Facts and Definitions about Three-Dimensional Curves

We will write a three-dimensional parametric curve in either of the equivalent forms $x=f(t), y=$ $g(t), z=h(t)$ or $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$. Below we discuss such curves.

1. Visualization: Given a parametric curve in three-dimensions. We can try to visualizing the motion using the following tools

- Eliminate the parameter to get equations relating x, y, and z. Then try to visualize the resulting surface over which the motion is occurring.
- Plot points by choosing values of t and plotting (x, y, z).
- Use the tools and measures below to discuss the motion of a curve at a point.

2. Derivatives and Integrals:

- $\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle=$ 'a vector tangent to the curve at t ' $=$ velocity vector.
- $\mathbf{r}^{\prime \prime}(t)=\left\langle f^{\prime \prime}(t), g^{\prime \prime}(t), h^{\prime \prime}(t)\right\rangle=$ acceleration vector.
- $\int \mathbf{r}(t) d t=\left\langle\int f(t) d t, \int g(t) d t, \int h(t) d t\right\rangle$.

3. Measurements on the Curve:

- Arc Length $=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t$
- Curvature $=\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$. You can calculate curvature for a 2D curve as well by making the third component zero. For a function of the form $y=f(x)$ in 2D, the formula for curvature becomes $\kappa=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}}$.
- The tangential and normal components of acceleration will be covered in 13.4 and are given by: $a_{T}=\frac{\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$ (tangential component) and $a_{N}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}$ (normal component)

4. Normal Vectors: We define $\mathbf{T}(t)=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{r}^{\prime}(t)=$ the unit tangent. And from it we get the following $\mathbf{T}^{\prime}(t)=$ 'a normal vector (a vector orthogonal to $\mathbf{T}(t)$ '
$\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=$ 'the principal unit normal'
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)=$ 'the binormal vector (orthogonal to the tangent and unit normal)'

5. Related Planes and Lines

- The tangent line to a curve at a given point can be given by using the $\mathbf{r}^{\prime}(t)$ as the direction vector in the equations for the line.
- The normal plane to a curve at a given point can be given by using $\mathbf{r}^{\prime}(t)$ as the normal vector in the equation for a plane.
- The osculating plane to a curve at a given point can be given by using $\mathbf{B}(t)$ as the normal vector in the equation for a plane.

