MATH 324A (Spring 2010) Midterm

Student name:
Student number:
Signature:
Do not start working until instructed to do so.
You have 50 minutes.
Please show your work.
Scientific, but not graphing calculators are allowed.

Problem 1 (20 points)	
Problem 2 (10 points)	
Problem 3 (10 points)	
Problem 4 (10 points)	
Total	

You may use one 8.5 by 11 double-sided sheet of handwritten notes.

Problem 1 (20 points) Evaluate the following integrals.

(a)
$$I = \int_D e^{x^2 + y^2} dA$$
, where $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 3\}$.

(b) $I = \int_E x + y + z \, dV$, where $E = \{(x,y,z) \in \mathbb{R}^3 \colon x^2 + y^2 \le 1, \ x^2 + y^2 \le z \le 1\}$. (Think before you compute.)

(c) $I = \int_D e^{x^2} dA$, where $D = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 1, y \le x \le 1\}$.

(d) $I = \int_D x - y + 5 \, dA$, where $D = \{(x,y) \in [0,2] \times [0,2] \colon x + y \leq 3\}$. (You may simplify the computation with the fact that the region D has a line of symmetry.)

Problem 2 (10 points) Find the area enclosed by the curve $r = \sin(2\theta)$, $0 \le \theta \le \frac{\pi}{2}$.

Problem 3 (10 points) Consider the solid that the cylinder $r = \cos \theta$ cuts out of the unit sphere $x^2 + y^2 + z^2 = 1$.

(a) Setup a triple integral which represents the volume of the solid.

(b) Compute the volume of the solid.

Problem 4 (10 points) Let (X,Y,Z) be a uniformly distributed random point on the unit sphere $\mathbb{S}^2 = \{(x,y,z) \in \mathbb{R}^3 \colon x^2 + y^2 + z^2 = 1\}$. Let (Θ,Φ) be the spherical coordinates of the point, given by

$$\begin{cases} X = \sin(\Phi)\cos(\Theta) \\ Y = \sin(\Phi)\sin(\Theta) \\ Z = \cos(\Phi) \end{cases}$$

You are told that the probability joint density function of (Θ, Φ) is

$$f(\theta, \phi) = \begin{cases} \frac{\sin(\phi)}{4\pi}, & (\theta, \phi) \in [0, 2\pi] \times [0, \pi] \\ 0, & \text{otherwise} \end{cases}$$

What is the probability that $|X| \leq \frac{1}{2}$? (Hint: the sphere \mathbb{S}^2 is invariant under rotation.)