Taylor Polynomials Overview

We found that we can approximate functions $f(x)$ with polynomials based at $x=b$ in the following way.

$$
\begin{aligned}
& T_{1}(x)=\sum_{k=0}^{1} \frac{f^{(k)}(b)}{k!}(x-b)^{k}=f(b)+f^{\prime}(b)(x-b) \\
& T_{2}(x)=\sum_{k=0}^{2} \frac{f^{(k)}(b)}{k!}(x-b)^{k}=f(b)+f^{\prime}(b)(x-b)+\frac{f^{\prime \prime}(b)}{2!}(x-b)^{2} \\
& T_{3}(x)=\sum_{k=0}^{3} \frac{f^{(k)}(b)}{k!}(x-b)^{k}=f(b)+\cdots+\frac{f^{\prime \prime \prime}(b)}{3!}(x-b)^{3} \\
& T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(b)}{k!}(x-b)^{k}=f(b)+\cdots+\frac{f^{(n)}(b)}{n!}(x-b)^{n}
\end{aligned}
$$

Taylor inequalities

And we found that we can get a bound on the error in the following way.
$\operatorname{ERROR}=\left|f(x)-T_{1}(x)\right| \leq \frac{M}{2!}|x-b|^{2} \quad$, where $\left|f^{\prime \prime}(x)\right| \leq M$.
$\operatorname{ERROR}=\left|f(x)-T_{2}(x)\right| \leq \frac{M}{3!}|x-b|^{3} \quad$, where $\left|f^{\prime \prime \prime}(x)\right| \leq M$.
$\mathrm{ERROR}=\left|f(x)-T_{3}(x)\right| \leq \frac{M}{4!}|x-b|^{4} \quad \quad$, where $\left|f^{(4)}(x)\right| \leq M$.
$\mathrm{ERROR}=\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{n+1} \quad$, where $\left|f^{(n+1)}(x)\right| \leq M$.
We asked the following error questions:

1. Given a fixed n and a fixed interval, find the error bound.
2. Given a fixed n and an error, find an interval with an error bound less than the given error.
3. Given a fixed interval and an error, find a number n with an error bound less than the given error.

Taylor Series Overview

Then we started looking for patterns in the Taylor series for some of our standard functions. We found:

$$
\begin{array}{lll}
e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k} & =1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots & , \text { for all } x . \\
\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} & =x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\cdots & , \text { for all } x . \\
\cos (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k} & =1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}+\cdots & , \text { for all } x . \\
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} & =1+x+x^{2}+x^{3}+\cdots & , \text { for }-1<x<1 .
\end{array}
$$

We learned:

1. We can substitute in for x in any of these (and in the last case, find the new interval of convergence).
2. We can integrate and differentiate and get a new Taylor series with the same interval of convergence.

Some notable examples include (each of the series below have an interval of convergence of $-1<x<1$):

$$
\begin{array}{ll}
-\ln (1-x)=\int_{0}^{x} \frac{1}{1-t} d t=\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1} & =x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots \\
\tan ^{-1}(x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1} & =x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\cdots \\
\frac{1}{(1-x)^{2}}=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\sum_{k=0}^{\infty} k x^{k-1} & =1+2 x+3 x^{2}+4 x^{3}+\cdots . \\
\frac{2}{(1-x)^{3}}=\frac{d}{d x}\left(\frac{1}{(1-x)^{2}}\right)=\sum_{k=0}^{\infty} k(k-1) x^{k-2} & =2+2 \cdot 3 x+3 \cdot 4 x^{2}+\cdots .
\end{array}
$$

