1. (4 points) Suppose $f(x, y)=x^{2} y+y^{2}$, and $x=x(u, v)$ and $y=y(u, v)$ are functions of u and v, with

$$
x(1,2)=3 \quad \frac{\partial x}{\partial u}(1,2)=-1 \quad y(1,2)=1 \quad \frac{\partial y}{\partial u}(1,2)=2,
$$

Find $\frac{\partial f}{\partial u}$ when $u=1$ and $v=2$.

Solution:

$$
\frac{\partial f}{\partial u}(1,2)=\frac{\partial f}{\partial x}(3,1) \frac{\partial x}{\partial u}(1,2)+\frac{\partial f}{\partial y}(3,1) \frac{\partial y}{\partial u}(1,2)=-6+22=16 .
$$

2. Let $g(x, y)=x \sin y$.
(a) (3 points) Determine the directional derivative $D_{\mathbf{u}} g(1,0)$ if $\mathbf{u}=\left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$.

Solution: $\nabla f=(\sin y, x \cos y)=(0,1)$ when $x=1$ and $y=0$. The direction derivative is $(0,1) \cdot \mathbf{u}=2 / \sqrt{5}$.
(b) (3 points) Find a unit vector \mathbf{v} so that $D_{\mathbf{v}} g(1,0)<-\frac{3}{4}$.

Solution: The unit vector in the opposite direction of the gradient is $(0,-1)$ and makes the directional derivative as small as possible, so if anything is going to work, it will. Sure enough, $D_{(0,-1)} f(1,0)=-1$.
3. (10 points) Let E be the solid bounded by the following four planes:

$$
x=0 \quad y=0 \quad z=0 \quad 2 x+2 y+z=4
$$

Find the x-coordinate of the center of mass if the solid has constant density.

Solution: We calculate

$$
\bar{x}=\frac{\left(\int_{0}^{2} \int_{0}^{2-x} \int_{0}^{4-2 x-2 y} x d z d y d x\right)}{\left(\int_{0}^{2} \int_{0}^{2-x} \int_{0}^{4-2 x-2 y} d z d y d x\right)}=\frac{4 / 3}{8 / 3}=\frac{1}{2}
$$

4. Consider the region whose volume is naturally given by the integral

$$
\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} 1 d z d y d x
$$

(a) (5 points) Write an integral in cylindrical coordinates that computes the volume of the same region. Do not evaluate the integral.
Solution: This is half the space inside the cylinder $x^{2}+y^{2}=1$ and outside the cone $z^{2}=x^{2}+y^{2}$. In cylindrical coordinates, this is

$$
\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{r} r d z d r d \theta
$$

(b) (5 points) Write an integral in spherical coordinates that computes the volume of the same region. Do not evaluate the integral.

Solution: The equation of the cylinder is $\rho=1 / \sin \phi$, so we have

$$
\int_{0}^{\pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{1 / \sin \phi} \rho^{2} \sin \phi d \rho d \phi, d \theta
$$

5. (a) (8 points) Compute the integral

$$
\iiint_{R} y z^{2} d V
$$

where R is one of the four (you choose) regions bounded by the cylinder $x^{2}+y^{2}=1$ and the three planes $z=2 x, z=0$, and $y=0$.

Solution: This is best done using rectangular or cylindrical coordinates. I will do the piece in the first octant. We have

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{2 x} y z^{2} d z d y d x=\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{2 r \cos \theta} r^{2} z^{2} \sin \theta d z d r d \theta=\frac{1}{9}
$$

(b) (2 points) Now use symmetry to determine the value of the same integral over each of the 4 regions:
Solution: The regions are reflections of one another and the integrand is symmetric with respect to x and z. When y is negative, however, we will get the negative of our answer:

	$x \leq 0, z \leq 0$	$x \geq 0, z \geq 0$
$y \leq 0$	$-1 / 9$	$-1 / 9$
$y \geq 0$	$1 / 9$	$1 / 9$

6. (10 points) Compute the integral

$$
\int_{0}^{1} \int_{0}^{1-x} \exp \left(\frac{x-y}{x+y}\right) d y d x
$$

using the change of coordinates $u=x-y, v=x+y$.

Solution: Solving for x and y we get $x=\frac{1}{2}(u+v)$ and $y=\frac{1}{2}(v-u)$, so the Jacobian is $\frac{1}{2}$. Before changing coordinates, the domain of integration was a triangle with vertices $(0,0),(1,0)$, and $(0,1)$. Since the change of variables is linear, I know that the new domain of integration will also be a triangle, with vertices $(0,0),(1,1)$, and $(-1,1)$. So we have

$$
\int_{0}^{1} \int_{0}^{1-x} \exp \left(\frac{x-y}{x+y}\right) d y d x=\frac{1}{2} \int_{0}^{1} \int_{-v}^{v} e^{u / v} d u d v=\frac{1}{4}\left(e-e^{-1}\right) .
$$

