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1. (4 points) Let f = x + xy + y, and let C be the curve below, with endpoints (4, 0) and
(5, 3), and oriented in the clockwise-ish direction.
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Determine
∫
C

∇f · dr.

Solution: Using the fundamental theorem of  line integrals: f(5, 3)− f(4, 0) = 19.

2. (10 points) Let C1 be the spiral parametrized by r(t) = ⟨cos t, sin t, t⟩, 0 ≤ t ≤ 6π. Let C2

be the line segment from (1, 0, 6π) to (1, 0, 0). Let C be C1 followed by C2. Determine∫
C

⟨
−y

x2 + y2
,

x

x2 + y2
, z

⟩
· dr.

Solution: The integral over C1 is∫ 6π

0

⟨− sin t, cos t, t⟩ · ⟨− sin t cos t, 1⟩ dt =
∫ 6π

0

1 + t dt = 6π + 18π2.

For C2 we have r(t) = ⟨1, 0, t⟩ with t from 6π to 0. So we have∫ 0

6π

⟨0, 1, t⟩ · ⟨0, 0, 1⟩ dt =
∫ 0

6π

t dt = −18π2.

Adding the two, we get 6π for our final answer.
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3. (10 points) Let C be the path that goes in a straight line from (1, 0, 0) to (0,−1, 0) to
(0, 0, 1) and back to (1, 0, 0). Use Stokes’ Theorem to set up a double integral that
computes ∫

C

⟨xyz, x+ y, x+ z⟩ · dr.

Do not evaluate. Your answer should have two variables only and no vectors, looking
something like this:

∫ __
__

∫ __
__ ____ dx dy.

Solution: If F is the vector field in the integral, then curlF = ⟨0, xy − 1, 1− xz⟩. To
use Stokes’ Theorem, we need to parametrize the triangular surface T , which is part
of  the plane x−y+z = 1. We do this with r(x, y) = ⟨x, y, 1− x+ y⟩ for (x, y) in the
triangle D with vertices (1, 0), (0,−1), and (0, 0). We calculate rx × ry = ⟨1,−1, 1⟩.
The integral is∫∫

T

curlF · dS =

∫∫
D

⟨0, xy − 1, 1− x(1− x+ y)⟩ · ⟨1,−1, 1⟩ dA

=

∫ 1

0

∫ 0

x−1

(
2− 2xy + x2 − x

)
dy dx.

Now we should worry about orientation. Looking down at the triangle from above,
we see that the line integral is going clockwise around the triangle, which means we
need the normal vector to point down so that it satisfies the right-hand rule. Our
normal vector pointed up, which means the correct answer is negative of  what we
have above.

4. (10 points) Let E be the region above the plane y+ z = −6, below the plane x+ z = 6,
and inside the cylinder x2 + y2 = 9. Let S be the boundary of E (the sides of  the
cylinder + the ellipse at the top + the ellipse at the bottom) with the positive (outward)
orientation. Calculate ∫∫

S

⟨
x3, z3, 3y2z

⟩
· dS.

Solution: If F is the vector field in the integrand, then divF = 3(x2 + y2). By the
Divergence Theorem, the integral is equal to∫∫∫

E

3(x2 + y2) dV =

∫ 2π

0

∫ 3

0

∫ 6−r cos θ

−6−r sin θ

3r3 dz dr dθ

=

∫ 2π

0

∫ 3

0

3r3(12 + r sin θ − r cos θ) dr dθ

=
35

4
(24π) = (2π)(36) or 1458π.
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5. Let F =
⟨x, y, z⟩

(x2 + y2 + z2)3/2
, the vector field from the take home problem.

(a) (3 points) Use the Divergence Theorem to explain why
∫∫

S
F · dS = 0 if S is the

sphere of  radius 1 centered at (2, 2, 2).

Solution: Let E be the region enclosed by S. Note that it doesn’t contain the
origin, so divF = 0 at every point of E. So

∫∫
S
F · dS =

∫∫∫
E
divF dV = 0.

(b) (5 points) Find a function f defined everywhere except at the origin so that ∇f =
F, or explain why no such function exists.

Solution: f(x, y, z) = − 1

(x2 + y2 + z2)1/2

(c) (3 points) Explain why there is no vector field G such that F = curlG.

Solution: If  there were such a G, then for any surface S with boundary C, we
know by Stokes’ Theorem that∫∫

S

F · dS =

∫∫
S

curlG · dS =

∫
C

G · dr

But if S is a sphere centered at the origin, then since it has no boundary, this
integral would be 0. But we know it is not 0, because it is 4π.
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6. (15 points) [Take home problem] Let F =
⟨x, y, z⟩

(x2 + y2 + z2)3/2
.

(a) Calculate
∫∫

S
F · dS, where S is the sphere of  radius a centered at the origin.

Solution: Parametrize the sphere by r(ϕ, θ) = ⟨a cos θ sinϕ, a sin θ sinϕ, a cosϕ⟩.
Then

rϕ × rθ = a2⟨cos θ sin2 ϕ, sin θ sin2 ϕ, cosϕ sinϕ⟩

F =
a⟨cos θ sinϕ, sin θ sinϕ, cosϕ⟩

a3

When we dot these, we get sinϕ. Finally, we have
∫ 2π

0

∫ π

0

sinϕ dϕ dθ = 4π.

Another way (from Jebessa Dara’s solution) is to use
∫∫

S
F · dS =

∫∫
S
F · n dS.

The unit normal vector is ⟨x, y, z⟩ /a, which dots with F to give (x2 + y2 +
z2)/a4 = 1/a2. So the integral is∫

1

a2
dS =

1

a2
(surface area of S) = 4π.

(b) Find curlF and divF at every point except the origin.

Solution: curlF = 0 and divF = 0.

(c) Explain why your answer to Part (a) doesn’t depend on a.

Solution: If  you have a sphere S1 of  radius a1 and a larger sphere S2 of  radius
a2, then ∫∫

S2

F · dS−
∫∫

S1

F · dS =

∫∫∫
E

divF dV,

where E is the region between the two spheres. Since E does not contain the
origin, divF = 0 on all of E, so the triple integral is 0. This explains why the
two surface integrals are equal.

(d) Use Stokes’ Theorem to explain why line integrals of F are independent of  path.

Solution: Line integrals of F being path independent is the same as integrals of
F along closed loops being 0. If  you have an integral along a closed loop, make
a surface S that has the loop as its boundary and make sure that the surface
doesn’t go through the origin. Then by Stokes’ Theorem,∫

F · dr =
∫∫

S

curlF · dS = 0.


