Print your name:

This exam has 6 questions on 5 pages, worth a total of 50 points.

Problem	Points	Score
1	4	
2	6	
6	10	
4	10	
6	10	
6	10	
Total	50	

You should:

- write complete solutions or you may not receive credit.
- box your final answer.

You may:

- use one sheet of notes and a non-graphing calculator.
- write on the backs of the pages if you need more room.

Please do not:

- come to the front of the room to ask questions (raise your hand).
- share notes or calculators.
- use any electronic device other than a calculator.

Signature. Please sign below to indicate that you have not and will not give or receive any unauthorized assistance on this exam.

Signature: \qquad

1. (4 points) Suppose $f(x, y)=x^{2} y+y^{2}$, and $x=x(u, v)$ and $y=y(u, v)$ are functions of u and v, with

$$
x(1,2)=3 \quad \frac{\partial x}{\partial u}(1,2)=-1 \quad y(1,2)=1 \quad \frac{\partial y}{\partial u}(1,2)=2,
$$

Find $\frac{\partial f}{\partial u}$ when $u=1$ and $v=2$.
2. Let $g(x, y)=x \sin y$.
(a) (3 points) Determine the directional derivative $D_{\mathbf{u}} g(1,0)$ if $\mathbf{u}=\left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$.
(b) (3 points) Find a unit vector \mathbf{v} so that $D_{\mathbf{v}} g(1,0)<-\frac{3}{4}$.
3. (10 points) Let E be the solid bounded by the following four planes:

$$
x=0 \quad y=0 \quad z=0 \quad 2 x+2 y+z=4
$$

Find the x-coordinate of the center of mass if the solid has constant density.
4. Consider the region whose volume is naturally given by the integral

$$
\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} 1 d z d y d x
$$

(a) (5 points) Write an integral in cylindrical coordinates that computes the volume of the same region. Do not evaluate the integral.
(b) (5 points) Write an integral in spherical coordinates that computes the volume of the same region. Do not evaluate the integral.
5. (a) (8 points) Compute the integral

$$
\iiint_{R} y z^{2} d V
$$

where R is one of the four (you choose) regions bounded by the cylinder $x^{2}+y^{2}=1$ and the three planes $z=2 x, z=0$, and $y=0$, as shown below.

(b) (2 points) Now use symmetry to determine the value of the same integral over each of the 4 regions:

	$x \leq 0, z \leq 0$	$x \geq 0, z \geq 0$
$y \leq 0$		
$y \geq 0$		

6. (10 points) Compute the integral

$$
\int_{0}^{1} \int_{0}^{1-x} \exp \left(\frac{x-y}{x+y}\right) d y d x
$$

using the change of coordinates $u=x-y, v=x+y$. Note that exp is the exponential function: $\exp a=e^{a}$.

