- 1. (10 pts) Compute the following integrals:
 - (a) $\int_C (x+1) ds$ where C is the line segment from (1,0) to (-2,4).

$$\int_{c} (x+1) ds = \int_{0}^{c} (1-3t+1) 5 dt$$

$$= 5 \int_{0}^{c} (2-3t+1) dt$$

$$= 5 \left[2t - \frac{3}{2}t^{2} \right]_{0}^{c}$$

$$= 5 \left[2-\frac{3}{2} \right] = 5 \frac{1}{2} = \frac{5}{2} = 2.5$$

(b) $\iint_{S} 15z \, dS$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

PARAMETERIZE)
$$F(\phi,\theta) = \langle sn\phi cos\theta, sn\phi sn\theta, cos\phi \rangle$$

 $|F\phi xF\phi| = |^2 sn\phi \leftarrow from class!$
 $0 \le \phi \le \sqrt[4]{2}$

$$SS_{1}S_{2}dS = S_{0}^{2}S_{0}^{2} 15 \cos \phi \sin \phi d\phi d\theta$$

$$= 15S_{0}^{2}d\theta S_{0}^{2} \cos \phi \sin \phi d\phi$$

$$= 15T_{2} S_{0} u du$$

$$= \frac{15\pi}{2} \frac{1}{2}u^{2}\delta = \frac{15\pi}{4}$$

2. (10 pts) Compute $\iint_S \langle xz, yz, 3z \rangle \cdot d\mathbf{S}$ where S is the part of the cone $z = \sqrt{x^2 + y^2}$ that is between z = 1 and z = 2 with **downward** orientation.

OPTION 2:

$$\frac{1}{2}(u,v) = \langle v\cos u, v\sin u, v \rangle$$
 $0 \le u \le 2\pi$
 $1 \le v \le 2$
 $\frac{1}{2}v \le 2$
 \frac

3. (10 pts) Consider the vector field $\mathbf{F}(x,y,z) = \langle y^2 + 2, 2xy, 3z^2 \rangle$ on \mathbb{R}^3 . Note that $\operatorname{curl} \mathbf{F} = \mathbf{0}$. Let C be the curve parameterized by $\mathbf{r}(t) = \langle 5t^{10}, \cos(\pi t), 2t^3 - t - 1 \rangle$ for $0 \le t \le 1$. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.

(Please use the consequences of the fact that $\operatorname{curl} \mathbf{F} = \mathbf{0}$).

①
$$f_{\times}(x,y,z) \stackrel{?}{=} y^2 + 2$$

 $f(x,y,z) = Sy^2 + 2 dx = y^2 \times +2 \times + g(y,z)$

(a)
$$f_y(x,y,z) \stackrel{?}{=} 2 \times y$$

 $2y \times + 0 + g_y(y,z) \stackrel{?}{=} 2 \times y$
 $\Rightarrow g_y(y,z) = 0$
 $g(y,z) = h(z)$ $\Rightarrow f(x,y,z) = y^2 \times + 2 \times + h(z)$

(3)
$$f_2(xy,2) \stackrel{?}{=} 3z^2$$

 $0+0+h'(2) \stackrel{?}{=} 3z^2$
 $\Rightarrow h(z) = 53z^2dz = 2^3+k$ a constant
 $f(x,y,2) = y^2 \times +2 \times +2^3+k$

$$\int_{C} \vec{z} \cdot d\vec{z} = f(\vec{z}(1)) - f(\vec{z}(0))
= f(5, -1, 0) - f(0, 1, -1)
= [-1)^{2}(5) + 2(5) + (0)^{3}] - [10^{2}(0) + 2(0) + (-1)^{3}]
= 15 + 1 = [16]$$

- 4. (10 pts) Set up (**DO NOT EVALUATE**) two triple integrals that represent the volume of the solid bounded by the planes 3x + 2y + z = 6, z = 0, y = 0, and x = 1. You must give two answer in the orders specified.
 - (a) In the order dzdydx:

INNER BOUNDS:

PROSECTION: z=0 $\Rightarrow 3x+2y=6$ $y=3-\frac{3}{2}x$

 $\int_{1}^{2} \int_{0}^{3-\frac{3}{2} \times} \int_{0}^{6-3 \times -2 y} dx$

(b) In the order dxdzdy:

INNER BOUNES: | < X <

PROJECTION;

X=

=)3+24+2=6

7=3-29

$$\leq x \leq \frac{6-2y-2}{3}$$
 $= \frac{3}{2}$
 $= \frac{3}{2}$
 $= \frac{3}{2}$
 $= \frac{3}{2}$
 $= \frac{3}{2}$

0===3/2

53/2 30-24 5-24-2 1 dxdzdy

= 3/4

5. (10 pts) Consider the vector field $\mathbf{F}(x,y,z) = \langle x^4 + 3x, x^3 - \cos(y) \rangle$ on \mathbf{R}^2 . Let C be the positively oriented **CLOSED** curve that consists of the curve C_1 which is the arc of parabola $y = 1 - x^2$ from (1,0) to (-1,0) followed by the curve C_2 which is the line segment from (-1,0) to (1,0).

 C_1

(1,0)

Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.

$$= \int_{-1}^{1-x^2} \int_{0}^{1-x^2} (3x^2-0) \, dy \, dx$$

$$= \int_{-1}^{1} 3x^{2}(1-x^{2}) dx$$

6. (10 pts) You impose a coordinate system on a hand sand beach and find the temperature at each point is given by $T(x,y) = x^2 + y^2 + 4y + 90$ degrees Fahrenheit, where x and y are in feet.

Assume you walk barefoot half way around a circular path, C, from (3,0) to (-3,0) in such a way that your motion is parameterized by $\mathbf{r}(t) = \langle 3\cos(t), 3\sin(t) \rangle$ where t is in seconds with $0 \le t \le \pi$.

GIVE UNITS FOR ALL YOUR ANSWERS.

(a) Give the direction and magnitude of the greatest rate of change at the point (3,0).

(This question has nothing to do with C).
$$\nabla T(x,y) = \langle 2x, 2y + 4 \rangle$$
 $\nabla T(3,0) = \langle 4, 4 \rangle$

$$|\nabla T(3,0)| = \sqrt{6^2 + 4^2} = \sqrt{52^3 + 4^2}$$

(b) As you walk along the curve C, what is the rate of change of temperature with respect to

time at $t = \pi/4$ seconds?

$$\frac{d\Gamma}{dL} = \frac{\partial \Gamma}{\partial x} \frac{dx}{dt} + \frac{\partial \Gamma}{\partial y} \frac{dy}{dt} = \frac{2x(-3sm + b) + (2y + 4)(3cu(b))}{2 \cdot 3\frac{c}{2}(-3\sqrt{2}) + (2\frac{3c}{2} + 4)(3\sqrt{2})}$$

$$= \frac{-9 + 9 + 6\sqrt{2}}{6\sqrt{2}}$$

$$= \frac{-9 + 9 + 6\sqrt{2}}{6\sqrt{2}}$$

(c) Compute $\frac{1}{6\pi} \int_C T(x,y)ds$. (This is the average temperature along C).

$$\frac{1}{3\pi} \int_{0}^{\pi} \left(9 + 12\sin(t) + 90\right) \sqrt{-3\sin(t)^{2} + (3\cos(t))^{2}} dt$$

$$\frac{3}{3\pi} \int_{0}^{\pi} 99 + 12\sin(t) dt$$

$$\frac{1}{\pi} \left[99 + -12\cos(t)\right]_{0}^{\pi} = \frac{1}{\pi} \left[99 + -12\right] - (0 - 12)$$

$$= \frac{1}{\pi} \left[99 + 24\right]$$

$$= \frac{1}{99} \left[99 + \frac{24}{11}\right]_{0}^{9}$$

7. (10 pts) Consider the vector field $\mathbf{F}(x,y,z) = \langle 1+3y^3, -6x, -3z^2+x \rangle$ on \mathbb{R}^3 . Let S be the **CLOSED** surface that consists of the cylinder $x^2+y^2=9$ for $0 \le z \le 1$ and the parts of the planes z=0 and z=1 that are inside the cylinder. Find the flux of \mathbf{F} across S. That is, compute $\iint \mathbf{F} \cdot d\mathbf{S}$.

You may pick either the outward or inward orientation for S, but in the end I want you to tell me if the net flux of \mathbf{F} across S is outward or inward.

