MATH 324A (Autumn 2009) Midterm

Student name:
Student number:
Signature:
Do not start working until instructed to do so.
You have 50 minutes.
Please show your work.
Scientific, but not graphing calculators are allowed.

Problem 1 (20 points)	
Problem 2 (10 points)	
Problem 3 (10 points)	
Problem 4 (10 points)	
Total	

You may use one 8.5 by 11 double-sided sheet of handwritten notes.

Problem 1 (20 points) Evaluate the following integrals.

(a)
$$I = \int_D \cos(x^2 + y^2) dA$$
, where $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 3\}$.

(b) $I = \int_E x^2 + z^2 dV$, where $E \subseteq \mathbb{R}^3$ is the solid bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 1. (Hint: use cylindrical coordinates switching the roles of y and z.)

(c)
$$I = \int_D y \, dA$$
, where $D = \{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + y^2 \le 1\}$.

(d)
$$I = \int_0^8 \int_{\sqrt[3]{y}}^2 e^{x^4} dx dy$$
.

Problem 2 (10 points) Find the volume of the solid $E \subseteq \mathbb{R}^3$ which consists of all points satisfying $x^2 + y^2 + z^2 \le 1$ and $z \ge \sqrt{3(x^2 + y^2)}$. (You are given that $\tan \frac{\pi}{3} = \sqrt{3}$.)

Problem 3 (10 points) The joint density function of two random variables X and Y is given by

$$f(x,y) = \begin{cases} C e^{-x} e^{-\frac{y}{2}} & x \ge 0 \text{ and } y \ge 0\\ 0 & \text{otherwise} \end{cases}$$

(a) Find the constant C.

(b) What is the probability of the event $X + Y \le 1$?

Problem 4 (10 points) Use the change of variables

$$\begin{cases} x = u + v \\ y = v \end{cases}$$

to evaluate the double integral $I = \int_R (x-y)^{324} y \, dA$, where R is the parallelogram bounded by the lines $y=x,\,y=x-1,\,y=0$ and y=1.