Local Max/Min for One Variable Function

A critical value is any number $x=c$ such that $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

The Second Derivative Test:
If $x=c$ is a critical value, then

1. $f^{\prime \prime}(c)>0 \Rightarrow x=c$ gives a local min.
2. $f^{\prime \prime}(c)<0 \Rightarrow x=c$ gives a local max.
3. $f^{\prime \prime}(c)=0 \Rightarrow$ inconclusive (other methods needed).

Local Max/Min for Two Variable Function

A critical point is any point $(x, y)=(a, b)$ such that $f_{x}(a, b)=0$ AND $f_{y}(a, b)=0$ (both) or $f_{x}(a, b)$ DNE or $f_{y}(a, b)$ DNE.

The Second Derivative Test:

If (a, b) is a critical point, then define

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

1. $D>0, f_{x x}>0 \Rightarrow(a, b)$ gives a local min.
2. $D>0, f_{x x}<0 \Rightarrow(a, b)$ gives a local max.
3. $D<0 \Rightarrow(a, b)$ gives a saddle point.
4. $D=0 \Rightarrow$ inconclusive (use a contour map).

Global Max/Min for One Variable Function

To find abs. max/min of $f(x)$ on a closed interval:

1. Find critical numbers.
2. Evaluate $f(x)$ at the critical numbers.
3. Evaluate $f(x)$ at the endpoints.

Biggest output $=$ absolute max.
Smallest output $=$ absolute \min.

Global Max/Min for Two Variable Function

To find abs. max/min of $f(x, y)$ on a closed region:

1. Find critical points.
2. Over each boundary curve:
(a) Find $x y$ equation.
(b) Substitute boundary equation into $f(x, y)$ to get a one variable function for z.
(c) Use Calculus 1 methods to find critical numbers and endpoints on that boundary.
3. Evaluate $f(x, y)$ at the critical points inside the region.
4. Evaluate $f(x, y)$ at the critical numbers and endpoints on each boundary.
Biggest output $=$ absolute max. Smallest output $=$ absolute \min.

Applied Optimization for single or multivariable fucntions

In applied problems, we have to set up the function to optimize. Here are things I always suggest:

1. VISUALIZE/LABEL: Draw a good picture and label everything with variables.
2. WHAT IS GIVEN?: Write down all the given constraints.
3. WHAT TO OPTIMIZE?: Write down a formula for that quantity. Then, using the given facts, find a function for the quantity that you want to optimize.
4. DOMAIN? Over what interval does the problem make sense
5. USE CALCULUS: Find the methods just discussed.
6. JUSTIFY/VERIFY: Make sure you actually did find the a max or min as desired.
