The function
 $f(x, y)=y^{2}-x^{2}$

has a saddle point at $(x, y)=(0,0)$.

The surface
$f(x, y)=3 x y-(1 / 2) y^{2}+2 x^{3}+(9 / 2) x^{2}$
(positive x -axis, positive y -axis view)

> The surface
> $f(\mathrm{x}, \mathrm{y})=3 \mathrm{xy}-(1 / 2) \mathrm{y}^{2}+2 \mathrm{x}^{3}+(9 / 2) \mathrm{x}^{2}$ positive x -axis, negative y -axis view $)$

The graph of the surface $f(x, y)=x y e^{-x^{2}-y^{2}}$

$f(x, y)=1 / 4 x+1 / 2 y^{2}-x y+1$
over the triangular region given by
the points $(0,-1),(0,1),(2,-1)$

