Practice Finding Planes and Lines in \mathbf{R}^{3}

Here are several main types of problems you find in 12.5 and old exams pertaining to finding lines and planes:

LINES

1. Find an equation for the line that goes through the two points $A(1,0,-2)$ and $B(4,-2,3)$.
2. Find an equation for the line that is parallel to the line $x=3-t, y=6 t, z=7 t+2$ and goes through the point $P(0,1,2)$.
3. Find an equation for the line that is orthogonal to the plane $3 x-y+2 z=10$ and goes through the point $P(1,4,-2)$.
4. Find an equation for the line of intersection of the plane $5 x+y+z=4$ and $10 x+y-z=6$.

PLANES

1. Find the equation of the plane that goes through the three points $A(0,3,4), B(1,2,0)$, and $C(-1,6,4)$.
2. Find the equation of the plane that is orthogonal to the line $x=4+t, y=1-2 t, z=8 t$ and goes through the point $P(3,2,1)$.
3. Find the equation of the plane that is parallel to the plane $5 x-3 y+2 z=6$ and goes through the point $P(4,-1,2)$.
4. Find the equation of the plane that contains the intersecting lines $x=4+t_{1}, y=2 t_{1}, z=1-3 t_{1}$ and $x=4-3 t_{2}, y=3 t_{2}, z=1+2 t_{2}$.
5. Find the equation of the plane that is orthogonal to the plane $3 x+2 y-z=4$ and goes through the points $P(1,2,4)$ and $Q(-1,3,2)$.

LINES/PLANES/SPHERES AND INTERSECTIONS:

1. Find the intersection of the line $x=3 t, y=1+2 t, z=2-t$ and the plane $2 x+3 y-z=4$.
2. Find the intersection of the two lines $x=1+2 t_{1}, y=3 t_{1}, z=5 t_{1}$ and $x=6-t_{2}, y=2+4 t_{2}$, $z=3+7 t_{2}$ (or explain why they don't intersect).
3. Find the intersection of the line $x=2 t, y=3 t, z=-2 t$ and the sphere $x^{2}+y^{2}+z^{2}=16$.
4. Find the intersection of the plane $3 y+z=0$ and the sphere $x^{2}+y^{2}+z^{2}=4$.

LINES (Solutions)

1. (a) A position vector: $\mathbf{r}_{0}=\langle 1,0,-2\rangle$
(b) A direction vector: $\mathbf{v}=\langle 4-1,-2-0,3-(-2)\rangle=\langle 3,-2,5\rangle$
(c) Equation: $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$ which gives $x=1+3 t, y=0-2 t, z=-2+5 t$.
2. (a) A position vector: $\mathbf{r}_{0}=\langle 0,1,2\rangle$
(b) A direction vector: $\mathbf{v}=\langle-1,6,7\rangle$ (Parallel to the other line, so we can use the same direction vector).
(c) Equation: $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$ which gives $x=0-t, y=1+6 t, z=2+7 t$.
3. (a) A position vector: $\mathbf{r}_{0}=\langle 1,4,-2\rangle$
(b) A direction vector: $\mathbf{v}=\langle 3,-1,2\rangle$ (Orthogonal to the plane, so we can use the normal from the plane).
(c) Equation: $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$ which gives $x=1+3 t, y=4-t, z=-2+2 t$.
4. Solution Method 1: Find two points of intersection. There are many point we just need to find two.
(a) First let's combine and simplify. Adding the equations gives $15 x+2 y=10$
(b) Pick some numbers.

- If $x=0$, then we get $2 y=10$, so $y=5$. And going back to the original equations and plugging in (to either one) we get $0+5+z=4$, so $z=-1$. Hence, $(0,5,-1)$ is a point on the line we desire.
- If $y=0$, then we get $15 x=10$, so $x=2 / 3$. And going back to the original equation we get $5(2 / 3)+0+z=4$, so $z=4-10 / 3=2 / 3$. Thus another point is $(2 / 3,0,2 / 3)$.
You can check that these points work in both equations. Now we can use the standard line method.
(c) A position vector: $\mathbf{r}_{0}=\langle 0,5,-1\rangle$
(d) A direction vector: $\mathbf{v}=\langle 2 / 3-0,0-5,2 / 3-(-1)\rangle=\langle 2 / 3,-5,5 / 3\rangle$.
(e) Equation: $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$ which gives $x=0+2 / 3 t, y=5-5 t, z=-1+5 / 3 t$.

Solution Method 2: Find one point of intersection then use the cross-produce of the normal for the direction.
(a) For this method you still have to find one point of intersection. So for example $(0,5,-1)$ as we did above.
(b) The cross product of the normals for each plane will give a vector that is parallel to the line (picture it). So this is another way to get a direction vector. That would give $\langle 5,1,1\rangle \times$ $\langle 10,1,-1\rangle=\langle-1-1,-(-5-10), 5-10\rangle=\langle-2,15,-5\rangle$.
(c) A position vector: $\mathbf{r}_{0}=\langle 0,5,-1\rangle$
(d) A direction vector: $\mathbf{v}=\langle-2,15,-5\rangle$. (Note this is parallel to the direction vector we got with method 1).
(e) Equation: $\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}$ which gives $x=0-2 t, y=5+15 t, z=-1-5 t$. Remember you and your classmate may have different parameterizations and both be correct. But your direction vectors should be parallel.

PLANES (Solutions)

1. (a) A position vector: $\mathbf{r}_{0}=\langle 0,3,4\rangle$
(b) A normal vector: $\mathbf{A B}=\langle 1,-1,-4\rangle$ and $\mathbf{A C}=\langle-1,3,0\rangle$, so one normal vector is $\mathbf{n}=$ $\langle 1,-1,-4\rangle \times\langle-1,3,0\rangle=\langle 12,4,2\rangle$
(c) Equation: $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ which gives $12(x-0)+4(y-3)+2(z-4)=0$, or more simply $12 x+4 y+2 z-20=0$.
2. (a) A position vector: $\mathbf{r}_{0}=\langle 3,2,1\rangle$
(b) A normal vector: $\mathbf{n}=\langle 1,-2,8\rangle$ (Orthogonal to the line, so the direction vector for the line is a normal to the plane).
(c) Equation: $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ which gives $(x-3)-2(y-2)+8(z-1)=0$, or more simply $x-2 y+8 z-7=0$.
3. (a) A position vector: $\mathbf{r}_{0}=\langle 4,-1,2\rangle$
(b) A normal vector: $\mathbf{n}=\langle 5,-3,2\rangle$ (Parallel to the other plane, so same normal works).
(c) Equation: $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ which gives $5(x-4)-3(y+1)+2(z-2)=0$, or more simply $5 x-3 y+2 z-27=0$.
4. Note that the lines intersect at $t_{1}=0$ and $t_{2}=0$, which gives the point $P(4,0,1)$. We can quickly find three points by also plugging in $t_{1}=1$ and $t_{2}=1$ which gives $Q(5,2,-2)$ and $R(1,3,3)$. So we have three points. Note also that $\mathbf{P Q}=\langle 1,2,-3\rangle$ and $\mathbf{P R}=\langle-3,3,2\rangle$ (so I really didn't have to find Q and R I could have just grabbed the direction vectors from the lines).
(a) A position vector: $\mathbf{r}_{0}=\langle 4,0,1\rangle$
(b) A normal vector: $\mathbf{n}=\langle 1,2,-3\rangle \times\langle-3,3,2\rangle=\langle 13,7,9\rangle$.
(c) Equation: $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ which gives $13(x-4)+7(y+0)+9(z-1)=0$, or more simply $13 x+7 y+9 z-61=0$.
5. You have two vectors parallel to the plane. One is $\mathbf{P Q}=\langle-2,1,-2\rangle$ and the other is the normal from the given plane which is $\langle 3,2,-1\rangle$.
(a) A position vector: $\mathbf{r}_{0}=\langle 1,2,4\rangle$
(b) A normal vector: $\mathbf{n}=\langle-2,1,-2\rangle \times\langle 3,2,-1\rangle=\langle 3,-8,-7\rangle$.
(c) Equation: $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ which gives $3(x-1)-8(y-2)-7(z-4)=0$, or more simply $3 x-8 y-7 z+41=0$.

LINES/PLANES/SPHERES AND INTERSECTIONS (Solutions):

1. (a) Combine and find $t: 2(3 t)+3(1+2 t)-(2-t)=4$ gives $6 t+3+6 t-2+t=4$, so $13 t=3$ and $t=3 / 13$.
(b) Get the point: Thus, $x=9 / 13, y=1+6 / 13=29 / 13$, and $z=2-3 / 13=23 / 13$.
2. (a) Combine and find t_{1} and t_{2} :
i. $1+2 t_{1}=6-t_{2}$ implies that $t_{2}=5-2 t_{1}$.
ii. $3 t_{1}=2+4 t_{2}$ combined with the fact just obtained gives $3 t_{1}=2+4\left(5-2 t_{1}\right)$ which gives $3 t_{1}=22-8 t_{1}$, so $11 t_{1}=22$
Hence, $t_{1}=2$ and going back, we also get $t_{2}=1$. Thus, the only parameters that simultaneously work to equate x and y are $t_{1}=2$ and $t_{2}=1$. Now we check the third equation.
iii. $5 t_{1}=3+7 t_{2}$. Plugging in $t_{1}=2$ and $t_{2}=1$ we get $10=3+7$, it works!
(b) Get the point: Thus, $x=5, y=6$, and $z=10$ is the point where the two lines intersect.
3. (a) Combine and find t : $(2 t)^{2}+(3 t)^{2}+(-2 t)^{2}=16$ gives $4 t^{2}+9 t^{2}+4 t^{2}=16$, so $17 t^{2}=16$ and $t= \pm \sqrt{16 / 17}= \pm 4 / \sqrt{17}$.
(b) Get the points: Thus, the two points of intersection are $(8 / \sqrt{17}, 12 / \sqrt{17},-8 / \sqrt{17})$ and $(-8 / \sqrt{17},-12 / \sqrt{17}, 8 / \sqrt{17})$.
4. (a) Combine Since $z=-3 y$ we get $x^{2}+y^{2}+(-3 y)^{2}=4$ which gives $x^{2}+10 y^{2}=4$.
(b) What is this: So every point that satisfies $x^{2}+10 y^{2}=4$ with $z=-3 y$ is a point of intersection. That is really the best we can do. (In terms of looking from above, meaning the projection onto the $x y$-plane, $x^{2}+10 y^{2}=4$ would look like an ellipse. Also, $z=-3 y$ is a plane through the origin and if you visualize the intersection you will see that it is just a great circle of the sphere). In any case, the point is that the intersection of two surfaces is typically a curve in two dimensions, not just a point.
