Problem 1. (a) $\nabla f=\left(\cos \pi y,-\pi x \sin \pi y+e^{z}, y e^{z}\right)$, so $\nabla f(2,3,1)=-\mathbf{i}+e \mathbf{j}+3 e \mathbf{k}$.
(b) Let \mathbf{w} be the vector from $(2,3,1)$ to $(5,3,5)$. Then $\mathbf{r}^{\prime}(0)=2 \frac{\mathbf{w}}{|\mathbf{w}|}=2 \frac{(3,0,4)}{\sqrt{9+0+16}}=\left(\frac{6}{5}, 0, \frac{8}{5}\right)$,
so

$$
\frac{d}{d t} f(\mathbf{r}(t))=\nabla f \cdot \mathbf{r}^{\prime}(0)=(-1, e, 3 e) \cdot\left(\frac{6}{5}, 0, \frac{8}{5}\right)=\frac{24 e-6}{5}
$$

Problem 2. Let C_{1} and C_{2} be the two line segments.
Parametrize: $C_{1}, \mathbf{r}(t)=(t, t, t)$ for $0 \leq t \leq 1$, and $C_{2}, \mathbf{r}(t)=(1,1-t, 1)$ for $0 \leq t \leq 1$.

$$
\operatorname{mass}=\int_{C}(2-z) d s=\int_{C_{1}}(2-t) \sqrt{1+1+1} d t+\int_{C_{2}}(2-1) \sqrt{0+1+0} d t=\ldots=\sqrt{3} \frac{3}{2}+1
$$

Problem 3. (a) The components $P=x^{3}-2 x y^{3}$ and $Q=-3 x^{2} y^{2}$ are defined and continuously differentiable everywhere on the $x y$-plane, which is simply connected (has "no holes"). So \mathbf{F} will be conservative if $\partial P / \partial y=\partial Q / \partial x$. Both these partials are $-6 x y^{2}$, so \mathbf{F} is conservative.
(b) If f is a potential for \mathbf{F}, then $\frac{\partial f}{\partial x}=P=x^{3}-2 x y^{3}$. Integrating with respect to x, $f(x, y)=\frac{x^{4}}{4}-x^{2} y^{3}+g(y)$. Then computing $\frac{\partial f}{\partial y}$ from this and setting it equal to $Q=-3 x^{2} y^{2}$, we get $\frac{\partial f}{\partial y}=-3 x^{2} y^{2}+g^{\prime}(y)=-3 x^{2} y^{2}$. Thus $g(y)$ is constant, and $f(x, y)=\frac{x^{4}}{4}-x^{2} y^{3}$ is a potential for \mathbf{F}. (One potential function suffices as an answer, but more generally, $f(x, y)=\frac{x^{4}}{4}-x^{2} y^{3}+k$ for any constant k is also a potential for \mathbf{F}.)
(c) Let C be the given parametrized curve, $\mathbf{r}=\left(\cos ^{3} t, \sin ^{3} t\right)$. Because we know a potential for \mathbf{F} from (b), we can use the Fundamental Theorem for Line Integrals and compute

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(\mathbf{r}(\pi / 2))-f(\mathbf{r}(0))=f(0,1)-f(1,0)=(0-0)-\left(\frac{1}{4}-0\right)=-\frac{1}{4}
$$

Problem 4. (a) Idea: The equation for the plane, $y+z=5$, will give me the formula for z if I have one for y (or vice versa). So I should pick formulas for x and y that make sense for the cylinder, going completely around it; for instance, $x(t)=3 \cos t$ and $y(t)=3 \sin t$. Thus $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t, 5-3 \sin t\rangle$ for $0 \leq t \leq 2 \pi$ will work.
(b) $\mathbf{r}^{\prime}(t)=\langle-3 \sin t, 3 \cos t,-3 \cos t\rangle$

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2 \pi}\langle 3 \cos t, 6 \sin t,-4\rangle \cdot\langle-3 \sin t, 3 \cos t,-3 \cos t\rangle d t \\
& =\int_{0}^{2 \pi}(-9 \cos t \sin t+18 \cos t \sin t+12 \cos t) d t \\
& =\int_{0}^{2 \pi}(9 \cos t \sin t+12 \cos t) d t=\frac{9}{2} \sin ^{2} t-\left.12 \sin t\right|_{0} ^{2 \pi}=0
\end{aligned}
$$

(If I hadn't said "Use your parametrization to compute," what other way might you have done this integral?)

