Math 126 Spring 2010 Work with projections, dot products, and cross-products.

1. Decide for each expression below whether it is a vector (\mathbf{V}) , a scalar (\mathbf{S}) , or nonsense (\mathbf{N}) . Note that $\mathbf{a}, \mathbf{b}, \mathbf{u}$, and \mathbf{v} are vectors, while c and d are scalars.

		Circle one:		
(a)	$\mathbf{a} \cdot (\mathbf{u} - c\mathbf{v})$	\mathbf{V}	\mathbf{S}	Ν
(b)	$\mathbf{a} \cdot (\mathbf{b} + c)$	\mathbf{V}	\mathbf{S}	Ν
(c)	$(c+d)\cdot \mathbf{a}$	\mathbf{V}	\mathbf{S}	Ν
(d)	uv	\mathbf{V}	\mathbf{S}	Ν
(e)	$\frac{\mathbf{a}}{c}$	\mathbf{V}	\mathbf{S}	\mathbf{N}
(f)	$\frac{c}{\mathbf{a}}$	V	\mathbf{S}	\mathbf{N}
(g)	$(\mathbf{a}\cdot\mathbf{b})\times\mathbf{u}$	\mathbf{V}	\mathbf{S}	Ν
(h)	$\mathbf{a}\times (\mathbf{b}\times \mathbf{u})$	\mathbf{V}	\mathbf{S}	Ν
(i)	$\mathbf{a}\cdot (\mathbf{b}\times \mathbf{u})$	\mathbf{V}	\mathbf{S}	Ν
(j)	$(c\mathbf{a}) \times \mathbf{b}$	\mathbf{V}	\mathbf{S}	Ν
(k)	$c(\mathbf{a}\cdot\mathbf{b})(\mathbf{u}\times\mathbf{v})$	\mathbf{V}	\mathbf{S}	Ν

- 2. Determine whether each of the following is true or false. If it is true, prove it. If it is false, give a counterexample. Note that \mathbf{a} and \mathbf{b} are vectors and c is a scalar.
 - (a) Suppose $\mathbf{a} \cdot \mathbf{b} = \mathbf{0}$. Then it must be true that at least one of \mathbf{a} or \mathbf{b} must be the zero vector.
 - (b) Suppose $c\mathbf{a} = \mathbf{0}$. Then it must be true that either c = 0 or $\mathbf{a} = \mathbf{0}$ (or both).
- 3. Suppose that **a** and **b** are nonzero vectors.
 - (a) Show by examples that $comp_{\mathbf{a}}\mathbf{b}$ and $comp_{\mathbf{b}}\mathbf{a}$ can be the same and can be different. What conditions on \mathbf{a} and \mathbf{b} will guarantee they are the same?
 - (b) Your friend who skips class frequently says, "I'm confused. Isn't $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$? If that is true, how can comp_{**a**} \mathbf{b} and comp_{**b**} \mathbf{a} be different?" What is your answer?
 - (c) Show by examples that $\text{proj}_{\mathbf{a}}\mathbf{b}$ and $\text{proj}_{\mathbf{b}}\mathbf{a}$ can be the same and can be different. What conditions on \mathbf{a} and \mathbf{b} will guarantee they are the same?