The surface

$$
z=f(x, y)=15-x^{2}-y^{2}
$$

The surface

$$
\mathbf{z}=\underset{f(\mathbf{x}, \mathbf{y})=15-\mathbf{x}^{\mathbf{2}}-\mathbf{y}^{\mathbf{2}}}{\text { and the plane }}
$$

$$
x=7
$$

The surface

$$
z=f(x, y)=15-x^{2}-y^{2}
$$ and the tangent in the y-direction at

$(\mathbf{x}, \mathbf{y}, \mathbf{z})=(\mathbf{7 , 4 , - 5 0})$

The surface

$$
z=f(x, y)=15-x^{2}-y^{2}
$$ and the tangent in the x -direction at

$(\mathbf{x}, \mathbf{y}, \mathrm{z})=(\mathbf{7 , 4 , - 5 0})$

> The tangent line at $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(7,4,-50)$ in the y -direction drawn on the plane in 2 D .

$$
f_{y}(7,4)=-8
$$

> The tangent line at $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(7,4,-50)$ in the x -direction drawn on the plane in 2 D .

$\mathrm{f}_{\mathrm{x}}(7,4)=-14$

