Math 126 Spring 2010
Work with projections, dot products, and cross-products.

1. Decide for each expression below whether it is a vector (\mathbf{V}), a scalar (\mathbf{S}), or nonsense (\mathbf{N}). Note that $\mathbf{a}, \mathbf{b}, \mathbf{u}$, and \mathbf{v} are vectors, while c and d are scalars.

Circle one:
(a) $\mathbf{a} \cdot(\mathbf{u}-c \mathbf{v}) \quad \mathbf{V} \quad \mathbf{S} \quad \mathbf{N}$
(b) $\begin{array}{llll}\mathbf{a} \cdot(\mathbf{b}+c) & \mathbf{V} & \mathbf{S} & \mathbf{N}\end{array}$
(c) $\quad(c+d) \cdot \mathbf{a} \quad \mathbf{V} \quad \mathbf{S} \quad \mathbf{N}$
(d) uv \quad V $\quad \mathbf{S} \quad \mathbf{N}$
$\begin{array}{lllll}\text { (e) } & \frac{a}{c} & \mathbf{V} & \mathbf{S} & \mathbf{N}\end{array}$
$\begin{array}{lllll}\text { (f) } & \frac{c}{\mathbf{a}} & \mathbf{V} & \mathrm{~S} & \mathbf{N}\end{array}$
(g) $\quad(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{u} \quad \mathbf{V} \quad \mathbf{S} \quad \mathbf{N}$
(h) $\begin{array}{llll}\mathbf{a} \times(\mathbf{b} \times \mathbf{u}) & \mathbf{V} & \mathbf{S} & \mathbf{N}\end{array}$
(i) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{u}) \quad \mathbf{V} \quad \mathbf{S} \quad \mathbf{N}$
(j) $\quad(c \mathbf{a}) \times \mathbf{b} \quad \mathbf{V} \quad \mathbf{S} \quad \mathbf{N}$
(k) $c(\mathbf{a} \cdot \mathbf{b})(\mathbf{u} \times \mathbf{v}) \quad \mathbf{V} \quad \mathbf{S} \quad \mathbf{N}$
2. Determine whether each of the following is true or false. If it is true, prove it. If it is false, give a counterexample. Note that \mathbf{a} and \mathbf{b} are vectors and c is a scalar.
(a) Suppose $\mathbf{a} \cdot \mathbf{b}=\mathbf{0}$. Then it must be true that at least one of \mathbf{a} or \mathbf{b} must be the zero vector.
(b) Suppose $c \mathbf{a}=\mathbf{0}$. Then it must be true that either $c=0$ or $\mathbf{a}=\mathbf{0}$ (or both).
3. Suppose that \mathbf{a} and \mathbf{b} are nonzero vectors.
(a) Show by examples that $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$ and $\operatorname{comp}_{\mathbf{b}} \mathbf{a}$ can be the same and can be different. What conditions on \mathbf{a} and \mathbf{b} will guarantee they are the same?
(b) Your friend who skips class frequently says, "I'm confused. Isn't $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$? If that is true, how can $c^{2} p_{\mathbf{a}} \mathbf{b}$ and comp $_{\mathbf{b}} \mathbf{a}$ be different?" What is your answer?
(c) Show by examples that $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ and $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$ can be the same and can be different. What conditions on \mathbf{a} and \mathbf{b} will guarantee they are the same?

