
Triple Integrals for Volumes of Some Classic Shapes
In the following pages, I give some worked out examples where triple integrals are used to find some
classic shapes volumes (boxes, cylinders, spheres and cones) For all of these shapes, triple integrals aren’t
needed, but I just want to show you how you could use triple integrals to find them. The methods of
cylindrical and spherical coordinates are also illustrated. I hope this helps you better understand how

to set up a triple integral. Remember that the volume of a solid region E is given by

∫∫∫
E

1 dV .

A Rectangular Box
A rectangular box can be described by the set of inequalities a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q. So that
the volume comes out to be length times width times height as expected:∫∫∫

E

1 dV =

∫ b

a

∫ d

c

∫ q

p

1 dzdydx = (b− a)(d− c)(q − p).

A Circular Cylinder
The equation for the outer edge of a circular cylinder of radius a is given by x2 + y2 = a2. If we want
to consider the volume inside such a cylinder with height h, then we are considering the region where
x2 + y2 ≤ a2 and 0 ≤ z ≤ h (in other words between the planes z = 0 and z = h). We already
have bounds on z, so let’s use that as the innermost integral. Now we need bounds for the circular
x2 + y2 ≤ a2 in the xy-plane. We can do that in a few different ways:

1. In Cartesian Coordinates :
The solid can be described by the inequalities−a ≤ x ≤ a, −

√
a2 − x2 ≤ y ≤

√
a2 − x2, 0 ≤ z ≤ h.

So we find the volume is:∫∫∫
E

1 dV =

∫ a

−a

∫ √a2−x2
−
√
a2−x2

∫ h

0

1 dzdydx =

∫ a

−a
2h
√
a2 − x2 dx = 2h

1

2
πa2 = πa2h.

Note: I skipped some steps in the integration. You would need to see the last integration geomet-
rically (that the last integral represents the area of exactly half a circle), or you would have to use
trig substitution.

2. In Cylindrical Coordinates : A circular cylinder is perfect for cylindrical coordinates! The region
x2 + y2 ≤ a2 is very easily described, so that all together the solid can be described by the
inequalities 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, 0 ≤ z ≤ h. So we find the volume is:∫∫∫

E

1 dV =

∫ 2π

0

∫ a

0

∫ h

0

r dzdrdθ =

∫ 2π

0

dθ

∫ a

0

r dr

∫ h

0

dz = 2π
1

2
a2h = πa2h.

Either way, we see that we get the expected volume formula.



A Sphere
The equation for the outer edge of a sphere of radius a is given by x2 + y2 + z2 = a2. If we want to
consider the volume inside, then we are considering the regions x2 + y2 + z2 ≤ a2. We will set up the
inequalities in three ways.

1. In Cartesian Coordinates : Solving for z gives −
√
a2 − x2 − y2 ≤ z ≤

√
a2 − x2 − y2. Then the

projection of the sphere onto the xy-plane (i.e. the equation you get when you have z = 0 in the
sphere equation) is just the circle x2 + y2 = a2. Now we must describe this with inequalities. All
together, the solid can be described by the inequalities −a ≤ x ≤ a, −

√
a2 − x2 ≤ y ≤

√
a2 − x2,

−
√
a2 − x2 − y2 ≤ z ≤

√
a2 − x2 − y2. So we can find the volume:

∫∫∫
E

1 dV =

∫ a

−a

∫ √a2−x2
−
√
a2−x2

∫ √a2−x2−y2

−
√
a2−x2−y2

1 dzdydx =

∫ a

−a

∫ √a2−x2
−
√
a2−x2

2
√
a2 − x2 − y2 dydx

=

∫ a

−a
2

1

2
π(a2 − x2) dx = π(2a3 − 2

3
a3) =

4

3
πa3.

Note: Same note as I made for the circular cylinder concerning skipped steps in the integration.

2. In Cylindrical Coordinates : The bound on z would still be the same, but we would use polar for
x and y. All together, the solid can be described by 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, −

√
a2 − r2 ≤ z ≤√

a2 − r2. And we get a volume of:∫∫∫
E

1 dV =

∫ 2π

0

∫ a

0

∫ √a2−r2
−
√
a2−r2

r dzdrdθ = 2π

∫ a

0

2r
√
a2 − r2 dr

= 2π

∫ a2

0

√
u du = 2π

2

3
a3 =

4

3
πa3

3. In Spherical Coordinates : In spherical coordinates, the sphere is all points where 0 ≤ φ ≤ π (the
angle measured down from the positive z axis ranges), 0 ≤ θ ≤ 2π (just like in polar coordinates),
and 0 ≤ ρ ≤ a. And we get a volume of:∫∫∫
E

1 dV =

∫ π

0

∫ 2π

0

∫ a

0

ρ2 sin(φ)dρdθdφ =

∫ π

0

sin(φ) dφ

∫ 2π

0

dθ

∫ a

0

ρ2dρ = (2)(2π)

(
1

3
a3
)

=
4

3
πa3

In all three cases, we see that we get the expected volume formula.



A Cone
The equation a2z2 = h2x2 + h2y2 gives a cone with a point at the origin that opens upward (and
downward), such that if the height is z = h then radius of the circle at that height is a (you can see this
by pluggin in z = h and simplifying). So let’s find the volume inside this cone which has height h and
radius of a at that height.

1. In Cartesian Coordinates : First we have h
a

√
x2 + y2 ≤ z ≤ h (I got the first bound by solving

for z in the equation for the cone and simplifying). The projection down on the xy-plane would
be the intersection of z = h and the cone, which is the disc x2 + y2 ≤ a2. So the solid can be
described by the inequalities −a ≤ x ≤ a, −

√
a2 − x2 ≤ y ≤

√
a2 − x2, h

a

√
x2 + y2 ≤ z ≤ h. We

find the volume is:∫∫∫
E

1 dV =

∫ a

−a

∫ √a2−x2
−
√
a2−x2

∫ h

h
a

√
x2+y2

1 dzdydx =

∫ a

−a

∫ √a2−x2
−
√
a2−x2

h− h

a

√
x2 + y2 dydx

=

∫ a

−a

∫ √a2−x2
−
√
a2−x2

h dydx−
∫ a

−a

∫ √a2−x2
−
√
a2−x2

h

a

√
x2 + y2 dydx = hπa2 − 2

3
πha2 =

1

3
πha2.

Note: Again I skipped steps in the integration (this would be a messy/hard integration problem,
Cartesian coordinates give messy integrals when working with spheres and cones).

2. In Cylindrical Coordinates : The solid can be described by 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, h
a
r ≤ z ≤ h.

And we get a volume of:∫∫∫
E

1 dV =

∫ 2π

0

∫ a

0

∫ h

h
a
r

r dzdrdθ = 2π

∫ a

0

hr − h

a
r2 dr = 2π(

1

2
ha2 − h

3a
a3) =

1

3
πha2.

3. In Spherical Coordinates : In spherical coordinates, we need to find the angle, φ, that the cone
makes with the positive z-axis and we need to find the range on ρ. Viewing the cone from the
side, the angle φ is part of a right triangle with side lengths a and h. So tan(φ) = a

h
on the edge

of the cone. Thus, the range is 0 ≤ φ ≤ tan−1
(
a
h

)
. The range on ρ depends on φ. We do know

the 0 ≤ z ≤ h. And since z = ρ cos(φ), we can say that 0 ≤ ρ ≤ h
cos(φ)

= h sec(φ).

So all together we have 0 ≤ φ ≤ tan−1
(
a
h

)
, 0 ≤ θ ≤ 2π, and 0 ≤ ρ ≤ h sec(φ). And we get a

volume of:∫∫∫
E

1 dV =

∫ tan−1( a
h)

0

∫ 2π

0

∫ h sec(φ)

0

ρ2 sin(φ)dρdθdφ = 2π

∫ tan−1( a
h)

0

∫ h sec(φ)

0

ρ2 sin(φ)dρdφ

= 2π

∫ tan−1( a
h)

0

1

3
h3 sec3(φ) sin(φ) dφ =

2

3
πh3

∫ tan−1( a
h)

0

sec2(φ) tan(φ) dφ =
2

3
πh3

1

2

(a
h

)2
=

1

3
πha2

In all three cases, we see that we get the expected volume formula.


