Math 324B FIRST PRACTICE EXAM SOLUTIONS

1. (a) The line and the parabola intersect where $3 x+4=4-x^{2}$, i.e., $x=-3$ and $x=0$, where $y=-5$ and $y=4$ respectively. So

$$
\iint_{D} 2 x d A=\int_{-3}^{0} \int_{3 x+4}^{4-x^{2}} 2 x d y d x=\int_{-5}^{4} \int_{-\sqrt{4-y}}^{(y-4) / 3} 2 x d x d y
$$

The first way gives $\int_{-3}^{0} 2 x\left(-x^{2}-3 x\right) d x=\left[-\frac{1}{2} x^{4}-2 x^{3}\right]_{-3}^{0}=-\frac{27}{2}$, and the second way gives $\int_{-5}^{4}\left[\left(\frac{1}{3}(y-4)\right)^{2}-(4-y)\right] d y=\left[\frac{1}{27}(y-4)^{3}+\frac{1}{2}(y-4)^{2}\right]_{-5}^{4}=-\frac{27}{2}$.
2. For $d z d y d x$, the base of the solid is the triangle in the $x y$-plane bounded by the coordinate axes and the line $3 x+2 y=6$, so

$$
\iiint_{E} f(x, y, z) d V=\int_{0}^{2} \int_{0}^{(6-3 x) / 2} \int_{0}^{6-3 x-2 y} f(x, y, z) d z d y d x
$$

For $d y d x d z$, the base of the solid in the $x z$-plane is the triangle bounded by the coordinate axes and the line $3 x+z=6$, so

$$
\iiint_{E} f(x, y, z) d V=\int_{0}^{6} \int_{0}^{(6-z) / 3} \int_{0}^{(6-3 x-z) / 2} f(x, y, z) d y d x d z
$$

For $d x d z d y$, the base of the solid in the $y z$-plane is the triangle bounded by the coordinate axes and the line $2 y+z=6$, so

$$
\iiint_{E} f(x, y, z) d V=\int_{0}^{3} \int_{0}^{6-2 y} \int_{0}^{(6-2 y-z) / 3} f(x, y, z) d x d z d y
$$

3. The line $y=x / \sqrt{3}$ in the first quadrant is given by $\theta=\pi / 6$ in polar coordinates, and the positive y-axis is given by $\theta=\pi / 2$, so the integral is

$$
\int_{\pi / 6}^{\pi / 2} \int_{0}^{1} e^{-r^{2}} r d r d \theta=\frac{\pi}{3}\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{1}=\frac{\pi}{6}\left(1-e^{-1}\right)
$$

4. In cylindrical coordinates the paraboloid is $z=r^{2}$, so

$$
m=\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{2}}^{4}(8-2 z) r d z d r d \theta=2 \pi \int_{0}^{2}\left[8 z-z^{2}\right]_{r^{2}}^{4} r d r=2 \pi \int_{0}^{2}\left(r^{5}-8 r^{3}+16 r\right) d r=\frac{64 \pi}{3}
$$

5. (a) The limits of integration are $1 \leq \rho \leq 2,0 \leq \phi \leq \frac{1}{2} \pi, 0 \leq \theta \leq \frac{1}{2} \pi$. (b) The mass is $\frac{1}{8}$ of the volume of the outer sphere minus the volume of the inner sphere, i.e., $\frac{1}{8} \cdot \frac{4 \pi}{3}\left(2^{3}-1^{3}\right)=\frac{7 \pi}{6}$. Also, $\bar{x}=\bar{y}=\bar{z}$ because E is symmetric under any permutation of the coordinates (i.e., its description doesn't change if you interchange the labels x, y, and z). The easiest one to compute in spherical coordinates is \bar{z} :
$\bar{z}=\frac{1}{m} \iiint z d V=\frac{6}{7 \pi} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{2} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta=\frac{6}{7 \pi}[\theta]_{0}^{\pi / 2}\left[\frac{1}{2} \sin ^{2} \phi\right]_{0}^{\pi / 2}\left[\frac{1}{4} \rho^{4}\right]_{1}^{2}$
which equals $\frac{45}{56}$, so the center of mass is $\left(\frac{45}{56}, \frac{45}{56}, \frac{45}{56}\right)$.
6. (a) Clearly $x+y=u$, so $v=y / u=y /(x+y)$. The boundary of R consists of pieces of the lines $x+y=1, x+y=3, y=0$, and $x=0$. These correspond to the lines $u=1$, $u=3, v=0$, and $v=1$, so R corresponds to the rectangle $1 \leq u \leq 3,0 \leq v \leq 1$. (b) In terms of u and v the integrand $1 /(x+y)^{2}$ is $1 / u^{2}$, and

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{cc}
1-v & -u \\
v & u
\end{array}\right)=(1-v) u+v u=u
$$

so the integral becomes $\int_{0}^{1} \int_{1}^{3}\left(1 / u^{2}\right) u d u d v=\int_{0}^{1} \int_{1}^{3}(1 / u) d u d v=\ln 3$.

