ∩ {lim inf

t→−∞
Xt/

√
|t| ≥ c1}

)
= 1.(4.1)

(iii) If c1 ≤ 0 ≤ c2 andλ0(c1, c2) < 1, then there exists a decomposable FBMX such that

P

(
{c1
√
|t| ≤ Xt ≤ c2

√
|t| ∀t ≤ 0}

)
= 1.(4.2)

Proof. (i) Fix −∞ < c1 < c2 <∞ such thatλ0(c1, c2) > 1 and letB denote standard Brownian
motion. Fora ≥ 0 andn ∈ N0, let

F (n, a) := {B(s) ∈ [c1
√
s− a, c2

√
s+ a] ∀ 0 ≤ s ≤ n},

r(n, a, c1, c2) := P(F (n, a)).

We will show that ifλ0(c1, c2) > 1, then for anya > 0,
∞∑

n=1

r(n, a, c1, c2) <∞.(4.3)

By the continuity ofλ0( · , · ) (see Remark 4.1), we can chooseδ > 0 such thatλ0(c1−δ, c2+
δ) > 1. LetA > 0 be such thata+ c2

√
s ≤ (c2 + δ)

√
s and−a+ c1

√
s ≥ (c1 − δ)

√
s hold for

all s ≥ A. Then, using Brownian scaling, we obtain

r(n, a, c1, c2) ≤ P{B(s) ∈ [(c1 − δ)
√
s, (c2 + δ)

√
s] ∀A ≤ s ≤ n}

= P{B(u) ∈ [(c1 − δ)
√
u, (c2 + δ)

√
u] ∀1 ≤ u ≤ n/A}

∼ K1(c1 − δ, c2 + δ)
( n
A

)−λ0(c1−δ,c2+δ)

,

whereK1(c1−δ, c2+ δ) ∈ (0,∞) and the asymptotic equivalence follows from [Perkins, 1983,
Lem. 10(b)]. Since the right hand side is summable the proof of (4.3) is complete.

Fora, b ≥ 0, let

Ta,b,c1,c2 := inf{t ≥ a ∨ b : B(s) ∈ [B(t) + c1
√
t− s, B(t) + c2

√
t− s] ∀ 0 ≤ s ≤ t− b}.

We will show that,

lim
b→0

P(T2,b,c1,c2 <∞) = 0.(4.4)

For0 ≤ b1 < b2, the (random) sets

Λ(b1, b2) := {t ∈ [0, 1] : B(s) ∈ [B(t) + c1
√
s− t, B(t) + c2

√
s− t] ∀s ∈ [t + b1, t+ b2]}

are compact and for everyb2 > 0,
⋂

b1∈(0,b2) Λ(b1, b2) = ∅, a.s., by [Perkins, 1983, Thm. 2(a)].
Therefore, there exists a randomb0 = b0(b2) > 0 such thatΛ(b1, b2) = ∅ for all 0 ≤ b1 < b0.
Hence, if we writeq(b1, b2, c1, c2) = P(Λ(b1, b2) 6= ∅) then

(4.5) lim
b1→0

q(b1, b2, c1, c2) = lim
b1→0

P(Λ(b1, b2) 6= ∅) = 0.
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For eachn ∈ N, n ≥ 2, the processes{B′
t := Bn+1−t − Bn+1, t ∈ [0, 2]} and{B′′

t :=
Bn−1−t − Bn−1, t ∈ [0, n− 1]} are independent Brownian motions. Note that forb ∈ [0, 1) we
have

{T2,b,c1,c2 ∈ [n, n + 1)} ⊂ {Λ(b, 1, B′) 6= ∅} ∩ F (n− 1, (|c1|+ |c2|)
√
2, B′′),

whereΛ(b, 1, B′) andF (n−1, (|c1|+ |c2|)
√
2, B′′) denoteΛ(b, 1) andF (n−1, (|c1|+ |c2|)

√
2)

defined relative to the processesB′ andB′′, resp., in place ofB. We obtain,

P(T2,b,c1,c2 <∞) =
∞∑

n=2

P(T2,b,c1,c2 ∈ [n, n + 1))

≤
∞∑

n=2

r(n− 1, (|c1|+ |c2|)
√
2, c1, c2) q(b, 1, c1, c2)

= q(b, 1, c1, c2)
∞∑

n=2

r(n− 1, (|c1|+ |c2|)
√
2, c1, c2).

The last sum is finite (and independent ofb) by (4.3). We conclude that (4.4) holds in view of
(4.5).

Assume that

P

(
{lim sup

t→−∞
Xt/

√
|t| ≤ c2} ∩ {lim inf

t→−∞
Xt/

√
|t| ≥ c1}

)
=: q > 0.(4.6)

To prove part (i) of the theorem, it will suffice to show that this assumption leads to a contra-
diction.

Recall that we have chosenδ > 0 such thatλ0(c1 − δ, c2 + δ) > 1. Assuming (4.6), we can
find someM ∈ (−∞, 0) such that

P

(
{sup
t≤M

Xt/
√
|t| ≤ c2 + δ} ∩ { inf

t≤M
Xt/

√
|t| ≥ c1 − δ}

)
≥ q

2
.(4.7)

ConsiderM̃ < M , whose value will be specified later. SinceX is FBM, there exists a random
timeS such thatP(S ≤ M̃) ≥ 1− q

4
and{XS+t −XS, t ≥ 0} is Brownian motion. Then,

P

(
{sup
t≤M

Xt/
√

|t| ≤ c2 + δ} ∩ { inf
t≤M

Xt/
√

|t| ≥ c1 − δ}
)

(4.8)

≤ P(S > M̃) + P(T−M̃,−M,c1−δ,c2+δ <∞)

≤ P(T−M̃,−M,c1−δ,c2+δ <∞) +
q

4

= P(T−αM̃,−αM,c1−δ,c2+δ <∞) +
q

4
,

for anyα > 0, where the last equality follows from Brownian scaling. By (4.4), we can make
α > 0 so small thatP(T2,−αM,c1−δ,c2+δ < ∞) < q/8. Then we choosẽM so that−αM̃ = 2.
The left hand side of (4.8) is therefore less than3q/8, which contradicts (4.7). This proves part
(i) in caseλ0(c1, c2) > 1 and−∞ < c1 < c2 <∞.
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If λ0(c1, c2) = 1 and−∞ < c1 < c2 < ∞, thenλ0(c1 + ε, c2 − ε) > 1 for everyε ∈
(0, 1

2
(c2 − c1)), by Remark 4.1. We have already shown that, for everyε > 0,

P

(
{lim sup

t→−∞
Xt/

√
|t| ≥ c2 − ε} ∪ {lim inf

t→−∞
Xt/

√
|t| ≤ c1 + ε}

)
= 1.

This implies that

P

(
{lim sup

t→−∞
Xt/

√
|t| ≥ c2} ∪ {lim inf

t→−∞
Xt/

√
|t| ≤ c1}

)
= 1,

and completes the proof of part (i) in case−∞ < c1 < c2 <∞. The casec2 = ∞ is treated by
applying the previous result to a sequencec2,n → ∞ (and similarly forc1 = −∞).

(ii), (iii) According to [Perkins, 1983, Thm. 2(a)],

P(∃t ≥ 0, ∆ > 0 : B(t+ h)−B(t) ∈ [c1
√
h, c2

√
h] ∀h ∈ [0,∆]) =

{
0 if λ0(c1, c2) > 1,
1 if λ0(c1, c2) < 1.

(4.9)

First suppose thatc1 ≤ 0 < c2 andλ0(c1, c2) < 1. By Remark 4.1 it suffices to prove (4.1)
and (4.2) in casec1 > −∞ andc2 < ∞. These assumptions, (4.9), invariance of Brownian
motion under time reversal, support theorem, and standard arguments imply that

P(∃t ∈ [1, 2] : B(t− s)−B(t) ∈ [c1
√
s, c2

√
s] ∀s ∈ [0, t]) > 0.

Another easy application of the support theorem and Brownian scaling allows to strengthen the
above claim to the following. Ifλ0(c1, c2) < 1 andδ ∈ (0, c2) then there existsp1 > 0 such that
for everya ∈ (0,∞),

P
(
∃t ∈ [a/2, a] : B(t)−B(0) ∈ [−δ

2

√
t,−δ

4

√
t](4.10)

andB(t− s)− B(t) ∈ [c1
√
s, c2

√
s] ∀s ∈ [0, t]

)

= P
(
∃t ∈ [1, 2] : B(t)−B(0) ∈ [−δ

2

√
t,−δ

4

√
t]

andB(t− s)− B(t) ∈ [c1
√
s, c2

√
s] ∀s ∈ [0, t]

)

= p1 > 0.

Let un = exp(exp(exp(n))) for n ∈ N. Note that for largen (depending onδ),

(δ/4)
√
(un+1 − un)/2 ≥ (δ/8)

√
un+1 ≥ un > 3

√
2un log log un.(4.11)

The processes{Y n(t) := B(un + t) − B(un), t ∈ [0, un+1 − un]} are independent Brownian
motions. The events

Fn :=
{
∃t ∈ [(un+1 − un)/2, un+1 − un] : Y

n(t)− Y n(0) ∈ [−δ
2

√
t,−δ

4

√
t]

andY n(t− s)− Y n(t) ∈ [c1
√
s, c2

√
s] ∀s ∈ [0, t]

}

are independent and each one of them has probabilityp1, by (4.10). Hence, infinitely many
eventsFn occur, a.s. By the law of the iterated logarithm, a.s., for all sufficiently largen,

sup
0≤s≤un

|B(s)| < 2
√
2un log log un.(4.12)
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If (4.11), (4.12) andFn hold then the following event occurs,
{
∃t ∈ [(un+1 + un)/2, un+1] : B(t)− B(0) ∈ [−δ

√
t, 0]

andB(t− s)− B(t) ∈ [c1
√
s, c2

√
s] ∀s ∈ [0, t]

}
.

Since infinitely many eventsFn occur, a.s., we conclude that ifλ0(c1, c2) < 1, δ > 0 anda <∞
then,

P
(
∃t ≥ a : B(t)− B(0) ∈ [−δ

√
t, 0](4.13)

andB(t− s)− B(t) ∈ [c1
√
s, c2

√
s] ∀s ∈ [0, t]

)
= 1.

We recall the definition of decomposable FBMX from Definition 2.2. Given(Bk, Tk), k ∈
Z, let S0 = 0, and use the conditionsSk+1 − Sk = Tk to defineSk for k ∈ Z. LetX be the
unique continuous process such thatX0 = 0 andXSk+t −XSk

= Bk
t for t ∈ [0, Tk), k ∈ Z.

Suppose that{Bk
t , t ≥ 0}, k ∈ Z, are independent Brownian motions. LetTk ≡ 1 for k ∈ N0.

To defineTk for negativek, observe that for given−∞ < c1 < c2 < ∞ satisfyingc1 ≤ 0 < c2
andλ0(c1, c2) < 1 we can find someε > 0 such thatc2 − ε > 0 andλ0(c1, c2 − ε) < 1 by
Remark 4.1. For−k ∈ N, let

c2(k) := c2 − ε+
ε

|k| , δ(k) := ε
( 1

|k| −
1

|k − 1|
)
.

For−k ∈ N, we define

Tk := inf{t ≥ 1 : Bk(t)− Bk(0) ∈ [−δ(k)
√
t, 0]

andBk(t− s)− Bk(t) ∈ [c1
√
s, c2(k)

√
s] ∀s ∈ [0, t]},(4.14)

and note thatTk <∞ a.s., by (4.13).
By construction, we have for−k ∈ N0 ands ∈ [Sk−1, Sk]:

Xs ≤
−k∑

i=1

δ(−i)
√
S−i+1 − S−i + c2(k − 1)

√
Sk − s

≤
( −k∑

i=1

δ(−i) + c2(k − 1)

)
√
−s = c2

√
−s,

andXs ≥ c1
√−s for all s ≤ 0, so (4.2) and hence (4.1) follow in casec1 ≤ 0 < c2 and

λ0(c1, c2) < 1.
Now assume thatλ0(c1, c2) = 1 (and stillc1 ≤ 0 < c2). Then, by Remark 4.1,λ0(c1, c2+ε) <

1 for everyε > 0. Consider the FBMX constructed in the previous paragraph but with(c1, c2)
replaced by(c1, c2 +1) andε = 1. Let c2(k) := c2 +

1
|k| andδ(k) := 1

|k| − 1
|k−1| . Then, we have

for fixed−m ∈ N0 andk ≤ m ands ∈ [Sk−1, Sk]:

Xs ≤
−k∑

i=−m+1

δ(−i)
√
S−i+1 − S−i + c2(k − 1)

√
Sk − s

≤
( −k∑

i=−m+1

δ(−i) + c2(k − 1)

)
√
Sm − s = c2(m− 1)

√
Sm − s,
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and hence

lim sup
s→−∞

Xs√
|s|

≤ c2(m− 1),

for every−m ∈ N0. Sincec2(m) converges toc2 asm → −∞ and sinceXs ≥ c1
√−s for all

s ≤ 0, the proof of (ii) and (iii) is complete in the casec1 ≤ 0 < c2.

Next we consider the case whenλ0(c1, c2) < 1 but it is not true thatc1 ≤ 0 < c2. By
symmetry, we may and will assume that0 < c1 ≤ c2 ≤ ∞ and (again by Remark 4.2) we can
and will assume thatc2 < ∞. In this case the reasoning in the previous case will not work
because the region{(s, x) : c1

√
s < x < c2

√
s, s ≥ 0} is not convex. Consequently, our

argument is more complicated in the present case.
By Remarks 4.1 and 4.2,c1 < 1 andc2 > 2.
Suppose thatδ, φ, a > 0. Let c′′1 be any number such thatc1 < c′′1 < 1, c′′1 − c1 < δ/4 and

λ0(c
′′
1, c2) < 1. We will prove that for everyb ∈ (a,∞),

P
(
∃t ≥ b : B(0)− B(t) ∈ [c1

√
t, (c1 + δ)

√
t](4.15)

andB(t− s)− B(t) ∈ [c1
√
s, c2

√
s] ∀s ∈ [a, t]

andB(t− s)− B(t) ∈ [c′′1
√
s, c2

√
s ∧ (c′′1

√
s+ φ)] ∀s ∈ [0, a]} = 1.

In the proof we will need several strictly positive constants, namelyc′1, c
′
2, ε andε̂. We suppose

that they satisfy the following constraints:

c′′1 < c′1 < 1 < 2 < c′2 < c2, c
′
1 − c′′1 < δ/4 andλ0(c

′
1, c

′
2) < 1,(4.16)

2ε+ φ+ c′′1
√
a+ ε̂− c′1

√
a ≤ 0,(4.17)

(c′′1 − c1)
√
a ≥ 2ε,(4.18)

(c′′1 − c′1)
√
a ≥ ε+ c1

√
2a + ε̂− c′1

√
2a.(4.19)

It is easy to see that these constraints can all be fulfilled provided thatφ is sufficiently small
which we can and will assume without loss of generality. One can first choosec′1 andc′2 satis-
fying (4.16). Then one can chooseφ, ε, ε̂ > 0 such that conditions (4.17)-(4.19) hold.

Let κ := δ/2. The following claim can be proved in the same way as (4.10). There exists
p1 > 0 such that for everyu ∈ (0,∞),

P
(
∃t ∈ [u/2, u] : B(t− s)− B(t) ∈ [c′1

√
s, hu(s)] ∀s ∈ [0, t]

)(4.20)

= P
(
∃t ∈ [1, 2] : B(t− s)− B(t) ∈ [c′1

√
s, (c′2

√
s) ∧ (c′1

√
s+ κ)] ∀s ∈ [0, t]

)
= p1,

wherehu(s) := (c′2
√
s) ∧ (c′1

√
s+ κ

√
u/2). Letu > 4a and define

U = inf{θ ∈ [
u

2
− 2a, u− 2a] : ∃x ∈ R

such thatB(θ + 2a− s)− x ∈ [c′1
√
s, hu(s)] ∀s ∈ [2a, θ + 2a]}.

Note thatU is a stopping time forB (with the convention thatinf ∅ = ∞) and that

P(U <∞) ≥ p1(4.21)

for all u > 4a by (4.20).
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On the set{U < ∞} defineX∗ as the largest numberx such thatB(U + 2a − s) − x ∈
[c′1

√
s, hu(s)] for all s ∈ [2a, U + 2a] and letX∗ := ∞ on {U = ∞}. Observe thatX∗ is

FU -measurable.
On the set{U <∞} let V (t) := B(U + t)−B(U) for t ≥ 0. SinceB(U)−X∗ is bounded

from above and below by a deterministic constant (which doesnot depend onu) there exists
p2 > 0 (not depending onu) such that for allu > 4a, on{U <∞},

(4.22) P

(∣∣∣∣∣V (s)− (B(U)−X∗ − c′1
√
a)

√
2a− s−

√
2a√

a(
√
2− 1)

∣∣∣∣∣ ≤ ε ∀s ∈ [0, a] | FU

)
≥ p2.

Further, there exists somep3 > 0 (which does not depend onu) such that for allu > 4a we
have

P
(
∃τ ∈ [2a, 2a+ ε̂] : V (τ − s)− V (τ) ∈ [c′′1

√
s, c2

√
s ∧ (c′′1

√
s+ φ)] ∀s ∈ [0, τ − a] | FU+a

)(4.23)

≥ p3 on{U <∞}.

Let G1 be the intersection of the set{U < ∞} and the two sets inside the conditional proba-
bilities in (4.22) and (4.23). By the strong Markov propertywe haveP(G1) ≥ p1p2p3 for all
u > 4a. Define

G2 := {∃t ∈ [
u

2
, u+ ε̂] : B(0)−B(t) ∈ [c1

√
t, (c1 + δ)

√
t]

andB(t− s)−B(t) ∈ [c1
√
s, c2

√
s] ∀s ∈ [a, t]

andB(t− s)− B(t) ∈ [c′′1
√
s, c2

√
s ∧ (c′′1

√
s+ φ)] ∀s ∈ [0, a]}.

Once we know that (for a givenu > 4a) we haveG1 ⊆ G2 then we obtainP(G2) ≥ p1p2p3.
To see thatG1 ⊆ G2 let τ be as in (4.23) andt := U + τ . Then the last property ofG2 clearly
holds and the second one holds at least fors ∈ [a, τ − a]. Now lets ∈ [τ − a, τ ]. Then

B(t− s)− B(t) = B(t− s)− B(t− τ + a) +B(t− τ + a)−B(t)

= [V (τ − s)− V (a)] + [B(t− τ + a)−B(t)]

≤
[
2ε+ (B(U)−X∗ − c′1

√
a)

√
s− τ + 2a−√

a√
a(
√
2− 1)

]
+ [c′′1

√
τ − a+ φ]

≤ 2ε+
c′2
√
2− c′1√
2− 1

(
√
s− τ + 2a−

√
a) + c′′1

√
τ − a+ φ

≤ c′2
√
s− τ + 2a

≤ c2
√
s.

The second to last inequality holds fors = τ by (4.17). Since the derivative with respect to
s of the left hand side is greater than that of the right hand side, the inequality holds for all
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s ∈ [τ − a, τ ]. Further,

B(t− s)− B(t) = B(t− s)− B(t− τ + a) +B(t− τ + a)− B(t)

= [V (τ − s)− V (a)] + [B(t− τ + a)−B(t)]

≥
[
−2ε+ (B(U)−X∗ − c′1

√
a)

√
s− τ + 2a−√

a√
a(
√
2− 1)

]
+ [c′′1

√
τ − a]

≥ −2ε+ c′1(
√
s− τ + 2a−

√
a) + c′′1

√
τ − a ≥ c1

√
s.

The last inequality holds fors = τ − a by (4.18). Since the derivative of the left hand side with
respect tos is greater than that of the right hand side fors ≥ τ − a, the last inequality holds for
all s ∈ [τ − a, τ ]. Next, we consider the cases ∈ [τ, t]. We claim that

B(t− s)−B(t) ≥ X∗ + c′1
√
2a− τ + s−B(t)

≥ B(U + a)− c′1
√
a− ε+ c′1

√
2a− τ + s− B(t)

≥ c′′1
√
τ − a− c′1

√
a− ε+ c′1

√
2a− τ + s

≥ c1
√
s.

The first inequality follows from the definition ofX∗. The second inequality follows from
the condition in (4.22) applied withs = a. The third inequality follows from (4.23) applied
with s = τ − a. The last inequality holds fors = τ by (4.19). It holds fors ≥ τ because
the derivative of the left hand side is greater than that of the right hand side fors ≥ τ . The
following inequalities hold for similar reasons,

B(t− s)− B(t) ≤ X∗ + hu(2a− τ + s)−B(t)

≤ B(U + a)− c′1
√
a + ε+ hu(2a− τ + s)−B(t)

≤ c′′1
√
τ − a+ φ− c′1

√
a+ ε+ hu(2a− τ + s)

≤ c′′1
√
a + ε̂+ φ− c′1

√
a + ε+ c′2

√
s

≤ c2
√
s.

The last inequality holds by (4.17) sinces ≥ τ ≥ 2a. Finally, for s = t, we obtain in the same
way

B(t− s)− B(t) ≤ c′′1
√
τ − a + φ− c′1

√
a+ ε+ hu(2a− τ + t)

≤ c′′1
√
τ − a + φ− c′1

√
a+ ε+ c′1

√
2a− τ + t+ κ

√
u/2

≤ c′′1
√
a+ ε̂+ φ− c′1

√
a + ε+ c′1

√
t+ κ

√
t

≤ (c1 + δ)
√
t.

The last inequality can be derived from (4.17) and the following facts: c′1 − c1 ≤ δ/2 and
κ = δ/2.

We have verified that all conditions in the definition ofG2 hold. ThereforeG1 ⊆ G2 and the
proof thatP(G2) ≥ p1p2p3 (for all u > 4a) is complete.

The rest of the proof of (4.15) is analogous to the argument showing that (4.10) implies (4.13)
in the casec1 ≤ 0 < c2 and we therefore omit it.
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We will construct a decomposable FBMX, using the notation as in Definition 2.2. Letδ, φ
be strictly positive numbers such thatδ < φ ≤ 1/4. Suppose that{Bk

t , t ≥ 0}, k ∈ Z, are
independent Brownian motions and letak ≥ 1, k < 0 be numbers which we will specify later.
Recall all the conditions that we imposed onc1, c2, c′′1, etc. in this part of the proof. LetTk ≡ 1
for k ∈ N0 and for−k ∈ N define

Tk := inf{t ≥ ak+1 : B
k(0)− Bk(t) ∈ [c1

√
t, (c1 + δ)

√
t](4.24)

andBk(t− s)− Bk(t) ∈
[
c′′1
√
s, c2

√
s ∧
(
c′′1
√
s+ φ

)]
∀s ∈ [0, ak+1](4.25)

andBk(t− s)− Bk(t) ∈
[
c1
√
s, c′2

√
s
]
∀s ∈ [ak+1, t]},(4.26)

and note thatTk < ∞ a.s., by (4.15). By construction, the associated FBMX satisfiesXs ≥
c1
√
|s| for all s ≤ 0.

It remains to show that if theak are suitably defined then we also havelim supt→−∞Xt/
√

|t| ≤
c2 almost surely.

We will defineak for k ≤ 0 inductively starting witha0 = 1. Suppose that theaj ’s have been
defined for allj > k for somek < 0. This determinesSk andXt, t ≥ Sk. Let Vk > 0 and
−∞ < Rk < −1 be such thatP(|XSk

| ≥ Vk or Sk < Rk) ≤ 2k. Then we fixak ∈ (−Rk,∞)
such that for allt1 ∈ [Rk, 0] andt ≤ t1 − ak,

Vk + c′2
√
|t− t1| ≤ c2

√
|t| and Vk + (c1 + δ)

√
|t− t1| ≤ (c′′1 + φ)

√
|t|.(4.27)

Since
∑

k≤1 2
k <∞, we see that, a.s., there exists a (random)k∗ ≤ −1 such that|XSk

| ≤ Vk
andSk ∈ [Rk,−1] for all k ≤ k∗. If XSk

≤ Vk andSk ≥ Rk for some−k ∈ N, then it follows
from (4.27) and (4.26) that fort ∈ [Sk−1, Sk − ak], we have

Xt ≤ XSk
+ c′2

√
Sk − t ≤ Vk + c′2

√
Sk − t ≤ c2

√
|t|.(4.28)

Further, ifXSk
≤ Vk andSk ≥ Rk for some−k ∈ N, then it follows from (4.27) and (4.24) that

XSk−1
≤ XSk

+ (c1 + δ)
√
Sk − Sk−1 ≤ Vk + (c1 + δ)

√
Sk − Sk−1 ≤ (c′′1 + φ)

√
|Sk−1|

(4.29)

and, fort ∈ [Sk−1− ak−1, Sk−1], using (4.29), (4.25),c′′1 ≤ 1, c2 ≥ 2, the elementary inequality
3
2

√
a +

√
b ≤ 2

√
a+ b for a, b ≥ 0 andφ ≤ 1/4 ≤

√
|Sk−1|/4 we have

Xt ≤ XSk−1
+ (c2

√
Sk−1 − t) ∧ (c′′1

√
Sk−1 − t + φ)

≤ (c′′1 + φ+
1

4
)
√
|Sk−1|+ c′′1

√
Sk−1 − t ≤ c2

√
|t|.

Thus we have shown thatXt ≤ c2
√
|t| holds for allt ∈ (−∞, Sk∗−1]. This completes the

proof of part (ii) in the caseλ0(c1, c2) < 1.
It remains to prove part (ii) in the case0 < c1 < c2 ≤ ∞ whenλ(c1, c2) = 1. In this

case we proceed as above except that we replacec1 in the definition ofTk by c1,k such thatc1,k
approachesc1 from below ask → −∞. This requires to let alsoc′′1 andc′2 (but notc2) depend
onk. We leave the details to the reader.

This completes the proof of the theorem. �

In a particular case, we can construct an FBM which always lies above a parabolic boundary,
and which is evenstronglydecomposable.



18 KRZYSZTOF BURDZY AND MICHAEL SCHEUTZOW

Proposition 4.4. For eachε > 0, there exists a strongly decomposable FBMX such that

inf
t<0

Xt/
√
|t| ≥ 1− ε, a.s.

Proof. Fix an arbitrarily smallε > 0. LetB be standard Brownian motion and

T := inf{t ≥ 1 : B(s) ≥ B(t) + (1− ε)
√
t− s for all s ∈ [0, t]}.

Sinceλ0(1,∞) = 1, it follows from (4.13) thatP(T < ∞) = 1. Let X be the strongly
decomposable FBM based on i.i.d. sequence(Bk, Tk), with elements distributed as(B, T )
above andX0 = 0. ForSn−1 ≤ t ≤ Sn, −n ∈ N0, a.s.,

Xt ≥ XSn
+ (1− ε)

√
Sn − t

≥ XSn+1
+ (1− ε)

√
Sn+1 − Sn + (1− ε)

√
Sn − t

. . .

≥ (1− ε)

( −1∑

k=n

√
Sk+1 − Sk +

√
Sn − t

)
≥ (1− ε)

√
−t.

�

5. A SUFFICIENT CONDITION FORFBM TO BE 2BM

Two sided Brownian motion (2BM) is the most generic example of FBM but it is far from
being a unique example of FBM, as the previous sections show.It is natural to ask what extra
assumptions on an FBM make it necessarily 2BM. We will present a sufficient condition for
this to be true. We will also show that some other “similar” conditions fail to force an FBM to
be 2BM.

Recall the notation used in Definition 2.2.

Theorem 5.1. If X is strongly decomposable andETk <∞ thenX is 2BM.

Proof. Assume thatX is strongly decomposable andETk < ∞ for the Tk’s introduced in
Definition 2.2. We will assume without loss of generality that X0 = S0 = 0.

According to [Kallenberg, 2002, Lemma 11.7] (see also Theorem 11.4 in Kallenberg [2002]
or Sections 4.1-4.2 and 8.1-8.2 in Thorisson [2000]), thereexists a random variableΘ such that
the distribution of{S∗

n, n ∈ Z} := {Sn − Θ, n ∈ Z} is stationary. Moreover, we can and will
chooseΘ so that it may depend on{Sn}n∈Z but does not depend on{Xt}t∈R in any other way.
It will suffice to show that the distribution of{X∗

t , t ∈ R} := {Xt+Θ −XΘ, t ∈ R} is 2BM(0).
Suppose thata > 0, let Ua be a uniform random variable on[a, 2a], independent ofX, and

let {Sa
n, n ∈ Z} = {Sn − Ua, n ∈ Z}. Then it follows from [Kallenberg, 2002, Thm. 11.8 (i)]

that the distributions of{Sa
n, n ∈ Z} converge to the distribution of{S∗

n, n ∈ Z} in the total
variation norm, asa→ ∞. LetXa

t = Xt+Ua
−XUa

for t ∈ R.
The conditional distribution ofX given{Sn, n ∈ Z} can be described as follows. Suppose

thats = {sn, n ∈ Z} is a deterministic sequence of real numbers such thatsn < sn+1 for all n,
limn→−∞ sn = −∞ andlimn→∞ sn = ∞. LetQ be the distribution of a pair(Tk, Bk) used in
the construction of the strongly decomposable processX (note thatQ does not depend onk).
LetQt be the distributionQ conditioned by{Tk = t} and letQ̃t be the distribution of the second
element in the pair (stochastic process) underQt, stopped att. Let{B̃n, n ∈ Z} be independent
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processes, such that the distribution ofB̃n is Q̃sn+1−sn for all n. Let X̃ be the unique continuous
process such that̃Xt+sn − X̃sn = B̃n

t for all t ∈ [0, sn+1 − sn) and alln ∈ Z. LetD(s) denote
the distribution ofX̃. Then the distribution ofX isD({Sn, n ∈ Z}). Similarly, the distributions
ofX∗ andXa areD∗ := D({S∗

n, n ∈ Z}) andDa := D({Sa
n, n ∈ Z}), resp. In other words, the

conditional distributions ofX∗ andXa given{S∗
n, n ∈ Z} and{Sa

n, n ∈ Z}, resp., are identical.
Since the distribution of{Sa

n, n ∈ Z} converges to the distribution of{S∗
n, n ∈ Z} in the total

variation norm,Da converge toD∗ in the total variation norm, asa→ ∞.
It follows from the definition of a decomposable FBM that{Xt, t ≥ 0} is standard Brownian

motion. Hence, for every fixeds ∈ [a, 2a], the distribution of{Xt+s − Xs,−a ≤ t ≤ a} is
that of 2BM(0) with time restricted to the interval[−a, a]. SinceUa is independent ofX, the
distribution of{Xa

t ,−a ≤ t ≤ a} is also that of 2BM(0) restricted to[−a, a]. This in turn
implies that for any fixedb > 0 and alla ≥ b, the distribution of{Xa

t ,−b ≤ t ≤ b} is that of
2BM(0) restricted to[−b, b]. In other words, for any fixedb > 0 and alla ≥ b, the distribution
Da restricted to[−b, b] is that of 2BM(0). SinceDa converges toD∗ in the total variation norm,
asa → ∞, we conclude that for any fixedb > 0, the distributionD∗ restricted to[−b, b] is that
of 2BM(0). The constantb > 0 is arbitrarily large so the distributionD∗ is that of 2BM(0) on
the whole real line. �

We will show that the result in Theorem 5.1 is optimal, in a sense. First, we will show that the
conclusion of Theorem 5.1 does not necessarily hold if the assumptionETk < ∞ is replaced
by the conditionET α

k < ∞ for someα ∈ (0, 1). Next, we will show that ifTk’s are not i.i.d.
then the conditionsupk ETk < ∞ does not guarantee that the corresponding FBM is 2BM.
Moreover, even ifsupk ET

α
k <∞ for someα <∞, the FBM is not necessarily 2BM.

Theorem 5.2. For any α ∈ (0, 1), there exists a strongly decomposable FBMX satisfying
ET α

k <∞ which is not a BBM.

Proof. Fix anyα ∈ (0, 1) and findc1 < 1 such thatλ0(c1,∞) = (1 + α)/2. Let

Tk = inf{t ≥ 0 : Bk
t ≤ −1 + c1

√
t}.

It follows from [Perkins, 1983, Lem. 10(b)] that

P(Tk ≥ t) = P{Bk
u ≥ −1 + c1

√
u ∀0 ≤ u ≤ t} ≤ Kt−λ0(c1,∞) = Kt−(1+α)/2,

whereK > 0. This implies thatET α
k <∞.

Suppose that there is a random variableS such that{XS−t−XS, t ≥ 0} is Brownian motion.
We will show that this assumption leads to a contradiction.

Recall thatX0 = 0. Forn ≥ 1 andt ≥ 0, let

XS,n
t =

1√
n
(XS−nt −XS), X0,n

t =
1√
n
X−nt, Xn

t = − 1√
n
Xnt.

It is easy to see that for any random variableS and continuous processX, the sequence of
processes{XS,n

t , t ≥ 0} converges to Brownian motion in the Skorokhod topology if and only
if {X0,n

t , t ≥ 0} converges to Brownian motion. We have assumed that{XS−t − XS, t ≥ 0}
is Brownian motion so{XS,n

t , t ≥ 0} is Brownian motion for everyn. Hence, to complete the
proof, it will suffice to show that{X0,n

t , t ≥ 0} does not converge to Brownian motion.
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RecallSk’s from Definition 2.2 and letS0
k = −S−k. For t ∈ [S0

k/n, S
0
k+1/n], k ≥ 0, let

X+,n
t = −X0,n

−t+S0
k
/n+S0

k+1
/n

+X0,n

S0
k+1

/n
+X0,n

S0
k
/n
.

The processX+,n is obtained from the processX0,n by rotating every piece of the trajectory
betweenS0

k/n andS0
k+1/n by 180 degrees and matching the endpoints of the rotated pathwith

the original locations of the endpoints. It is easy to see that the distribution of{X+,n
t , t ≥ 0} is

the same as that of{Xn
t , t ≥ 0}. Hence,{X+,n

t , t ≥ 0} is Brownian motion. It will be enough
to show that{X0,n

t , t ≥ 0} and{X+,n
t , t ≥ 0} do not converge to the same limit, in distribution.

Assume to the contrary that{X0,n
t , t ≥ 0} and{X+,n

t , t ≥ 0} converge to the same limit, in
distribution. The limit must be Brownian motion. Since eachsequence is tight, the sequence of
pairs{(X0,n

t , X+,n
t ), t ≥ 0} is also tight. Therefore, it contains a convergent subsequence. By

abuse of notation, we will assume that the whole sequence converges in distribution. Let the
weak limit be called{(X0,∞

t , X+,∞
t ), t ≥ 0}.

Note that sinceBk
t ≥ −1 for t ∈ [0, Tk], we haveX+,n

t − X0,n
t ≤ 1√

n
for t ≥ 0, a.s. This

implies thatX+,∞
t −X0,∞

t ≤ 0 for t ≥ 0, a.s.
It follows from [Perkins, 1983, Lem. 10] that

P(Tk ≥ t) ∼ K1t
−λ0(c1,∞) = K1t

−(1+α)/2,

whereK1 > 0. Sinceα ∈ (0, 1), standards results for sums of heavy tailed random variables
(see, e.g., [Darling, 1952, Thm. 5.1] or [Koralov and Sinai,2007, Sect. 10.5, p. 150]) show that
the size ofmax1≤k≤n Tk is comparable toSn with positive probability. More precisely, for some
p1 > 0 andβ ∈ (0, 1/2), for everyn ≥ 1, with probability greater thanp1, there existsk such
that the following event holds,A = {0 ≤ S0

k/n < S0
k/n+ β < S0

k+1/n ≤ 1}. If A holds then

X0,n(S0
k/n + β/2)−X+,n(S0

k/n+ β/2) ≥ c1
√
β/2− c1

√
β/2− 1√

n
.

This and the assumption that the limitsX0,∞ andX+,∞ are continuous processes imply that
with probability greater thanp1, there existst ∈ [0, 1] such that

X0,∞
t −X+,∞

t ≥ c1
√
β/2− c1

√
β/2.

This and the fact thatX+,∞
t −X0,∞

t ≤ 0 for t ≥ 0, a.s., imply that the processes{X0,n
t , t ≥ 0}

and{X+,n
t , t ≥ 0} do not converge to the same process with continuous paths, indistribution.

�

Theorem 5.3.For anyα ∈ (0,∞), there exists a decomposable FBMX satisfyingsupi ET
α
i <

∞ which is not a BBM.

Proof. Assume thatpj ∈ (0, 1), kj ∈ N, andcj > 0 for eachj ∈ N (we will specify the values
of these parameters later in the proof). Fori ∈ N let j(i) be the unique integerj satisfying∑j−1

m=1 km + 1 ≤ i ≤ ∑j
m=1 km. For eachi ∈ N toss a coin which comes up heads with

probabilitypj(i) (independently of everything else) and defineT−i := inf{t ≥ 1 : B−i
t −B−i

t−1 =
cj(i)} if coin i comes up heads andT−i = 0 otherwise. Further, fori ∈ N0, we defineTi ≡ 1.
For c > 0 and a Brownian motionB, let λ(c) := E(inf{t ≥ 1 : Bt − Bt−1 = c})α. It is
easy to see thatinf{t ≥ 1 : Bt − Bt−1 = c} is stochastically majorized by a constant plus an
exponential random variable soλ(c) is finite for everyc <∞ andα ∈ (0,∞).
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We now define the numberspj , kj , cj recursively starting withc1 = 1. Given the numbers
c1, ..., cm, p1, ..., pm−1, andk1, ..., km−1, we definepm := 1/λ(cm). This implies thatET α

m = 1
for all m ∈ Z. Let km := ⌈1/pm⌉. This implies that

∑
j∈N kjpj = ∞ and therefore guarantees

that infinitely many of theT−i, i ∈ N, are at least 1. Letum be a positive number such that

P

(
k1+...+km∑

i=1

T−i + 1 ≥ um

)
≤ 2−m.

Then, choosecm+1 so large that for a Brownian motionB we have

P(inf{t ≥ 1 : Bt −Bt−1 = cm+1} < um +m) ≤ 1/2.

This completes the definition ofpj ’s, kj ’s andcj ’s.
Let X be the decomposable FBM associated to the sequence(Bi, Ti). Assume thatX is a

BBM. We will show that this assumption leads to a contradiction. Suppose thatS is a random
variable such that{Y (t) := X(S − t)−X(S), t ≥ 0} is a Brownian motion. We have

P( inf{t ≥ 1 : Y (t)− Y (t− 1) = cm+1} ≥ um +m)

≤ P(S ≥ m) + P

(
S ≤ −

k1+...+km∑

i=1

T−i

)
+ P

(
k1+...+km∑

i=1

T−i + 1 ≥ um

)
.

Note that each probability on the right hand side converges to 0 asm→ ∞. On the other hand,

P(inf{t ≥ 1 : Bt − Bt−1 = cm+1} ≥ um +m)

= 1− P(inf{t ≥ 1 : Bt − Bt−1 = cm+1} < um +m) ≥ 1/2,

for eachm, soY andB cannot have the same law and the proof of the theorem is complete. �

6. A PROCESS THAT IS ANFBM AND BBM BUT NOT A 2BM

“Most” local path properties of every FBM are the same as those of standard Brownian mo-
tion. For example, FBM paths are continuous, non-differentiable and satisfy the local law of
the iterated logarithm at almost all (with respect to Lebesgue measure) times. We said “most”
properties because there are some clear exceptions, for example,Xt > 0 for t ∈ [−ε, 0), for
everyε > 0, if X is constructed as in Example 2.8. Needless to say, standard Brownian motion
does not have this property. However, this exception is clearly an artifact of the construction
given in Example 2.8 and does not characterize a “typical” local behavior of the paths ofX in
that example.

The definition of FBM implies that the global path propertiesof FBM, such as the global
law of the iterated logarithm, are identical to those of standard Brownian motion in the forward
time direction. If we now assume that a process is both FBM andBBM, then this process has
the same global path properties as standard Brownian motionin the forward and backward time
directions. Hence, such a process has the same (or very similar) local and global path properties
as 2BM. It is tempting to conjecture that this process is a 2BMbecause it is hard to guess in
what way this process might be different from 2BM. Nevertheless, it turns out that there exists
a process that is FBM and BBM but not 2BM. The reason why this ispossible is, roughly
speaking, that the increments of this process are heavily correlated on scales that are “invisible”
if we observe the process from the viewpoints set at some random times.
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The presentation of our construction will be discrete in nature. See Definition 2.5 for the
definitions of FRW, BRW and 2RW.

Theorem 6.1.There exists a processX which is FBM and BBM but not 2BM.

Proof. We will first construct a process{Vk, k ∈ Z}, taking values in{−1, 1}, which is the
increment sequence of a process which is FRW and BRW but not a 2RW. The construction will
be inductive. At then-th step, we will define the values ofVk for k ∈ [an, bn], wherean andbn
are random integers satisfyingan+1 < an < 0 < bn < bn+1 for all n ∈ N, a.s.

We will call a sequence of random variablescoin tossesif they are i.i.d., taking values 1 and
−1 with equal probabilities.

Forn = 1, we takea1 = −1, b1 = 1 and we letVk, −1 ≤ k ≤ 1, be coin tosses.
Suppose that[an, bn] and{Vk, k ∈ [an, bn]} have been defined.
Let cn ∈ N be a constant so large that

P(|an| ∨ bn ≥ cn) < 1/n2.(6.1)

Let dn ∈ N be so large that(4cn + 1)22−dn < 1/n2.
Let {Vk, k ∈ [bn + 1, bn + dn]} be coin tosses independent of{Vk, k ∈ [an, bn]} and let

Vk = Vk−an+dn+bn+1 for k ∈ [an − dn, an − 1]. If we seta′n = an − dn andb′n = bn + dn then
we see that{Vk, k ∈ [a′n, b

′
n]} has been defined.

Let {Un−
k , k < a′n} and{Un+

k , k > b′n} be two sequences of coin tosses independent from
each other and jointly independent of{Vk, k ∈ [a′n, b

′
n]}. Let an+1 be the largest integer of the

form an+1 = j(b′n − a′n + 1) + a′n for somej < 0, with the property thatUn−
k+an+1−a′n

= Vk for
all k ∈ [a′n, b

′
n]. Since{Un−

k , k < a′n} are coin tosses, it is easy to see that such an integeran+1

exists. By analogy, we definebn+1 as the smallest integer of the formbn+1 = j(b′n−a′n+1)+a′n
for somej > 0, such thatUn+

k+bn+1−b′n
= Vk for all k ∈ [a′n, b

′
n].

We letVk = Un− for k ∈ [an+1, a
′
n − 1] andVk = Un+ for k ∈ [b′n + 1, bn+1]. We have

thus defined[an+1, bn+1] and{Vk, k ∈ [an+1, bn+1]}. This completes the inductive step and the
definition of{Vk, k ∈ Z}.

Let Z0 = 0 andZk+1 − Zk = Vk for k ∈ Z. We will argue thatZ is FRW and BRW but not
2RW.

Fix anym ∈ N and a deterministic sequences ∈ {−1, 1}m. Let Qs be the distribution of
the sequence ofm coin tosses conditioned not to be equal tos. The probability that a sequence
of m coin tosses is not equal tos is pm := 1 − 2−m. Let α1 andα2 be independent geometric
random variables with parameterpm, that isP(αi = k) = pkm(1− pm) for i = 1, 2 andk ∈ N0.
Let {Y i,j

n , n ∈ [1, m]}j=1,...,αi
, i = 1, 2, be i.i.d. sequences with distributionQs, independent

of each other and ofα1 andα2. If α1 > 0, let R(j−1)m+n = Y 1,j
n for j = 1, . . . , α1 and

n = 1, . . . , m. Let {Rn, n = α1m+ 1, . . . , (α1 + 1)m} = s. If α2 > 0, letR(α1+j)m+n = Y 2,j
n

for j = 1, . . . , α2 andn = 1, . . . , m. Let{Rn, n = (α1+α2+1)m+1, . . . , (α1+α2+2)m} = s.
Let {Rn, n ≥ (α1 + α2 + 2)m + 1} be a sequence of coin tosses independent of{Rn, n =
1, . . . , (α1 + α2 + 2)m}. It is elementary to see that{Rn, n ≥ 1} is a sequence of coin tosses.

Since the distribution of{Rn, n ≥ 1} does not depend onm or s, we see that ifm ∈ N and
s ∈ {−1, 1}m are chosen in an arbitrary random way, the distribution of{Rn, n ≥ 1} is still
that of a sequence of coin tosses.

Let S−n = an+1 + b′n − a′n + 1 for n ∈ N. We will argue that{Vk, k ≥ S−n} is a sequence
of coin tosses. If we takem = b′n − a′n + 1 ands = {Vk, k ∈ [a′n, b

′
n]} then it follows from
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our constructions of{Vk, k ∈ Z} and{Rn, n ≥ 1} that the distribution of{Vk, k ≥ S−n} is
the same as that of{Rn, n ≥ 1} and hence it is the distribution of a sequence of coin tosses.
SinceS−n → −∞, we conclude thatZ is FRW. The processZ is BRW by the symmetry of our
construction.

We will now assume thatZ is 2RW and we will show that this leads to a contradiction. LetS
be such that{ZS+k−ZS, k ∈ N0} and{ZS−k−ZS, k ∈ N0} are independent simple symmetric
random walks. IfWk = ZS+k+1 − ZS+k for k ∈ Z then{Wk, k ∈ Z} is a sequence of coin
tosses. For an arbitrarily largem, we can findn > m so large thatP(|S| ≥ cn) < 1/m2. Recall
thatP(|an| ∨ bn ≥ cn) < 1/n2. Hence,

P({|S| ≥ cn} ∪ {|an| ∨ bn ≥ cn}) < 1/m2 + 1/n2 ≤ 2/m2.(6.2)

If a∗ andb∗ are fixed integers such thata∗ < b∗ then the probability thatWk = Wk−a∗+dn+b∗+1

for k ∈ [a∗ − dn, a
∗ − 1] is 2−dn. The probability that there exist integersa∗, b∗ ∈ [−2cn, 2cn]

such thata∗ < b∗ andWk = Wk−a∗+dn+b∗+1 for k ∈ [a∗ − dn, a
∗ − 1] is bounded above by

(4cn + 1)22−dn < 1/n2 < 1/m2. The series
∑

m 3/m2 is summable so the last estimate, (6.2)
and the Borel-Cantelli Lemma imply that there exist infinitely many n such that|S| < cn,
|an|∨bn < cn and there are noa∗, b∗ ∈ [−2cn, 2cn] such thata∗ < b∗ andWk = Wk−a∗+dn+b∗+1

for k ∈ [a∗ − dn, a
∗ − 1]. This contradicts the fact that for everyn > 1, Vk = Vk−an+dn+bn+1

for k ∈ [an − dn, an − 1].
LetX be defined in terms ofZ as in Remark 2.6 (i). We have indicated in that remark that

the fact thatZ is FRW and BRW implies thatX is FBM and BBM. It remains to show thatX
is not 2BM.

Let εn > 0 be so small that for standard Brownian motionB and anyx ∈ R,

P(∃t ∈ [1− εn, 1 + εn] : |Bt − x| ≤ 2εn) ≤ 1/n2.(6.3)

We can findsn ∈ (0, εn) so small that

P(∃s, t ∈ [1− sn, 1 + sn] : |Bt −Bs| ≥ εn) ≤ 1/n2.(6.4)

This and (6.3) imply that ifB andB′ are independent Brownian motions then

P(∃s, t ∈ [1− sn, 1 + sn] : |Bt −B′
s| ≤ εn) ≤ 2/n2.(6.5)

Note that in the first part of our proof, we can takedn arbitrarily large relative tocn. Hence,
we can and will assume without loss of generality that

dn
dn + cn

≥ 1− sn/4.(6.6)

We makedn larger, relative tocn, if necessary, so that

4d−1/2
n cn ≤ εn/2.(6.7)

The random variablesMj+1 − Mj defined in Remark 2.6 (i) are i.i.d. They represent the
time Brownian motion starting from 0 takes to hit 1 or−1. It is well known that these random
variables have mean 1 and exponential tails. This, (6.1), (6.6) and the law of large numbers
imply that

P

(∣∣∣∣
Man−dn

dn
− 1

∣∣∣∣ ≥ sn/2

)
≤ 2/n2, P

(∣∣∣∣
Mbn+dn

dn
− 1

∣∣∣∣ ≥ sn/2

)
≤ 2/n2.(6.8)
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Suppose that a random timeS is such that{XS+t − XS, t ≥ 0} and{XS−t − XS, t ≥ 0}
are independent standard Brownian motions. We can makedn’s larger, if necessary, so that the
productsdnsn are so large that fork ∈ N we can findnk > k ∨ nk−1 so large that

P (|S/dnk
| ≥ snk

/4) ≤ 1/k2.

This and (6.8) yield

P

(∣∣∣∣
Man

k
−dn

k
− S

dnk

− 1

∣∣∣∣ ≥ snk
/2

)
≤ 2/nk

2 + 1/k2 ≤ 3/k2,(6.9)

P

(∣∣∣∣
Mbn

k
+dn

k
− S

dnk

− 1

∣∣∣∣ ≥ snk
/2

)
≤ 3/k2.

Let

Gk =

{∣∣∣∣
Mank

−dnk
− S

dnk

− 1

∣∣∣∣ ≥ snk
/2,

∣∣∣∣
Mbnk

+dnk
− S

dnk

− 1

∣∣∣∣ ≥ snk
/2

}
.

It follows from (6.9), summability of
∑

k∈N 3/k
2 and Borel-Cantelli Lemma that only a finite

number of eventsGk occur.
For anyk ≥ 1, the processes

{B(k)
t := d−1/2

nk
(X(S + tdnk

)−X(S)), t ≥ 0},
{B[k]

t := d−1/2
nk

(X(S − tdnk
)−X(S)), t ≥ 0}

are independent Brownian motions. Let

Fk = {∃s, t ∈ [1− snk
, 1 + snk

] : |B(k)
t − B[k]

s | ≤ εnk
}.

By (6.5),P(Fk) ≤ 2/n2
k < 2/k2. Since

∑
k∈N 2/k

2 < ∞, only a finite number of eventsFk

occur.
It follows from (6.1) that only a finite number of events{|an| ∨ bn ≥ cn} occur. Assuming

that |an| ∨ bn ≤ cn,

|Zan−dn − Zbn−dn | ≤ 2cn.

It follows that, for sufficiently largen,

|X(Man−dn)−X(Mbn−dn)| ≤ 2cn,

and, therefore, for all sufficiently largek,

|B(k)((Man
k
−dn

k
− S)/dnk

)−B[k]((Mbn
k
+dn

k
− S)/dnk

)| ≤ d−1/2
nk

2cnk
≤ εnk

/2,(6.10)

where the last inequality holds by (6.7). Recall that only a finite number of eventsGk occur. If
Gk does not hold then, because of (6.10),Fk holds with

t = (Man
k
−dn

k
− S)/dnk

, s = (Mbn
k
+dn

k
− S)/dnk

.

This contradicts the fact that only a finite number of eventsFk hold. �

Proposition 6.2. (i) There exists an FBMX such that there is no random timeT such that
{XT+t − XT , t ≥ 0} and{XT−t − XT , t ≥ 0} are independent and{XT+t − XT , t ≥ 0} is
standard Brownian motion.

(ii) There is an FBMX that is not decomposable.
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Proof. (i) First, we will show that for the FRWZ constructed in Theorem 6.1, there is no
stopping timeS such that{ZS+k−ZS, k ∈ N0} and{ZS−k−ZS, k ∈ N0} are independent and
{ZS+k − ZS, k ∈ N0} is simple symmetric random walk. We will apply the same argument as
in the part of the proof of Theorem 6.1 showing thatZ is not 2RW. We replace the paragraph in
that proof containing (6.2) with the following.

Let S be such that{ZS+k − ZS, k ∈ N0} and{ZS−k − ZS, k ∈ N0} are independent and
{ZS+k−ZS, k ∈ N0} is simple symmetric random walk. IfWk = ZS+k+1−ZS+k for k ∈ Z then
{Wk, k ∈ Z} is a sequence of coin tosses. Letc0 = 1 and recall thatak+1 < ak < 0 < bk < bk+1

for all k ∈ N. Form ∈ N, we can findnm > m so large thatP(|S| ≥ cnm−1
) < 1/m2 and

cnm−1
≤ |anm

| ∧ bnm
. Recall thatP(|ak| ∨ bk ≥ ck) < 1/k. Hence,

P({|S| ≥ cnm−1
} ∪ {cnm−1

≤ |anm
| ∧ bnm

≤ |anm
| ∨ bnm

≥ cnm
}) < 1/n2

m + 1/m2 ≤ 2/m2.

(6.11)

If a∗ and b∗ are fixed integers such thata∗ < 0 < b∗ then the probability that the events
{Wk = Wk−a∗+dnm+b∗+1} hold for k ∈ [a∗ − dnm

, a∗ − 1] is 2−dnm . The probability that
there exist integersa∗, b∗ ∈ [−2cnm

, 2cnm
] such thata∗ < b∗ andWk = Wk−a∗+dnm+b∗+1 for

k ∈ [a∗ − dnm
, a∗ − 1] is bounded above by(4cnm

+ 1)22−dnm < 1/nm
2 < 1/m2. The series∑

m 3/m2 is summable so the last estimate, (6.11) and the Borel-Cantelli Lemma imply that
there exist infinitely manynm such that|S| < cnm

, |anm
| ∨ bnm

< cnm
and there are noa∗, b∗ ∈

[−2cnm
, 2cnm

] such thata∗ < 0 < b∗ andWk = Wk−a∗+dnm+b∗+1 for k ∈ [a∗ − dnm
, a∗ − 1].

This contradicts the fact that for everyn > 1, Vk = Vk−an+dn+bn+1 for k ∈ [an − dn, an − 1].
This completes the proof that for the FRWZ constructed in Theorem 6.1, there is no stopping

timeS such that{ZS+k−ZS, k ∈ N0} and{ZS−k−ZS, k ∈ N0} are independent and{ZS+k−
ZS, k ∈ N0} is simple symmetric random walk.

Suppose that there exists a random timeT such that{XT+t−XT , t ≥ 0} and{XT−t−XT , t ≥
0} are independent and{XT+t−XT , t ≥ 0} is standard Brownian motion. Then we can proceed
as in the proof of Theorem 6.1, staring with the paragraph containing (6.3). Note that for (6.4),
we only need to know that the processB is a.s. continuous (we do not have to assume that it is
Brownian motion). The rest of the argument applies and thus we complete the proof of part (i)
the proposition.

(ii) Suppose that the FBMX considered in part (i) is decomposable. Then, in the notation of
Definition 2.2, there is a random variableU such that{XU+t−XU , t ≥ 0} and{XU−t−XU , t ≥
0} are independent and{XU+t − XU , t ≥ 0} is standard Brownian motion. This contradicts
part (i) so we conclude that FBMX is not decomposable. �

7. OPEN PROBLEMS

The following list is rather eclectic but we hope that the reader will find at least some of the
problems intriguing.

Problem 7.1. Assume thatX is a decomposable FBM which is also a BBM (we may or may
not assume that the BBM is decomposable). Do these assumptions imply thatX is 2BM?

Problem 7.2. Assume thatX is an FBM and BBM and there exists a random timeT such that
the processesXT+t−XT , t ≥ 0 andXT−t−XT , t ≥ 0 are independent. Do these assumptions
imply thatX is 2BM?
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Problem 7.3. Assume thatX is an FBM and there exist random timesS andT such that the
processesXT+t − XT , t ≥ 0 andXT−t − XT , t ≥ 0 are independent and such thatXS−t −
XS, t ≥ 0 is Brownian motion. Do these assumptions imply thatX is 2BM?

Note that an affirmative answer to Problem 7.1 implies the same for Problem 7.2 and, simi-
larly, an affirmative answer to Problem 7.2 implies the same for Problem 7.3.

Problem 7.4. Consider a decomposable FBMX and assume that is is constructed from Brow-
nian pieces of length 1, most of the time, but occasionally (more and more rarely as we move to
the left) we insert “Bessel” pieces, i.e., we use the stopping timesTk := inf{t ≥ 0 : Bk

t = −1}.
Under which conditions (concerning the frequency of the Bessel pieces) is the resulting FBM a
BBM (or 2-sided BM)?

Problem 7.5. Is it true that for any process{Xt, t ≥ 0} whose law is equivalent to BM, we can
find some random piece which we can put in front ofX such that the new process is Brownian
motion?

Remark 7.6. Consider a strongly decomposable FBMX with ETk = ∞. In this caseX may
or may not be a 2BM. If, for example,Tk is a positive random variable which is independent
of Bk and has an infinite expected value, thenX is clearly 2BM (even without shifting). Now
let us assume thatETk = ∞ and that the process{Sn, n ∈ Z} is identifiablein the sense that
there exists a measurable function that maps{BT+t − BT , t ∈ R} onto{Sn − T, n ∈ Z} for
an arbitrary random timeT . If X was 2BM, then this process would have to be stationary seen
from the random time which turnsX into 2BM(0). But for a renewal process with infinite
expected interarrival law there does not exist any shift which will make it stationary.

Problem 7.7. Does there exist a decomposable FBMX satisfyingsupk |Tk| < ∞, a.s., which
is not a BBM?

Problem 7.8. Can one generalize Theorem 4.3 from parabolas to other space-time shapes?

Problem 7.9. Analyze “forward Lévy processes”. In particular, find analogues of all theorems
in this article for forward Lévy processes.
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