Taylor Polynomials Overview
We found that we can approximate functions f(x) with polynomials based
at x = b in the following way.
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Taylor inequalities
And we found that we can get a bound on the error in the following way.
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We asked the following error questions:
1. Given a fixed n and a fixed interval, find the error bound.

2. Given a fixed n and an error, find an interval with an error bound less
than the given error.

3. Given a fixed interval and an error, find a number n with an error bound
less than the given error.



Taylor Series Overview

Then we started looking for patterns in the Taylor series for some of our
standard functions. We found:
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We learned:

1. We can substitute in for x in any of these (and in the last case, find the
new interval of convergence).

2. We can integrate and differentiate and get a new Taylor series with the

same interval of convergence.

Some notable examples include (each of the series below have an interval of
convergence of —1 <z < 1):
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