
2 Solving LPs: The Simplex Algorithm of George Dantzig

2.1 Simplex Pivoting: Dictionary Format

We illustrate a general solution procedure, called the simplex algorithm, by implementing it
on a very simple example. Consider the LP

max 5x1 + 4x2 + 3x3(2.1)

s.t. 2x1 + 3x2 + x3  5

4x1 + x2 + 2x3  11

3x1 + 4x2 + 2x3  8

0  x1, x2, x3

In devising our approach we use a standard mathematical approach; reduce the problem to
one that we already know how to solve. Since the structure of this problem is essentially
linear, we try to reduce it to a problem of solving a system of linear equations, or perhaps
a series of such systems. By encoding the problem as a system of linear equations we bring
into play our knowledge and experience with such systems in the new context of linear
programming.

In order to encode the LP (2.1) as a system of linear equations we first transform the
linear inequalities into linear equations. This is done by introducing a new non-negative
variable, called a slack variable, for each inequality:

x4 = 5 � [2x1 + 3x2 + x3] � 0,
x5 = 11 � [4x1 + x2 + 2x3] � 0,
x6 = 8 � [3x1 + 4x2 + 2x3] � 0.

To handle the objective, we introduce a new variable z:

z = 5x1 + 4x2 + 3x3.

Then all of the information associated with the LP (2.1) can be coded as follows:

(2.2)

2x1 + 3x2 + x3 + x4 = 5
4x1 + x2 + 2x3 + x5 = 11
3x2 + 4x2 + 2x3 + x6 = 8

�z + 5x1 + 4x2 + 3x3 = 0
0  x1, x2, x3, x4, x5, x6.

The new variables x4, x5, and x6 are called slack variables since they take up the slack in the
linear inequalities. This system can also be written using block structured matrix notation:


0 A I

�1 c
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where

A =

2

4
2 3 1
4 1 2
3 4 2

3

5 , I =

2

4
1 0 0
0 1 0
0 0 1

3

5 , b =

2

4
5
11
8

3

5 , and c =

2

4
5
4
3

3

5 .

The augmented matrix associated with the system (2.2) is

(2.3)


0 A I

�1 c 0

����
b

0

�

and is referred to as the initial simplex tableau for the LP (2.1).
Now return to the system

x4 = 5� 2x1 � 3x2 � x3(2.4)

x5 = 11� 4x1 � x2 � 2x3

x6 = 8� 3x1 � 4x2 � 2x3

z = 5x1 + 4x2 + 3x3.

This system defines the variables x4, x5, x6 and z as linear combinations of the variables x1,
x2, and x3. We call this system a dictionary for the LP (2.1). More specifically, it is the
initial dictionary for the the LP (2.1). This initial dictionary defines the objective value z

and the slack variables as a linear combination of the initial decision variables. The variables
that are “defined” in this way are called the basic variables, while the remaining variables
are called nonbasic. The set of all basic variables is called the basis. A particular solution to
this system is easily obtained by setting the non-basic variables equal to zero. In this case,
we have

x1 = 0
x2 = 0
x3 = 0

giving

x4 = 5
x5 = 11
x6 = 8
z = 0.

Note that the solution

(2.5)

0

BBBBBB@

x1

x2

x3

x4

x5

x6

1

CCCCCCA
=

0

BBBBBB@

0
0
0
5
11
8

1

CCCCCCA

is feasible for the extended system (2.2) since all components are non-negative. We call this
solution the basic feasible solution (BFS) associated with the dictionary (2.4). Moreover, we
call the dictionary (2.4) a feasible dictionary for the LP (2.1), and we say that this LP has
feasible origin.

In general, a dictionary for the LP (2.1) is any system of 4 linear equations that defines
three of the variables x1, . . . , x6 and z in terms of the remaining 3 variables and has the same
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solution set as the initial dictionary. The variables other than z that are being defined in
the dictionary are called the basis for the dictionary, and the remaining variables are said to
be non-basic in the dictionary. Every dictionary identifies a particular solution to the linear
system obtained by setting the non-basic variables equal to zero. Such a solution is said to
be a basic feasible solution (BFS) for the LP (2.1) if it componentwise non-negative, that is,
all of the numbers in the vector are non-negative so that the point lies in the feasible region
for the LP.

The grand strategy of the simplex algorithm is to move from one feasible dictionary
representation of the system (2.2) to another (and hence from one BFS to another) while
simultaneously increasing the value of the objective variable z at the associated BFS. In
the current setting, beginning with the dictionary (2.4), what strategy might one employ
in order to determine a new dictionary whose associated BFS gives a greater value for the
objective variable z?

Each feasible dictionary is associated with one and only one feasible point. This is the
associated BFS obtained by setting all of the non-basic variables equal to zero. This is how
we obtain (2.5). To change the feasible point identified in this way, we need to increase the
value of one of the non-basic variables from its current value of zero. We cannot decrease
the value of a non-basic variable since we wish to remain feasible, that is, we wish to keep
all variables non-negative.

Note that the coe�cient of each of the non-basic variables in the representation of the
objective value z in (2.4) is positive. Hence, if we pick any one of these variables and increase
its value from zero while leaving the remaining two at zero, we automatically increase the
value of the objective variable z. Since the coe�cient on x1 in the representation of z is the
greatest, we can increase z the fastest instantaneous rate by increasing x1. But choosing the
variable with the greatest coe�cient is not required and may not yield the greatest increase
in z. Any non-basic variable with a positive coe�cient in the representation of z can be used

to increase the value of z.

By how much can we increase x1 and still remain feasible? For example, if we increase x1

to 3 then (2.4) says that x4 = �1, x5 = �1, x6 = �1 which is not feasible. So x1 cannot be
increased to 3. To see how much we can increase the value of x1 we examine the equations
in (2.4) one by one. Note that the first equation in the dictionary (2.4),

x4 = 5� 2x1 � 3x2 � x3,

shows that x4 remains non-negative as long as we do not increase the value of x1 beyond 5/2
(remember, x2 and x3 remain at the value zero). Similarly, using the second equation in the
dictionary (2.4),

x5 = 11� 4x1 � x2 � 2x3,

x5 remains non-negative if x1  11/4. Finally, the third equation in (2.4),

x6 = 8� 3x1 � 4x2 � 2x3,
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implies that x6 remains non-negative if x1  8/3. Therefore, we remain feasible, i.e. keep
all variables non-negative, if our increase to the variable x1 remains less than

5

2
= min

⇢
5

2
,
11

4
,
8

3

�
.

If we now increase the value of x1 to 5
2 , then the value of x4 is driven to zero. One way

to think of this is that x1 enters the basis while x4 leaves the basis. Mechanically, we obtain
the new dictionary having x1 basic and x4 non-basic by using the defining equation for x4

in the current dictionary:
x4 = 5� 2x1 � 3x2 � x3.

By moving x1 to the left hand side of this equation and x4 to the right, we get the new
equation

2x1 = 5� x4 � 3x2 � x3

or equivalently

x1 =
5

2
� 1

2
x4 �

3

2
x2 �

1

2
x3.

The variable x1 can now be eliminated from the remaining two equations in the dictionary
by substituting in this equation for x1 where it appears in these equations:

x1 =
5

2
� 1

2
x4 �

3

2
x2 �

1

2
x3

x5 = 11� 4

✓
5

2
� 1

2
x4 �

3

2
x2 �

1

2
x3

◆
� x2 � 2x3

= 1 + 2x4 + 5x2

x6 = 8� 3

✓
5

2
� 1

2
x4 �

3

2
x2 �

1

2
x3

◆
� 4x2 � 2x3

=
1

2
+

3

2
x4 +

1

2
x2 �

1

2
x3

z = 5

✓
5

2
� 1

2
x4 �

3

2
x2 �

1

2
x3

◆
+ 4x2 + 3x3

=
25

2
� 5

2
x4 �

7

2
x2 +

1

2
x3.

When this substitution is complete, we have the new dictionary and the new BFS:

x1 =
5

2
� 1

2
x4 �

3

2
x2 �

1

2
x3(2.6)

x5 = 1 + 2x4 + 5x2

x6 =
1

2
+

3

2
x4 +

1

2
x2 �

1

2
x3

z =
25

2
� 5

2
x4 �

7

2
x2 +

1

2
x3,
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and the associated BFS is

(2.7)

0

BBBBBB@

x1

x2

x3

x4

x5

x6

1

CCCCCCA
=

0

BBBBBB@

5/2
0
0
0
1
1/2

1

CCCCCCA
with z =

25

2
.

This process should seem very familiar to you. It is simply Gaussian elimination. As
we know from our knowledge of linear systems of equations, Gaussian elimination can be
performed in a matrix context with the aid of the augmented matrix (or, simplex tableau)
(2.3). We return to this observation later to obtain a more e�cient computational technique.

We now have a new dictionary (2.6) which identifies the basic feasible solution (BFS)
(2.7) with associated objective value z = 25

2 . Can we improve on this BFS and obtain a
higher objective value? Let’s try the same trick again, and repeat the process we followed in
going from the initial dictionary (2.4) to the new dictionary (2.6). Note that the coe�cient
of x3 in the representation of z in the new dictionary (2.6) is positive. Hence if we increase
the value of x3 from zero, we will increase the value of z. By how much can we increase the
value of x3 and yet keep all the remaining variables non-negative? As before, we see that the
first equation in the dictionary (2.6) combined with the need to keep x1 non-negative implies
that we cannot increase x3 by more than (5/2)/(1/2) = 5. However, the second equation
in (2.6) places no restriction on increasing x3 since x3 does not appear in this equation.
Finally, the third equation in (2.6) combined with the need to keep x6 non-negative implies
that we cannot increase x3 by more than (1/2)/(1/2) = 1. Therefore, in order to preserve
the non-negativity of all variables, we can increase x3 by at most

1 = min{5, 1}.

When we do this x6 is driven to zero, so x3 enters the basis and x6 leaves. More precisely,
first move x3 to the left hand side of the defining equation for x6 in (2.6),

1

2
x3 =

1

2
+

3

2
x4 +

1

2
x2 � x6,

or, equivalently,
x3 = 1 + 3x4 + x2 � 2x6,

then substitute this expression for x3 into the remaining equations,

x1 =
5

2
� 1

2
x4 �

3

2
x2 �

1

2
[1 + 3x4 + x2 � 2x6]

= 2� 2x4 � 2x2 + x6

x5 = 1 + 2x4 + 5x2

z =
25

2
� 5

2
x4 �

7

2
x2 +

1

2
[1 + 3x4 + x2 � 2x6]

= 13� x4 � 3x2 � x6 ,
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yielding the dictionary

(2.8)

x3 = 1 + 3x4 + x2 � 2x6

x1 = 2� 2x4 + 2x2 + x6

x5 = 1 + 2x4 + 2x2

z = 13� x4 � 3x2 � x6

which identifies the feasible solution

(2.9)

0

BBBBBB@

x1

x2

x3

x4

x5

x6

1

CCCCCCA
=

0

BBBBBB@

2
0
1
0
1
0

1

CCCCCCA

having objective value z = 13.
Can we do better? If we try the same trick again on the dictionary (2.8) we find that

we are stuck since all of the coe�cients of the nonbasic variables in the objective row z =
13 � x4 � 3x2 � x6, are non-positive. Hence, increasing any one of their values will not
increase the value of the objective. So it seems as though either the method has failed or
the associated BFS (2.9) is optimal for the LP (2.1). We claim that this BFS (2.9) yields
an optimal solution to the LP (2.1). The optimal solution is given by dropping the entries
associated with the slacks,

x =

0

@
2
0
1

1

A .

However, we delay proving this fact until we have gathered enough tools for this purpose.
Nonetheless, we will call such a dictionary an optimal dictionary since its associated BFS
yields an optimal solution to the LP. A more formal definition ofr an optimal dictionary will
be given later.

The process of moving from one feasible dictionary to the next is called a simplex pivot.
The process of stringing together a sequence of simplex pivots in order to locate an optimal
solution is called the Simplex Algorithm. The simplex algorithm is considered one of the ten
most important algorithmic discoveries of the 20th century

(http://www.uta.edu/faculty/rcli/TopTen/topten.pdf).
The algorithm was discovered by George Dantzig (1914-2005) who is known as the father
of linear programming. In 1984 Narendra Karmarkar published a paper describing a new
approach to solving linear programs that was both numerically e�cient and had polynomial

complexity. This new class of methods are called interior point methods. These new methods
have revolutionized the optimization field since their discovery, and they have led to e�cient
numerical methods for a wide variety of optimization problems well beyond the confines of
linear programming. However, the simplex algorithm continues as an important numerical
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method for solving LPs, and for many specially structured LPs it is remains the most e�cient
algorithm.

2.2 Simplex Pivoting: Tableau Format (Augmented Matrix For-
mat)

We now review the implementation of the simplex algorithm by applying Gaussian elimina-
tion to the augmented matrix (2.3), also known as the simplex tableau. For this problem,
the initial simplex tableau is given by

(2.10)

z x1 x2 x3 x4 x5 x6


0 A I

�1 c 0

����
b

0

�
=

2

664

0 2 3 1 1 0 0
0 4 1 2 0 1 0
0 3 4 2 0 0 1
�1 5 4 3 0 0 0

��������

5
11
8
0

3

775 .

Each simplex pivot on a dictionary corresponds to one step of Gaussian elimination on the
augmented matrix associated with the dictionary. For example, in the first simplex pivot, x1

enters the basis and x4 leaves the basis. That is, we use the first equation of the dictionary
to rewrite x1 as a function of the remaining variables, and then use this representation to
eliminate x1 form the remaining equations. In terms of the augmented matrix (2.10), this
corresponds to first making the coe�cient for x1 in the first equation the number 1 by
dividing this first equation through by 2. Then use this entry to eliminate the column under
x1, that is, make all other entries in this column zero (Gaussian elimination):

Pivot
column ratios
# #

z x1 x2 x3 x4 x5 x6

0 2� 3 1 1 0 0 5 5/2�  Pivot row
0 4 1 2 0 1 0 11 11/4
0 3 4 2 0 0 1 8 8/3
-1 5� 4 3 0 0 0 0

0 1 3/2 1/2 1/2 0 0 5/2
0 0 �5 0 �2 1 0 1
0 0 �1/2 1/2 �3/2 0 1 1/2

�1 0 �7/2 1/2 �5/2 0 0 �25/2

In this illustration, we have placed a line above the cost row to delineate its special roll
in the pivoting process. In addition, we have also added a column on the right hand side
which contains the ratios that we computed in order to determine the pivot row. Recall
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that we must use the smallest ratio in order to keep all variables in the associated BFS
non-negative. Note that we performed the exact same arithmetic operations but in the more
e�cient matrix format. The new augmented matrix,

(2.11)

z x1 x2 x3 x4 x5 x62

664

0 1 3/2 1/2 1/2 0 0
0 0 �5 0 �2 1 0
0 0 �1/2 1/2 �3/2 0 1
�1 0 �7/2 1/2 �5/2 0 0

��������

5/2
1
1/2
�25/2

3

775 ,

is the augmented matrix for the dictionary (2.6).
The initial augmented matrix (2.10) has basis x4, x5, and x6. The columns associated

with these variables in the initial tableau (2.10) are distinct columns of the identity matrix.
Correspondingly, the basis for the second tableau is x1, x5, and x6, and again this implies
that the columns for these variables in the tableau (2.11) are distinct columns of the identity
matrix. In tableau format, this will always be true of the basic variables, i.e., their associated
columns are distinct columns of the identity matrix. To recover the BFS (basic feasible
solution) associated with this tableau we first set the non-basic variables equal to zero (i.e.
the variables not associated with columns of the identity matrix (except in very unusual
circumstances)): x2 = 0, x3 = 0, and x4 = 0. To find the value of the basic variables go to
the column associated with that variable (for example, x1 is in the second column), in that
column find the row with the number 1 in it, then in that row go to the number to the right
of the vertical bar (for x1 this is the first row with the number to the right of the bar being
5/2). Then set this basic variable equal to that number (x1 = 5/2). Repeating this for x5

and x6 we get x5 = 1 and x6 = 1/2. To get the corresponding value for z, look at the z row
and observe that the corresponding linear equation is

�z � 7

2
x2 +

1

2
x3 �

5

2
x4 = �

25

2
,

but x2, x3, and x4 are non-basic and so take the value zero giving �z = �25/2, or z = 25/2.
Of course this is all exactly the same information we obtained from the dictionary ap-

proach. The simplex, or augmented matrix approach is simply a more e�cient computational
procedure. For computational purposes, we use the tableau form of the simplex in to solve
specific LPs. However, in order to understand the inner workings of the algorithm it is es-
sential that you understand how to go back and forth between these two representations, i.e
the dictionary representation and its corresponding simplex tableau (or, augmented matrix).
Let us now continue with the second simplex pivot.

In every tableau we always reserve the bottom row for encoding the linear relationship
between the objective variable z and the currently non-basic variables. For this reason we
call this row the objective row, and to distinguish its special role, we place a line above it in
the tableau (this is reminiscent of the way we place a vertical bar in an augmented matrix
to distinguish the right hand side of a linear equation). In the objective row of the tableau
(2.11),

[�1, 0, �7/2, 1/2, �5/2, 0, 0, | � 25/2],
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we see a positive coe�cient, 1/2, in the 4th column. Hence the objective row coe�cient
for the non-basic variable x3 in this tableau is 1/2. This indicates that if we increase the
the value of x3, we also increase the value of the objective z. This is not true for any of
the other currently non-basic variables since their cost row coe�cients are all non-positive.
Thus, the only way to increase the value of z is to bring x3 into the basis, or equivalently,
pivot on the x3 column which is the 4th column of the tableau. For this reason, we call
the x3 column the pivot column. Now if x3 is to enter the basis, then which variable leaves?
Just as with the dictionary representation, the variable that leaves the basis is that currently
basic variable whose non-negativity places the greatest restriction on increasing the value of
x3. This restriction is computed as the smallest ratio of the right hand sides and the positive
coe�cients in the x3 column:

1 = min{(5/2)/(1/2), (1/2)/(1/2)}.

The ratios are only computed with the positive coe�cients since a non-positive coe�cient
means that by increasing this variable we do not decrease the valued of the corresponding
basic variable and so it is not a restricting equation. Since the minimum ratio in this instance
is 1 and it comes from the third row, we find that the pivot row is the third row. Looking
across the third row, we see that this row identifies x6 as a basic variable since the x6 column
is a column of the identity with a 1 in the third row. Hence x6 is the variable leaving the
basis when x3 enters. The intersection of the pivot column and the pivot row is called the
pivot. In this instance it is the number 1/2 which is the (3, 4) entry of the simplex tableau.
Pivoting on this entry requires us to first make it 1 by multiplying this row through by 2,
and then to apply Gaussian elimination to force all other entries in this column to zero:

Pivot
column ratios
#

0 1 3/2 1/2 1/2 0 0 5/2 5
0 0 �5 0 �2 1 0 1
0 0 �1/2 1/2� �3/2 0 1 1/2 1�  pivot row
�1 0 �7/2 1/2� �5/2 0 0 �25/2

0 1 2 0 2 0 �1 2
0 0 �5 0 �2 1 0 1
0 0 �1 1 �3 0 2 1
�1 0 �3 0 �1 0 �1 �13

This simplex tableau is said to be an optimal tableau since it is feasible (the associated
BFS is non-negative) and the cost row coe�cients for the variables are all non-positive. A
BFS obtained from an optimal tableau is called and optimal basic feasible solution. The
optimal BFS is obtained by setting the non-basic variables equal to zero and setting the
basic variables equal to the value on the right hand side corresponding to the one in its
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column: x1 = 2, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 0. The optimal objective value is
obtained by taking the negative of the number in the lower right hand corner of the optimal
tableau: z = 13.

We now recap the complete sequence of pivots in order to make a final observation that
will help streamline the pivoting process: pivots are circled,

z x1 x2 x3 x4 x5 x6

0 2� 3 1 1 0 0 5
0 4 1 2 0 1 0 11
0 3 4 2 0 0 1 8
-1 5 4 3 0 0 0 0

0 1 3/2 1/2 1/2 0 0 5/2
0 0 �5 0 �2 1 0 1
0 0 �1/2 1/2� �3/2 0 1 1/2
�1 0 �7/2 1/2 �5/2 0 0 �25/2

0 1 2 0 2 0 �1 2
0 0 �5 0 �2 1 0 1
0 0 �1 1 �3 0 2 1
�1 0 �3 0 �1 0 �1 �13

Observe from this sequence of pivots that the z column is never touched, that is, it
remains the same in all tableaus. Essentially, it just serves as a place holder reminding
us that in the linear equation for the cost row the coe�cient of z is �1. Therefore, for
the sake of expediency we will drop this column from our simplex computations in most
settings, and simply re-insert it whenever instructive or convenient. However, it is of great

importance to always remember that it is there! Indeed, we will make explicit and essential
use of this column in order to arrive at a full understanding of the duality theory for linear
programming. After removing this column, the above pivots take the following form:
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x1 x2 x3 x4 x5 x6

2� 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8
5 4 3 0 0 0 0

1 3/2 1/2 1/2 0 0 5/2
0 �5 0 �2 1 0 1
0 �1/2 1/2� �3/2 0 1 1/2
0 �7/2 1/2 �5/2 0 0 �25/2

1 2 0 2 0 �1 2
0 �5 0 �2 1 0 1
0 �1 1 �3 0 2 1
0 �3 0 �1 0 �1 �13

We close this section with a final example of simplex pivoting on a tableau giving only
the essential details.

The LP
maximize 3x1 + 2x2 � 4x3

subject to x1 + 4x2  5
2x1 + 4x2 � 2x3  6
x1 + x2 � 2x3  2
0  x1, x2, x3

Simplex Iterations
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ratios
x1 x2 x3 x4 x5 x6

1 4 0 1 0 0 5 5
2 4 -2 0 1 0 6 3
1� 1 -2 0 0 1 2 2
3 2 -4 0 0 0 0

0 3 2 1 0 -1 3 3/2
0 2 2� 0 1 -2 2 1
1 1 �2 0 0 1 2
0 �1 2 0 0 �3 �6

0 1 0 1 �1 1 1
0 1 1 0 1/2 �1 1
1 3 0 0 1 �1 4
0 �3 0 0 �1 �1 �8

Optimal Solution

2

4
xx

x2

x3

3

5 =

2

4
4
0
1

3

5 optimal value = 8

This example illustrates a point that needs to be strongly emphasized. The pivot column in
the second tableau is chosen to be the x3 column since its objective row coe�cient, “2”, is
the only positive entry in the objective row. Hence it is the only non-basic variable whose
increase will increase the objective since the objective row in the dictionary is

z = 6� x2 + 2x3 � 3x6.

To continue pivoting, we now choose the pivot column by forming the ratios as shown, but
we did not form the ratio associated with the entry “�2” in the pivot column. To see why,
write out the row of the associated dictionary for the “�2” row. This gives

(2.12) x1 = 2� x2 + 2x3 � x6.

Since the pivot column is the third column, x3 is the variable entering the basis. That is,
on this pivot we increase the value of the currently nonbasic variable x3 from zero to some
positive number. The amount of increase is restricted by the need to keep all of the currently
basic variables non-negative. This is why we form the ratios. For example, equation (2.12)
above defines the basic variable x1 in terms of the nonbasic variables x2, x3 and x6. If we
now increase the value of x3 from zero, the value of x1 increases as well. Consequently, this
equation places no restriction on increasing the value of x3. This is why we do not need to
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form a ratio for this row since this row places no restriction. In general, any entry in the pivot

column that is non-positive does not yield a restriction on the on the value of the incoming

variable. Thus, one does not need to compute the ratios associated with non-positive values.
A final word of advise; when pivoting by hand, it is helpful to keep the tableaus vertically

aligned in order to keep track of the arithmetic operations. This allows you to find errors
quickly, and errors will occur. Lined paper helps to keep the rows straight. But the columns
need to be straight as well. Many students find that it is easy to keep both the rows and
columns straight if they do pivoting on graph paper having large boxes for the numbers.

2.3 Dictionaries: The General Case for LPs in Standard Form

Recall the following standard form for LPs:

P : maximize c
T
x

subject to Ax  b

0  x ,

where c 2 Rn
, b 2 Rm

, A 2 Rm⇥n and the inequalities Ax  b and 0  x are to be
interpreted componentwise. We now provide a formal definition for a dictionary associated
with an LP in standard form. Let

xn+i = bi�
nX

j=1

aijxj(DI)

z =
nX

j=1

cjxj

be the defining system for the slack variables xn+i, i = 1, · · · , n and the objective variable
z. A dictionary for P is any system of the form

xi = bbi �
X

j2N

baijxj i 2 B(DB)

z = bz +
X

j2N

bcjxj

where B and N are index sets contained in the set of integers {1, . . . , n+m} satisfying

(1) B contains m elements,

(2) B \N = ;

(3) B [N = {1, 2, . . . , n+m},

and such that the systems (DI) and (DB) have identical solution sets. The set {xj : j 2 B}
is said to be the basis associated with the dictionary (DB) (we also refer to the index set B as
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the basis for the sake of simplicity), and the variables xi, i 2 N are said to be the non-basic
variables associated with this dictionary. The basic solution identified by this dictionary is

x̂i = bbi i 2 B(2.13)

x̂j = 0 j 2 N.

The dictionary is said to be feasible if 0  bbi for i 2 B. If the dictionary DB is feasible, then
the basic solution identified by the dictionary (2.13) is said to be a basic feasible solution

(BFS) for the LP. A feasible dictionary and its associated BFS are said to be optimal if
bcj  0 j 2 N . The associated optimal solution to the LP is obtained by dropping the slack
variable components from the BFS x̂, that is the optimal solution to the LP has components
x̂i, i = 1, 2, . . . , n. At the end of this section, we show that optimal basic feasible solutions
are optimal solutions to the linear program P .

Simplex Pivoting by Matrix Multiplication
As we have seen, simplex pivoting can either be performed on dictionaries or on the

augmented matrices that encode the linear equations of a dictionary in matrix form. In
matrix form, simplex pivoting reduces to our old friend, Gauss-Jordan elimination. In this
section, we show that Gauss-Jordan elimination can be represented as a consequence of left
multiplication by a specially designed matrix called a Gauss-Jordan pivot matrix.

Consider the vectors ej 2 Rn
, j = 1, . . . , n, where each ej is is defined to be the vector

having a one in the jth position and zeros elsewhere. For example, in R4, we have

e1 =

0

BB@

1
0
0
0

1

CCA , e2 =

0

BB@

0
1
0
0

1

CCA , e3 =

0

BB@

0
0
1
0

1

CCA , and e4 =

0

BB@

0
0
0
1

1

CCA .

The set of vectors {e1, e2, . . . , en} in Rn is called the standard unit coordinate basis for Rn.
It is clearly a basis for Rn in the sense that these vectors are linearly independent and they
span Rn. They are called unit vectors since their magnitude is 1. Also observe that they
form the columns of the n⇥ n identity matrix In⇥n, i.e

In⇥n = [e1 e2 . . . en].

Next consider a vector v 2 Rm block decomposed as

v =

2

4
a

↵

b

3

5

where a 2 Rs, ↵ 2 R, and b 2 Rt with m = s + 1 + t. Assume that ↵ 6= 0. We wish to
determine a matrix G such that

Gv = es+1.
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We claim that the block matrix

G =

2

4
Is⇥s �↵�1

a 0
0 ↵

�1 0
0 �↵�1

b It⇥t

3

5

does the trick. Indeed,

Gv =

2

4
Is⇥s �↵�1

a 0
0 ↵

�1 0
0 �↵�1

b It⇥t

3

5

0

@
a

↵

b

1

A =

2

4
a� a

↵
�1
↵

�b+ b

3

5 =

0

@
0
1
0

1

A = es+1.

The matrix G is called a Gauss-Jordan Pivot Matrix. Note that G is invertible since

G
�1 =

2

4
I a 0
0 ↵ 0
0 b I

3

5 ,

and that for any vector of the form w =

0

@
x

0
y

1

A where x 2 Rs
y 2 Rt, we have

Gw = w.

The Gauss-Jordan pivot matrices perform precisely the operations required in order to ex-
ecute a simplex pivot. That is, each simplex pivot can be realized as left multiplication of
the simplex tableau by the appropriate Gauss-Jordan pivot matrix.

For example, consider the following initial feasible tableau:

2

664

1 4 2 1 0 0 11
3 2� 1 0 1 0 5
4 2 2 0 0 1 8
4 5 3 0 0 0 0

3

775

where the (2, 2) element is chosen as the pivot element. In this case,

s = 1, t = 2, a = 4, ↵ = 2, and b =


2
5

�
,

and so the corresponding Gauss-Jordan pivot matrix is

G1 =

2

64
I1⇥1 �↵�1

a 0

0 ↵
�1 0

0 �↵�1
b I2⇥2

3

75 =

2

66664

1 �2 0 0

0 1
2 0 0

0 �1 1 0

0 �5
2 0 1

3

77775
.
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Multiplying the simplex on the left by G1 gives
2

66664

1 �2 0 0

0 1
2 0 0

0 �1 1 0

0 �5
2 0 1

3

77775

2

66664

1 4 2 1 0 0 11

3 2 1 0 1 0 5

4 2 2 0 0 1 8

4 5 3 0 0 0 0

3

77775
=

2

66664

�5 0 0 1 �2 0 1
3
2 1 1

2 0 1
2 0 5

2

1 0 1� 0 �1 1 3

�7
2 0 1

2 0 �5
2 0 �25

2

3

77775
.

Repeating this process with the new pivot element in the (3, 3) position yields the Gauss-
Jordan pivot matrix

G2 =

2

66664

1 0 0 0

0 1 �1
2 0

0 0 1 0

0 0 �1
2 1

3

77775
,

and left multiplication by G2 gives
2

66664

1 0 0 0

0 1 �1
2 0

0 0 1 0

0 0 �1
2 1

3

77775

2

66664

�5 0 0 1 �2 0 1
3
2 1 1

2 0 1
2 0 5

2

1 0 1 0 �1 1 3
�7
2 0 1

2 0 �5
2 0 �25

2

3

77775
=

2

66664

�5 0 0 1 �2 0 1

1 1 0 0 1 �1
2 1

1 0 1 0 �1 1 3

�4 0 0 0 �3
2

�1
2 �14

3

77775

yielding an optimal tableau.
If

(2.4) T0 :=


A I b

c
T 0 0

�

is the initial tableau, then

G2G1T0 =

2

664

�5 0 0 1 �2 0 1
1 1 0 0 1 �1

2 1
1 0 1 0 �1 1 3
�4 0 0 0 �2 �1

2 �14

3

775

That is, we would be able to go directly from the initial tableau to the optimal tableau if we
knew the matrix

G = G2G1 =

2

664

1 0 0 0
0 1 �1

2 0
0 0 1 0
0 0 �1

2 1

3

775

2

664

1 �2 0 0
0 1

2 0 0
0 �1 1 0
0 �5

2 0 1

3

775 =

2

664

1 �2 0 0
0 1 �1

2 0
0 �1 1 0
0 �2 �1

2 1

3

775
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beforehand. Moreover, the matrix G is invertible since both G1 and G2 are invertible:

G
�1 = G

�1
1 G

�1
2 =

2

664

1 4 0 0
0 2 0 0
0 2 1 0
0 5 0 1

3

775

2

664

1 0 0 0
0 1 1

2 0
0 0 1 0
0 0 1

2 1

3

775 =

2

664

1 4 2 0
0 2 1 0
0 2 3 0
0 5 3 1

3

775

(you should check that GG
�1 = I by doing the multiplication by hand). In general, every

sequence of simplex pivots has a representation as left multiplication by a single invertible ma-
trix since since pivoting corresponds to left multiplication of the tableau by a Gauss-Jordan
pivot matrix, and Gauss-Jordan pivot matrices are always invertible. We now examine the
consequence of this observation more closely in the general case. In this discussion, it is
essential that we include the column associated with the objective variable z which we have
largely ignored up to this point.

Recall the initial simplex tableau, or augmented matrix associated with the system (DI):

T0 =


0 A I b

�1 c
T 0 0

�
.

Observe that we include the first column, i.e. the column associated with the objective
variable z in the augmented matrix. Let the matrix

Tk =


0 bA R bb
�1 bcT �byT bz

�

be another simplex tableau obtained from the initial tableau after a sequnce of k simplex
pivots. The first column remains unchanged. since simplex pivots do not alter the first
column. This is the reason why it does not appear in our hand computations. However, in
this discussion, its presence and the fact that it remains unchanged by simplex pivoting is
key! Since Tk is another simplex tableau the m⇥ (n+m) matrix [ bA R] must posses among
its columns the m columns of the m ⇥ m identity matrix. These columns of the identity
matrix correspond to the basic variables associated with this tableau (except in the very
unusual case when there are more than m columns of the identity present).

Our prior discussion on Gauss-Jordan pivot matrices tells us that Tk can be obtained
from T0 by multiplying T0 on the left by some nonsingular (m + 1) ⇥ (m + 1) matrix G

where G is the product of a sequence of Gauss-Jordan pivot matrices. In order to better
understand the action of G on T0 we need to decompose G into a block structure that is
conformal with that of T0:

G =


M u

v
T

�

�
,
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where M 2 Rm⇥m
, u, v 2 Rm

, and � 2 R. Then


0 bA R bb
�1 bcT �yT bz

�
= Tk

= GT0

=


M u

v
T

�

� 
0 A I b

�1 c
T 0 0

�

=


�u MA+ uc

T
M Mb

�� v
T
A+ �c

T
v
T

v
T
b

�
.

By equating the blocks in the matrices on the far left and far right hand sides of this equation,
we find from the first column that

u = 0 and � = 1 .

Here we see the key role played by our knowledge of the structure of the first column, i.e.
the z or objective variable column. From the (1, 3) and the (2, 3) terms on the far left and
right hand sides of (2.5), we also find that

M = R, and v = �y .

Putting all of this together gives the following representation of the k
th tableau Tk:

(2.5) Tk =


R 0
�yT 1

� 
0 A I b

�1 c
T 0 0

�
=


0 RA R Rb

�1 c
T � byTA �yT �byT b

�
,

where the matrix R is necessarily invertible since the matrix

G =


R 0
�yT 1

�

is invertible (prove this!):

G
�1 =


R

�1 0
y
T
R

�1 1

�
. (check this out by computing the product GG

�1)

The matrix R is called the record matrix for the tableau as it keeps track of almost all
of the transformations required to obtain the new tableau. Again, the variables associated
with the columns of the identity correspond to the basic variables. The tableau Tk is said to
be primal feasible, or just feasible, if bb = Rb � 0.

The beautiful structure revealed by equation (2.5) is perhaps the most important equation
to be given in our discussion of linear programming. It is of central importance to linear
programming duality theory and sensitivity analysis. Its importance cannot be overstated.
We call equation (2.5) the basic pivoting equation for the simplex algorithm.
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As a first step toward understanding the central significance of the equation (2.5), consider
the case where the tableau Tk on the right hand side of (2.5) is an optimal tableau, i.e.

(2.6)


0 RA R Rb

�1 c
T � y

T
A �yT �yT b

�

is an optimal tableau for P . Recall that (2.6) is optimal if and only if it is feasible, Rb � 0,
and all of the variable coe�cients in the objective row are non-positive,

(2.7) A
T
y � c and 0  y ,

in which case we claim that the associated BFS, say x̃, is an optimal solution to the LP with
optimal value c

T
x̂ = z = b

T
y. The vector bx corresponds to the vector x with all of the slack

variables removed. In particular, bx is feasible for P with objective value c
T bx = z = b

T
y.

Now observe that the system (2.7) says that y is feasible for the dual problem D with dual
objective value b

T
y. This is absolutely amazing since the Weak Duality Theorem now

tells us that bx solves P and y solves D!!! That is, any optimal tableau similtaneously gives
optimal solutions to both the primal and dual problems! We have just proved the following
theorem.

Theorem 2.1 (Optimal Tableau Theorem) Let x be the basic feasible solution for the

tableau (2.6). If (2.6) is an optimal tableau for the linear program P, then y is an optimal

solution to the dual problem D and the vector bx 2 Rn
given by bxj = xj, j = 1, 2, . . . , n is an

optimal solution to P.

The Optimal Tableau Theorem motivates the following definition.

Definition 2.1 (Primal and Dual Feasible Dictionaries and Tableaus) Consider the

linear program

P : maximize c
T
x

subject to Ax  b

0  x ,

and let

xi = bbi �
X

j2N

baijxj i 2 B(DB)

z = bz +
X

j2N

bcjxj

be a dictionary for this linear program with associated augmented matrix, or equivalently,

simplex tableau

T :=


0 RA R Rb

�1 c
T � y

T
A �yT �yT b

�

This tableau is said to be primal feasible for P if Rb � 0. It is said to be dual feasible if

c
T � y

T
A  0 (or equivalently A

T
y � c) and 0  y. If a simplex tableau is both primal and

dual feasible, then it is said to be optimal.
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The Optimal Tableau Theorem tells us that if the simplex algorithm works, in the sense
that it arrives at an optimal tableau after a finite number of simplex pivots, then we have a
method for solving all LPs! Unfortunately, the situation is not as simple as this. First, not
every LP is feasible, so a solution obviously cannot exist. Second, even if an LP is feasible, it
may be unbounded, so, again, a solution does not exist. Finally, even if a solution exists, we
have no guarantee that the simplex algorithm can find it after a finite number of pivots, or
for that matter an infinite number of pivots. To understand the relationship between linear
programs and the simplex algorithm, we need a much deeper understanding of the algorithm
itself.

36


