12.6: Basic 3D Surfaces

Goal: Learn the names of 7 basic 3D surfaces.
Cylinders: If one variable is absent in an equation for a surface, then the graph is really a 2D curve extended into 3D. In these cases we say the shape is a "BLAH" cylinders, where BLAH is the name of the 2D shape. Examples:

1. $x^{2}+y^{2}=1$ in \mathbf{R}^{3} is a circular cylinder (around the z-axis).
2. $z=\cos (x)$ in \mathbf{R}^{3} is a cosine wave cylinder.

Quadric Surfaces:

These are polynomial equations that involve x, y, and z raised to first and second powers.

Before we can study quadric surfaces, we must know the names of 3 basic 2D curves:

Parabolas: $\quad y=a x^{2}+b$.
Ellipses/Circles: $a x^{2}+b y^{2}=c(a, b, c$ all positive $)$
Hyperbolas: $\quad a x^{2}-b y^{2}=c(a, b$ are positive $)$

Traces:

Next we need to understand the method of traces. A trace of a 3-dimensional curve is a 2-dimensional curve where one of the variables if fixed. If you draw and label several traces, then you get a contour map (also called an elevation map or a graph of level curves). As I talk about surfaces this quarter, we will often talk about traces.

Assume all constant labels are positive:

Equation
$a z=b x^{2}+c y^{2}$
$a z=b x^{2}-c y^{2}$
$a x^{2}+b y^{2}+c z^{2}=d \quad$ ell./ell./ell.
$a x^{2}+b y^{2}-c z^{2}=d \quad$ hyp./hyp./ellipse
$a x^{2}+b y^{2}-c z^{2}=0 \quad$ line-hyp./line-hyp./ell.
$a x^{2}+b y^{2}-c z^{2}=-d$ hyp./hyp./nothing-ell.
Equation
$a z=b x^{2}+c y^{2}$
$a z=b x^{2}-c y^{2}$
$a x^{2}+b y^{2}+c z^{2}=d$
$a x^{2}+b y^{2}-c z^{2}=d$
$a x^{2}+b y^{2}-c z^{2}=0$
$a x^{2}+b y^{2}-c z^{2}=-d$ Hyperboloid of Two Shts.

